ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 34

Information Theory and Coding Dec. 24, 2018

Solutions to Homework 13

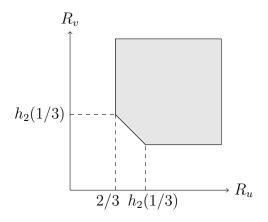
Problem 1.

(a) The Slepian-Wolf rate region for (U, V) pair is given as

$$R_u \ge H(U|V) = \log 3 - h_2(1/3) = 2/3$$

 $R_v \ge H(V|U) = \log 3 - h_2(1/3) = 2/3$
 $R_u + R_v \ge H(UV) = \log 3$

and the region can be drawn as



where $h_2(.)$ is the binary entropy function.

(b) The rate region of a MAC with input (X_1, X_2) having a probability distribution $p(x_1x_2) = p(x_1)p(x_2)$ is given by the following polymatroid.

$$R_1 \le I(X_1; Y|X_2) \tag{1}$$

$$R_2 \le I(X_2; Y|X_1) \tag{2}$$

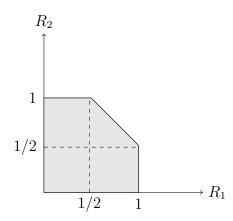
$$R_1 + R_2 \le I(X_1 X_2; Y) \tag{3}$$

Note that $I(X_1; Y|X_2) = H(Y|X_2) - H(Y|X_1X_2) = H(Y|X_2) = H(X_1)$. Similarly, $I(X_2; Y|X_1) = H(X_2)$ and $I(X_1X_2; Y) = H(Y) - H(Y|X_1X_2) = H(Y)$. Let $\alpha = \Pr(X_1 = 0)$ and $\beta = \Pr(X_2 = 0)$. Clearly $H(X_1)$ and $H(X_2)$ are maximized when $\alpha = \beta = 1/2$. Moreover for any value of β , $H(Y) = H(X_1 + X_2)$ is a concave function of α and is invariant if we replace α with $1 - \alpha$. Therefore, $\alpha = 1/2$ maximizes H(Y) for any β and by symmetry, $\alpha = \beta = 1/2$ simultaneously maximizes the right hand sides of (1), (2), (3). Then we have the following polymatroid as the capacity region for this MAC.

$$R_1 \le 1$$

$$R_2 \le 1$$

$$R_1 + R_2 \le 3/2.$$



- (c) For this scheme to work, there must exist a (R_u, R_v) pair in the SW region such that $L/N(R_u, R_v)$ belongs to the MAC region. As sum of rates is at least $\log(3)$ in the SW region but at most 3/2 in the MAC region, L/N can be at most $\frac{3/2}{\log 3} \approx 0.946$. Moreover, it can be seen that for $L/N \leq \frac{3/2}{\log 3}$, the scaled SW region does intersect the MAC region.
- (d) With the uncoded scheme, we have $X_1 = U$ and $X_2 = V$ and thus Y = U + V. Since U, V are binary and (U, V) = (0, 1) is not possible, the value of Y completely determines (U, V). In this scheme L/N = 1/1 > 0.946. Note that in part (c), the maximum value of L/N was found as 0.946. This shows that uncoded schemes can be strictly more efficient in the multi-user settings than coded schemes something we knew cannot happen in the single user case.

Problem 2.

(a) Note that no matter how user 2 communicates, we can recover X_1 exactly from Y. Let $X_1 \sim \text{Bern}(\alpha)$. Then X_1 can communicate with a rate less than $h_2(\alpha)$. From the side of X_2 , the channel is seen as

$$Y = \begin{cases} X_2, & \text{w.p. } \alpha \\ 0, & \text{w.p. } 1 - \alpha \end{cases}$$

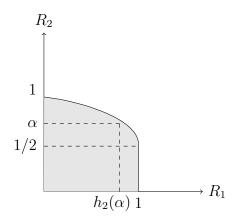
which is essentially a BEC with erasure probability $1 - \alpha$. Therefore, X_2 can communicate with a rate at most α and the following region is obtained.

$$\mathcal{R}(\alpha) = \{ (R_1, R_2) : R_1 \le h_2(\alpha), \ R_2 \le \alpha \}$$

Note that the constraint for $R_1 + R_2$ is automatically satisfied as $I(X_1X_2; Y) = H(Y) = \alpha + h_2(\alpha)$. Then the capacity region \mathcal{R} is the convex hull of the union of $\mathcal{R}(\alpha)$'s.

$$\mathcal{R} = \operatorname{conv}\left(\bigcup_{\alpha} \mathcal{R}(\alpha)\right).$$

The region \mathcal{R} is depicted as follows.



(b) The only difference is that the channel from X_2 to Y is a ternary erasure channel. Therefore

$$\mathcal{R}(\alpha) = \{ (R_1, R_2) : R_1 \le h_2(\alpha), \ R_2 \le \alpha \log 3 \}$$

and the rest is same as part (a).

(c) Taking the logarithm of both sides, we have $\tilde{Y} = \tilde{X}_1 + \tilde{X}_2$, where $\tilde{X}_1 = \log X_1$, $\tilde{X}_2 = \log X_2$, and $\tilde{Y} = \log Y$. Note that \tilde{X}_1 and \tilde{X}_2 can take values in $\{0,1\}$ thus this is essentially a binary adder MAC. This capacity region is already found in Problem 1, part (b).