
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
School of Computer and Communication Sciences

Handout 24 Information Theory and Coding
Graded Homework, due Monday December 3 Nov. 20, 2018

You are allowed (even encouraged) to discuss the problems on the homework
with your colleagues. However, your solutions should be in your own words. If
you collaborated on your solution, write down the name of your collaborators
and your sources; no points will be deducted. But similarities in solutions
beyond the listed collaborations will be considered as cheating.

Problem 1. Consider a discrete memoryless channel W with input alphabet X and output
alphabet Y . Let

enc : {1, . . . ,M} → X n

be the encoding function of a block code of blocklength n with M codewords. Let us denote
by x(m, i) the i’th letter of the m’th codeword, i.e.,

enc(m) =
(
x(m, 1), . . . , x(m,n)

)
, m = 1, . . . ,M.

We define the empirical distribution pX̂ of the encoding function as

pX̂(x) = (nM)−1
M∑

m=1

n∑
i=1

1{x(m, i) = x}.

(a) Verify that pX̂ is a probability distribution on X .

Let U be a random variable uniformly distributed on {1, . . . ,M}. Let Xn = enc(U). Let
Y n denote the output of the channel W when the channel input is Xn.

(b) Find pXi
(x), the probability Pr(Xi = x), in terms of (x(1, i), . . . , x(M, i)).

(c) What is the relationship between pX̂ and pX1 , . . . , pXn?

(d) Let f(enc) denote the value of 1
n
I(U ;Y n), the normalized mutual information between

the message U and the channel output Y n.

Show that f(enc) ≤ I(X̂;Y ), where X̂ is a random variable with distribution pX̂
above, and Y is the output of channel W when the channel input is X̂.

Suppose now that the encoding function enc is chosen randomly by choosing (x(m, i) : 1 ≤
m ≤M, 1 ≤ i ≤ n) as i.i.d. random variables with distribution pX . We denote by Enc the
randomly chosen encoder. Note that since the encoder is random, the distribution pX̂(x)
is also random.

(e) Show that E[pX̂(x)] = pX(x).

(f) Show that E[f(Enc)] ≤ I(X;Y ), where f is as in (d), X has distribution pX , and Y
is the output of channel W when the channel input is X.

Problem 2. Consider a discrete memoryless channel with input x and two outputs Y and
Z. The channel is described by specifying W (y, z|x) — the probability that (Y, Z) = (y, z)
when the channel input is x — for every triple x, y, z.



The output Y is observed at a receiver to whom the transmitter (controlling x) wants to
convey a message U . We take U to be random variable uniformly distributed on {1, . . . ,M}.
However the output Z is observed at an eavesdropper from whom the message U should
be kept secret.

In this dual task, the encoder can make use of an auxiliary source of randomness Q,
which is a random variable uniformly distributed on {1, 2, . . . , J} and is independent of U .
The encoder is free to choose the integer J .

In such a scenario, the transmitter is described by an encoding function

enc : {1, . . . ,M} × {1, . . . , J} → X n.

The encoding function associates to each possible pair u, q of values of U and Q, a channel
input sequence enc(u, q) =

(
x(u, q, 1), . . . , x(u, q, n)

)
.

The rate of this encoder is (as usual) 1
n

logM . We measure how much information the
eavesdropper has learned about U by the normalized mutual information 1

n
I(U ;Zn).

The receiver will recover from Y n an estimate V = dec(Y n) of the message. As in class

dec : Yn → {0, 1, . . . ,M}

is the decoding function with which the estimate is computed. Let Pe = Pr(V 6= U) denote
the average probability of error.

(a) Show that I(U ;Zn) = I(UQ;Zn)− I(Q;ZnU).

(b) Show that 1
n
I(UQ;Zn) ≤ I(X̂;Z). (With X̂ as in problem 1 above.)

Fix R and R0. Set M = 2nR (so that the encoder has rate R) and J = 2nR0 . Fix a
distribution pX on the channel input alphabet X .

Choose the encoding function randomly, by choosing
(
x(m, q, i) : 1 ≤ m ≤M, 1 ≤ q ≤

J, 1 ≤ i ≤ n
)

i.i.d. with distribution pX . Let (X, Y, Z) have distribution pX(x)W (y, z|x).

With this choice quantities such as Pe, I(U ;Zn), I(Q;ZnU), I(X̂;Z), etc., become
random variables.

(c) Suppose R + R0 < I(X;Y ). Show that E[Pe] approaches 0 as n gets large. [Hint:
consider a decoder dec′ : Yn → {0, 1, . . . ,MJ} that estimates the pair (U,Q) from
Y n. Clearly, Pe is upper bounded by the error probability of this more ambitious
decoder.]

(d) Suppose R0 < I(X;Z). Consider estimating Q from the pair (Zn, U). Let T =
dec0(Z

n, U) be this estimate, and P0 = Pr(Q 6= T ) be the error probability of this
estimation. Show that for an appropriate choice of the function dec0, the expected
value E[P0] of the error probability approaches zero as n gets large.

(e) Again supposing R0 < I(X;Z), show that δn = 1
n
E[H(Q|ZnU)] approaches 0 as

n ges large. [Hint: with T and P0 as in (d), Fano’s inequality says H(Q|T ) ≤
P0 log(J − 1) + h2(P0).]

(f) With δn as in (e), show that 1
n
E[I(U ;Zn)] ≤ I(X;Z) − R0 + δn. [Hint: (a), (b),

Problem 1(f).]

(g) Show that for any R < I(X;Y )− I(X;Z) and for any ε > 0, there is an enc and dec
such that Pe < ε and 1

n
I(U ;Zn) < ε). [Hint: Choose R0 = I(X;Z)− ε/4, and use (c)

and (f) to conclude that for large n, E[P0] < ε/2 and 1
n
E[I(U ;Zn)] < ε/2.]
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