Problem Set 2 — *Due Friday, October 27, before class starts* For the Exercise Sessions on Oct 13 and 20

Last name	First name	SCIPER Nr	Points

Problem 1: Moment Generating Function

In the class we had considered the logarithmic moment generating function

$$\phi(s) := \ln E[\exp(sX)] = \ln \sum_{x} p(x) \exp(sx)$$

of a real-valued random variable X taking values on a finite set, and showed that $\phi'(s) = E[X_s]$ where X_s is a random variable taking the same values as X but with probabilities $p_s(x) := p(x) \exp(sx) \exp(-\phi(s))$.

(a) Show that

$$\phi''(s) = \operatorname{Var}(X_s) := E[X_s^2] - E[X_s]^2$$

and conclude that $\phi''(s) \ge 0$ and the inequality is strict except when X is deterministic.

(b) Let $x_{\min} := \min\{x : p(x) > 0\}$ and $x_{\max} := \max\{x : p(x) > 0\}$ be the smallest and largest values X takes. Show that

$$\lim_{s \to -\infty} \phi'(s) = x_{\min}, \text{ and } \lim_{s \to \infty} \phi'(s) = x_{\max}.$$

Problem 2: Divergence and L_1

Suppose p and q are two probability mass functions on a finite set \mathcal{U} . (I.e., for all $u \in \mathcal{U}$, $p(u) \ge 0$ and $\sum_{u \in \mathcal{U}} p(u) = 1$; similarly for q.)

(a) Show that the L_1 distance $||p-q||_1 := \sum_{u \in \mathcal{U}} |p(u)-q(u)|$ between p and q satisfies

$$||p - q||_1 = 2 \max_{\mathcal{S}:\mathcal{S}\subset\mathcal{U}} p(\mathcal{S}) - q(\mathcal{S})$$

with $p(S) = \sum_{u \in S} p(u)$ (and similarly for q), and the maximum is taken over all subsets S of U.

For α and β in [0,1], define the function $d_2(\alpha \| \beta) := \alpha \log \frac{\alpha}{\beta} + (1-\alpha) \log \frac{1-\alpha}{1-\beta}$. Note that $d_2(\alpha \| \beta)$ is the divergence of the distribution $(\alpha, 1-\alpha)$ from the distribution $(\beta, 1-\beta)$.

(b) Show that the first and second derivatives of d_2 with respect to its first argument α satisfy $d'_2(\beta \| \beta) = 0$ and $d''_2(\alpha \| \beta) = \frac{\log e}{\alpha(1-\alpha)} \ge 4 \log e$.

(c) By Taylor's theorem conclude that

$$d_2(\alpha \|\beta) \ge 2(\log e)(\alpha - \beta)^2.$$

(d) Show that for any $\mathcal{S} \subset \mathcal{U}$

$$D(p||q) \ge d_2(p(\mathcal{S})||q(\mathcal{S}))$$

[Hint: use the data processing theorem for divergence.]

(e) Combine (a), (c) and (d) to conclude that

$$D(p||q) \ge \frac{\log e}{2} ||p-q||_1^2.$$

(f) Show, by example, that D(p||q) can be $+\infty$ even when $||p-q||_1$ is arbitrarily small. [Hint: considering $\mathcal{U} = \{0, 1\}$ is sufficient.] Consequently, there is no generally valid inequality that upper bounds D(p||q) in terms of $||p-q||_1$.

Problem 3: Other Divergences

Suppose f is a convex function defined on $(0,\infty)$ with f(1) = 0. Define the f-divergence of a distribution p from a distribution q as

$$D_f(p||q) := \sum_u q(u)f(p(u)/q(u)).$$

In the sum above we take $f(0) := \lim_{t\to 0} f(t), 0 f(0/0) := 0, \text{ and } 0 f(a/0) := \lim_{t\to 0} t f(a/t) = 0$ $a \lim_{t \to 0} t f(1/t) \, .$

(a) Show that for any non-negative a_1 , a_2 , b_1 , b_2 and with $A = a_1 + a_2$, $B = b_1 + b_2$,

$$b_1 f(a_1/b_1) + b_2 f(a_2/b_2) \ge B f(A/B)$$

and that in general, for any non-negative $a_1, \ldots, a_k, b_1, \ldots, b_k$, and $A = \sum_i a_i, B = \sum_i b_i$, we have

$$\sum_{i} b_i f(a_i/b_i) \ge Bf(A/B).$$

[Hint: since f is convex, for any $\lambda \in [0,1]$ and any $x_1, x_2 > 0$ $\lambda f(x_1) + (1-\lambda)f(x_2) \ge f(\lambda x_1 + \lambda)f(x_2)$ $(1-\lambda)x_2$; consider $\lambda = b_1/B$.]

- (b) Show that $D_f(p||q) \ge 0$.
- (c) Show that D_f satisfies the data processing inequality: for any transition probability kernel W(v|u)from \mathcal{U} to \mathcal{V} , and any two distributions p and q on \mathcal{U}

$$D_f(p||q) \ge D_f(\tilde{p}||\tilde{q})$$

where \tilde{p} and \tilde{q} are probability distributions on \mathcal{V} defined via $\tilde{p}(v) := \sum_{u} W(v|u)p(u)$, and $\tilde{q}(v) := \sum_{v} W(v|u)p(v)$ $\sum_{u} W(v|u)q(u)$,

- (d) Show that each of the following are f-divergences.
 - i. $D(p||q) := \sum_{u} p(u) \log(p(u)/q(u))$. [Warning: log is not the right choice for f.]

ii.
$$R(p||q) := D(q||p)$$

 $\begin{array}{ll} \text{ii.} & R(p\|q):=D(q\|p)\,.\\ \text{iii.} & 1-\sum_u \sqrt{p(u)q(u)} \end{array} \end{array}$

iv.
$$||p - q||_1$$
.

1v. $||p - q||_1$. v. $\sum_u (p(u) - q(u))^2 / q(u)$

Problem 4: Entropy and pairwise independence

Suppose X, Y, Z are pairwise independent fair flips, i.e., I(X;Y) = I(Y;Z) = I(Z;X) = 0.

- (a) What is H(X, Y)?
- (b) Give a lower bound to the value of H(X, Y, Z).
- (c) Give an example that achieves this bound.

Problem 5: Generating fair coin flips from biased coins

Suppose X_1, X_2, \ldots are the outcomes of independent flips of a biased coin. Let $Pr(X_i = 1) = p$, $Pr(X_i = 0) = 1 - p$, with p unknown. By processing this sequence we would like to obtain a sequence Z_1, Z_2, \ldots of *fair* coin flips.

Consider the following method: We process the X sequence in succeive pairs, (X_1X_2) , (X_3X_4) , (X_5X_6) , mapping (01) to 0, (10) to 1, and the other outcomes (00) and (11) to the empty string. After processing X_1, X_2 , we will obtain either nothing, or a bit Z_1 .

(a) Show that, if a bit is obtained, it is fair, i.e., $\Pr(Z_1 = 0) = \Pr(Z_1 = 1) = 1/2$.

In general we can process the X sequence in successive n-tuples via a function $f : \{0,1\}^n \to \{0,1\}^*$ where $\{0,1\}^*$ denote the set of all finite length binary sequences (including the empty string λ). [The case in (a) is the function $f(00) = f(11) = \lambda$, f(01) = 0, f(10) = 1. The function f is chosen such that $(Z_1, \ldots, Z_K) = f(X_1, \ldots, X_n)$ are i.i.d., and fair (here K may depend on (X_1, \ldots, X_K) .

(b) With $h_2(p) = -p \log p - (1-p) \log(1-p)$, prove the following chain of (in)equalities.

$$hh_2(p) = H(X_1, \dots, X_n)$$

$$\geq H(Z_1, \dots, Z_K, K)$$

$$= H(K) + H(Z_1, \dots, Z_K | K)$$

$$= H(K) + E[K]$$

$$\geq E[K].$$

Consequently, on the average no more than $nh_2(p)$ fair bits can be obtained from (X_1, \ldots, X_n) .

(c) Find a good f for n = 4.

Problem 6: Extremal characterization for Rényi entropy

Given $s \ge 0$, and a random variable U taking values in \mathcal{U} , with probabilitis p(u), consider the distribution $p_s(u) = p(u)^s/Z(s)$ with $Z(s) = \sum_u p(u)^s$.

(a) Show that for any distribution q on \mathcal{U} ,

$$(1-s)H(q) - sD(q||p) = -D(q||p_s) + \log Z(s).$$

(b) Given s and p, conclude that the left hand side above is maximized by the choice by $q = p_s$ with the value $\log Z(s)$,

The quantity

$$H_s(p) := \frac{1}{1-s} \log Z(s) = \frac{1}{1-s} \log \sum_u p(u)^s$$

is known as the *Rényi entropy of order s of the random variable U*. When convenient, we will also write $H_s(U)$ instead of $H_s(p)$.

(c) Show that if U and V are independent random variables

$$H_s(UV) := H_s(U) + H_s(V).$$

[Here UV denotes the pair formed by the two random variables — not their product. E.g., if $\mathcal{U} = \{0, 1\}$ and $\mathcal{V} = \{a, b\}$, UV takes values in $\{0a, 0b, 1a, 1b\}$.]

Problem 7: Guessing and Rényi entropy

Suppose X is a random variable taking values K values $\{a_1, \ldots, a_K\}$ with $p_i = \Pr\{X = a_i\}$. We wish to guess X by asking a sequence of binary questions of the type 'Is $X = a_i$?' until we are answered 'yes'. (Think of guessing a password).

A guessing strategy is an ordering of the K possible values of X; we first ask if X is the first value; then if it is the second value, etc. Thus the strategy is described by a function $G(x) \in \{1, ..., K\}$ that gives the position (first, second, ... Kth) of x in the ordering. I.e., when X = x, we ask G(x) questions to guess the value of X. Call G the guessing function of the strategy.

For the rest of the problem suppose $p_1 \ge p_2 \ge \cdots \ge p_K$.

(a) Show that for any guessing function G, the probability of asking fewer than i questions satisfies

$$\Pr(G(X) \le i) \le \sum_{j=1}^{i} p_j$$

and equality holds for the guessing function G^* with $G^*(a_i) = i$, i = 1, ..., K; this is the strategy that first guesses the most probable value a_1 , then the next most probable value a_2 , etc.

- (b) Show that for any increasing function $f : \{1, \ldots, K\} \to \mathbb{R}$, E[f(G(X))] is minimized by choosing $G = G^*$. [Hint: $E[f(G(X))] = \sum_{i=1}^{K} f(i) \operatorname{Pr}(G = i)$. Write $\operatorname{Pr}(G = i) = \operatorname{Pr}(G \le i) \operatorname{Pr}(G \le i-1)$, to write the expectation in terms of $\sum_i [f(i) f(i+1)] \operatorname{Pr}(G \le i)$, and use (a).]
- (c) For any i and $s \ge 0$ prove the inequalities

$$i \le \sum_{j=1}^{i} (p_j/p_i)^s \le \sum_j (p_j/p_i)^s$$

(d) For any $\rho \ge 0$, show that

$$E[G^*(X)^{\rho}] \le \left(\sum_i p_i^{1-s\rho}\right) \left(\sum_j p_j^s\right)^{\rho}.$$

for any $s \ge 0$. [Hint: write $E[G^*(X)^{\rho}] = \sum_i p_i i^{\rho}$, and use (c) to upper bound i^{ρ}]

(e) By a choosing s carefully, show that

$$E[G^*(X)^{\rho}] \le \left(\sum_i p_i^{1/(1+\rho)}\right)^{1+\rho} = \exp\left[\rho H_{1/(1+\rho)}(X)\right]$$

(f) Suppose U_1, \ldots, U_n are i.i.d., each with distribution p, and $X = (U_1, \ldots, U_n)$. (I.e., we are trying to guess a password that is made of n independently chosen letters.) Show that

$$\frac{1}{n\rho}\log E[G^*(U_1,\ldots,U_n)^{\rho}] \le H_{1/(1+\rho)}(U_1)$$

[Hint: first observe that $H_{\alpha}(X) = nH_{\alpha}(U_1)$. In other words, the ρ -th moment of the number of guesses grows exponentially in n with a rate upper bounded by in terms of the Rényi entropy of the letters.

It is possible a lower bound to $E[G(U_1, \ldots, U_n)^{\rho}]$ that establishes that the exponential upper bound we found here is asymptotically tight.

Problem 8: Gaussian variance estimation

Consider estimating the mean μ and variance σ^2 from n independent samples (X_1, \ldots, X_n) of a Gaussian with this mean and variance.

- (a) Show that $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is an unbiased estimator of μ .
- (b) Show that

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

is a biased estimator of σ^2 whereas

$$S_{n-1}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

is an unbiased estimator of σ^2 .

(c) Show that S_n^2 has a lower mean squared error than S_{n-1}^2 . Thus it is possible that a biased estimator may be better than an unbiased one.