
Information Theory and Signal Processing Ecole Polytechnique Fédérale, Lausanne: Fall 2017
Gastpar, Telatar, Urbanke September 26, 2017

Problem Set 1 — Due Friday, October 13, before class starts
For the Exercise Sessions on Sept 29 and Oct 6

Last name First name SCIPER Nr Points

Rules : You are allowed and encouraged to discuss these problems with your colleagues. However, each
of you has to write down her solution in her own words. If you collaborated on a homework, write down
the name of your collaborators and your sources. No points will be deducted for collaborations. But if
we find similarities in solutions beyond the listed collaborations we will consider it as cheating. Please
note that EPFL has a VERY strict policy on cheating and you might be in BIG trouble. It is simply not
worth it.

Suggested Split: Sept 29 Problems 1–5. Oct 6 Problems 5–9.

Problem 1: Eckart–Young Theorem

In class, we proved the converse part of the Eckart–Young theorem for the spectral norm. Here, you do
the same for the case of the Frobenius norm.

(a) For any matrix A of dimension m × n and an arbitrary orthonormal basis {x1, · · · ,xn} of Cn,
prove that

‖A‖2F =

n∑
k=1

‖Axk‖2. (1)

(b) Consider any m × n matrix B with rank(B) ≤ p. Clearly, its null space has dimension no smaller
than n − p. Therefore, we can find an orthonormal set {x1, · · · ,xn−p} in the null space of B. Prove
that for such vectors, we have

‖A−B‖2F ≥
n−p∑
k=1

‖Axk‖2. (2)

(c) (This requires slightly more subtle manipulations.) For any matrix A of dimension m × n and any
orthonormal set of n− p vectors in Cn, denoted by {x1, · · · ,xn−p}, prove that

n−p∑
k=1

‖Axk‖2 ≥
r∑

j=p+1

σ2
j . (3)

Hint: Consider the case m ≥ n and the set of vectors {z1, · · · , zn−p}, where zk = V Hxk. Express your
formulas in terms of these and the SVD representation A = UΣV H .

(d) Briefly explain how (a)-(c) imply the desired statement.
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Problem 2: The Fourier matrix diagonalizes all circulant matrices.

The discrete Fourier transform (DFT) X of the vector x is given by

X = Wx and x =
1

N
WHX. (4)

In this homework problem, you will prove that the Fourier matrix diagonalizes all circulant matrices.

(a) To cut the derivation into two simpler steps, we introduce an auxiliary matrix M , defined as

M = WA = W



b0 bN−1 bN−2 bN−3 . . . b1
b1 b0 bN−1 bN−2 . . . b2
b2 b1 b0 bN−1 . . . b3
b3 b2 b1 b0 . . . b4
...

...
...

...
. . .

...
bN−1 bN−2 bN−3 bN−4 . . . b0


︸ ︷︷ ︸

This is a circulant matrix

. (5)

Let us denote the unitary DFT of the sequence {b0, b1, . . . , bN−1} by {B0, B1, . . . , BN−1} . Write out
the matrix M in terms of {B0, B1, . . . , BN−1} . Hint: The first column of the matrix M is simply given
by

W



b0
b1
b2
b3
...

bN−1


=



B0

B1

B2

B3

...
BN−1


(6)

To find the second column, you will need to use some Fourier properties.

(b) Using the matrix M from above, compute the full matrix product

WAWH = MWH . (7)

Hint: Handle every row of the matrix M separately. Define the vector m such that mH is simply the first
row of the matrix M . But the product mHWH is easily computed, recalling that mHWH = (Wm)

H
.

Problem 3: Fourier (Review problem in view of our discussion of wavelets)

Suppose that a signal x(t) satisfies∫ ∞
−∞

x(t− n)x∗(t−m)dt =

{
1, if n = m
0, otherwise.

(8)

(In other words, the set of functions {x(t − n)}n∈Z is an orthonormal set.) Show that then, its Fourier
transform X(ω) must satisfy ∑

k∈Z
|X(ω + 2πk)|2 = 1. (9)
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Problem 4: Hilbert Space Projection Theorem

Given a Hilbert space H and a Hilbert subspace G, the Hilbert space projection theorem states that
for every x ∈ H , there exists a unique y ∈ G such that

(i) x− y ∈ G⊥

(ii) ‖x− y‖ = infu∈G ‖x− u‖

Recall that G⊥ = {z ∈ H : 〈z, x〉 = 0 for all x ∈ G}.

Just like in class, prove that if y is indeed the minimizer of ‖x−u‖ over all u ∈ G , then it must be true
that x− y ∈ G⊥, — except this time, justify every step as you “unpack” the norms into inner products,
and use the properties of the inner product.

Problem 5: Dual Basis

In class, we have mostly discussed orthonormal bases. Let {ϕn}n∈Z be a basis for the Hilbert space H.
Then, for any vector x ∈ H, we have

x =
∑
n

〈x, ϕn〉ϕn (10)

Now, suppose that {ϕ′n}n∈Z is also a basis for H, but it is not orthonormal. Show that if we can find a
so-called dual basis {ϕ′′n}n∈Z satisfying 〈ϕ′n, ϕ′′m〉 = δ(n−m) then for any vector x ∈ H, we have

x =
∑
n

〈x, ϕ′′n〉ϕ′n. (11)

Problem 6: Minimum-norm Solutions

In this problem, we consider an underdetermined system of linear equations, i.e., Ax = b, where A is a
“fat” matrix (m < n ) and b is chosen such that a solution exists. As you know, in this case, there exist
infinitely many solutions. Prove that the one solution x that has the minimum 2-norm can be expressed
as

xMN = V Σ−1UHb, (12)

where, as usual, the SVD of A = UΣV H , and Σ−1 is the matrix Σ where all non-zero diagonal entries
are inverted.

Problem 7: Frames

(a) We now turn to overcomplete expansions. The classic picture is given in Figure 1. In this picture, it
is clear that every two-dimensional vector x can be written as

x = a1φ1 + a2φ2 + a3φ3 (13)

in many different ways. Explicitly and for every two-dimensional vector x, find the solution a =
(a1, a2, a3)t with minimum energy,1 i.e., minimizing a21 + a22 + a23. Then, give a general formula for
any finite-dimensional overcomplete expansion {φn}Nn=1 in k−dimensional space.

1It should also be pointed out that in some Data Science applications, we don’t want the minimum-energy solution, but
the sparsest one, i.e., the one that has the fewest non-zero coefficients. In two dimensions, this is a trivial problem, but in
N dimensions, there is no general simple solution, unfortunately...
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Figure 1: The three vectors φ1, φ2, and φ3 are at 120 degrees of each other and are of unit length each.

(b) There is obviously no Parseval theorem, i.e., x21 + x22 6= a21 + a22 + a23. An overcomplete expansion is
called a frame if there exist constants 0 < A ≤ B <∞ such that

A‖x‖2 ≤
∑
n

|〈x, φn〉|2 ≤ B‖x‖2. (14)

Find the frame bounds A and B for the “Mercedes” frame above. Note: Because frames satisfy such
a Parseval-like property, they are the most common overcomplete expansions. Another note: If A = B,
the frame is called tight.

Problem 8: Time–Frequency Representations

The elementary B-spline of degree 0 is the function β(0)(t) = 1, for − 1
2 ≤ t < 1

2 , and β(0)(t) = 0

otherwise. The elementary B-spline of degree K is defined recursively as β(K) = β(K−1) ∗ β(0). Find
the Heisenberg box of the elementary B-splines of orders 0 and 1 (and 2, if you like). For each case,
compare the size of the Heisenberg box to the lower bound (the uncertainty principle from class).

Problem 9: Haar Wavelet

This problem is taken from Vetterli/Kovacevic, p. 295.

Consider the wavelet series expansion of continuous-time signals f(t) and assume that ψ(t) is the Haar
wavelet.

(a) Give the expansion coefficients for f(t) = 1, t ∈ [0, 1], and 0 otherwise.

(b) Verify that for f(t) as in Part (a),
∑

m

∑
n ‖〈ψm,n, f〉‖2 = 1 (i.e., Parseval’s identity).

(c) Consider f1(t) = f(t − 2−i), where i is a positive integer. Give the range of scales over which
expansion coefficients are non-zero. (Take f(t) as in Part (a).)

(d) Same as above, but now for f2(t) = f(t− 1/
√

2) . (Take f(t) as in Part (a).)
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