

People outside: 0

On Learning to Steer Buildings (and their occupants) Towards Greater Societal Value

Mario Bergés

Professor @ Carnegie Mellon University
Scholar @ Amazon

EPFL, 6.11.2025

<https://inferlab.org>

A group effort

Prof. Flanigan
CMU, CEE

M. Dcotorarastoo
CMU, CEE

Sizhe Ma
CMU, CEE

Kieran Elrod
CMU, CEE

Ozan Mulayim
CMU, CEE
Soon at Google

Bingqing Chen
CMU, CEE
Now at Bosch AI

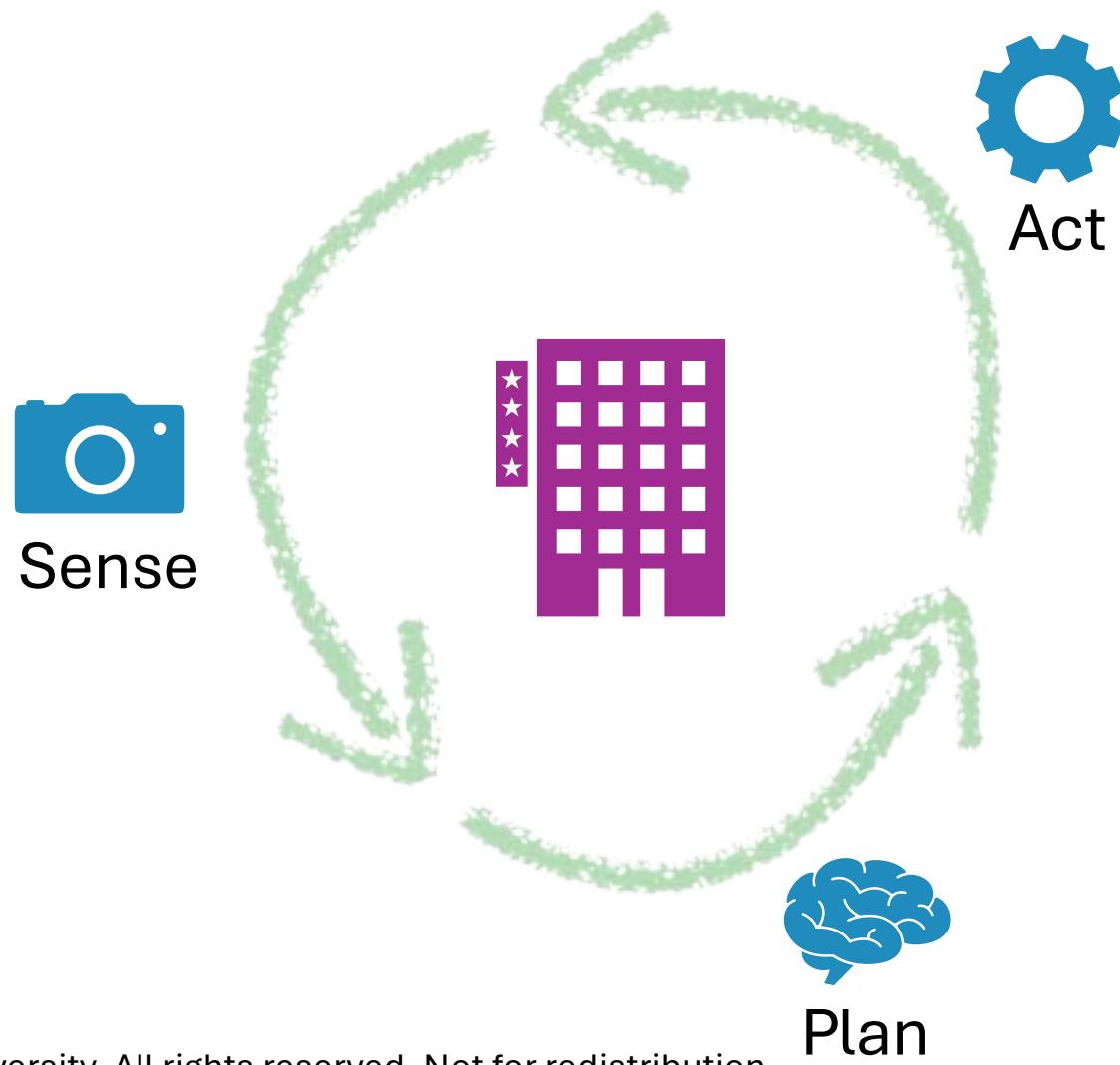
FLANIGAN SALUS LAB

© Carnegie Mellon University. All rights reserved. Not for redistribution.

Improving the design and operation of civil infrastructures systems through data-driven solutions grounded on engineering knowledge.

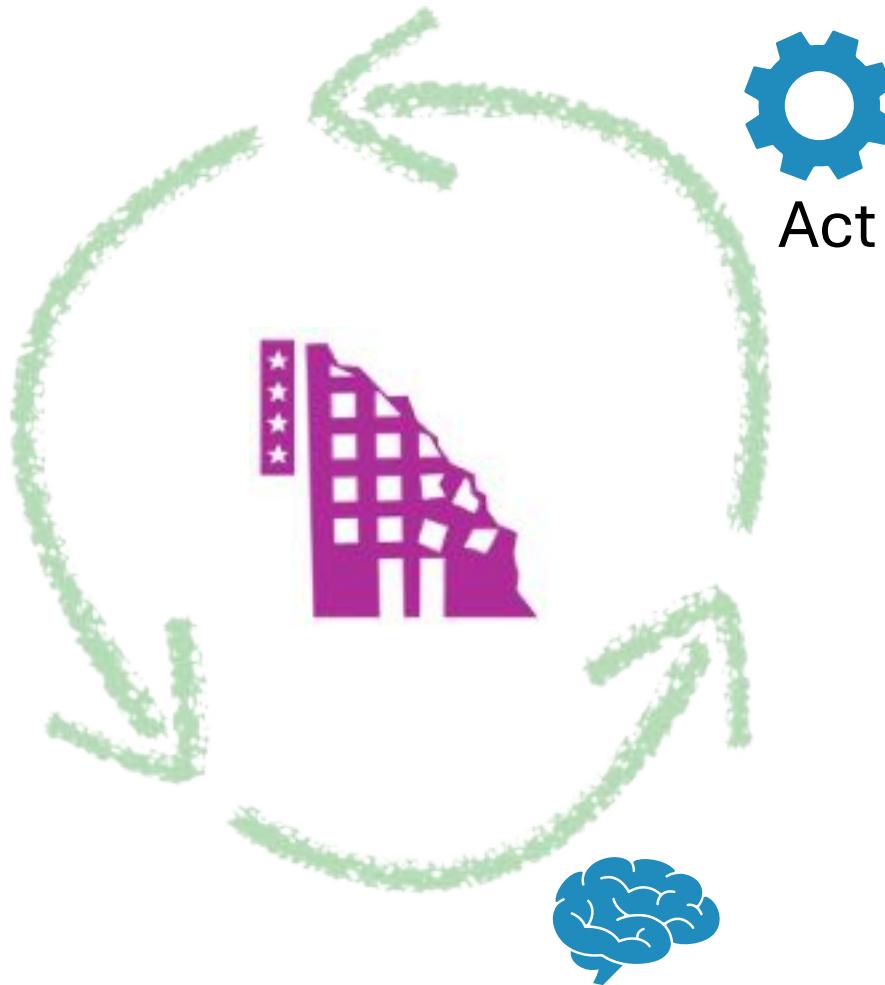
We spend over 90% of our time
in *designed* environments

What do we design them for and how good are we at it?

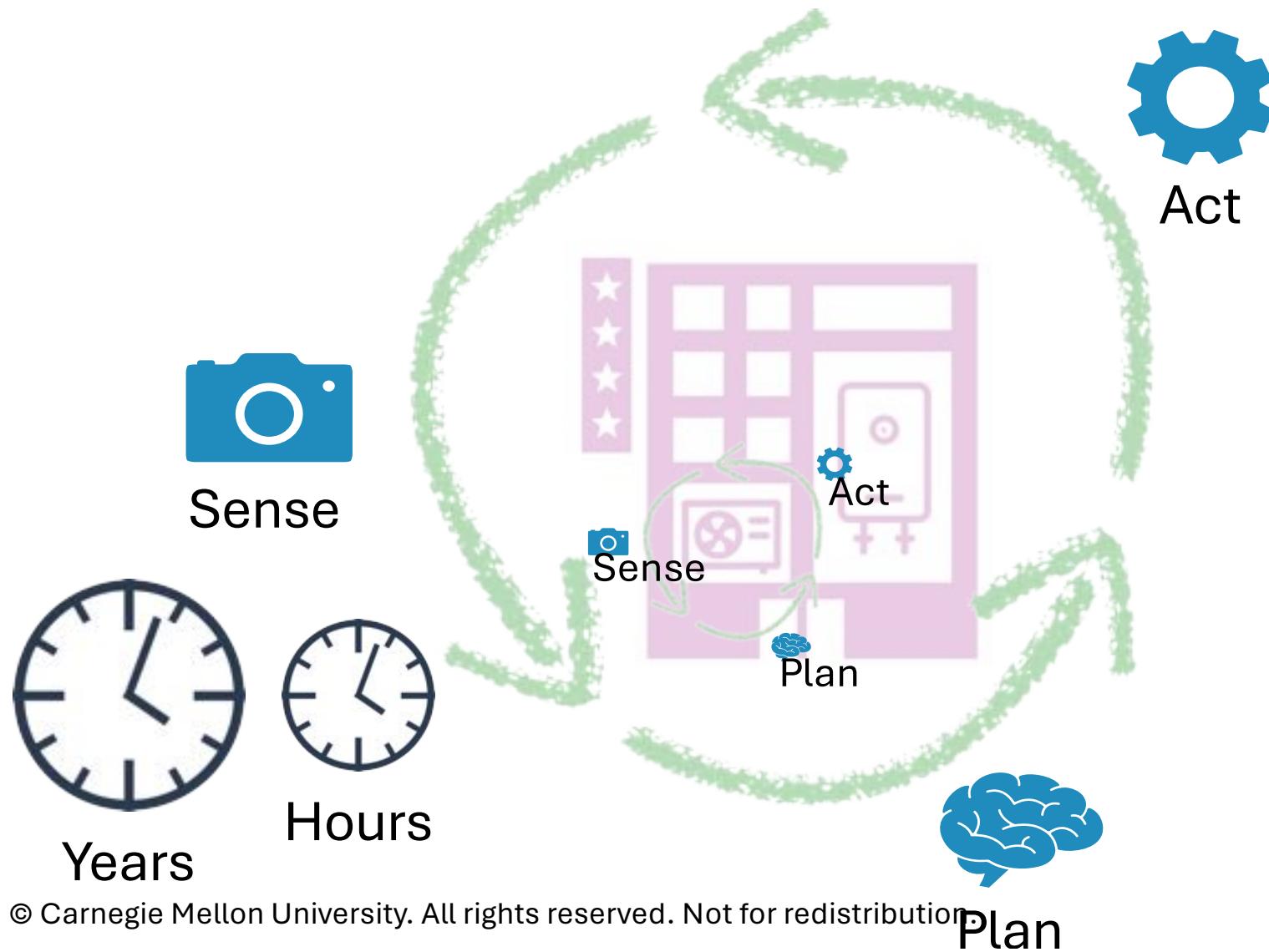


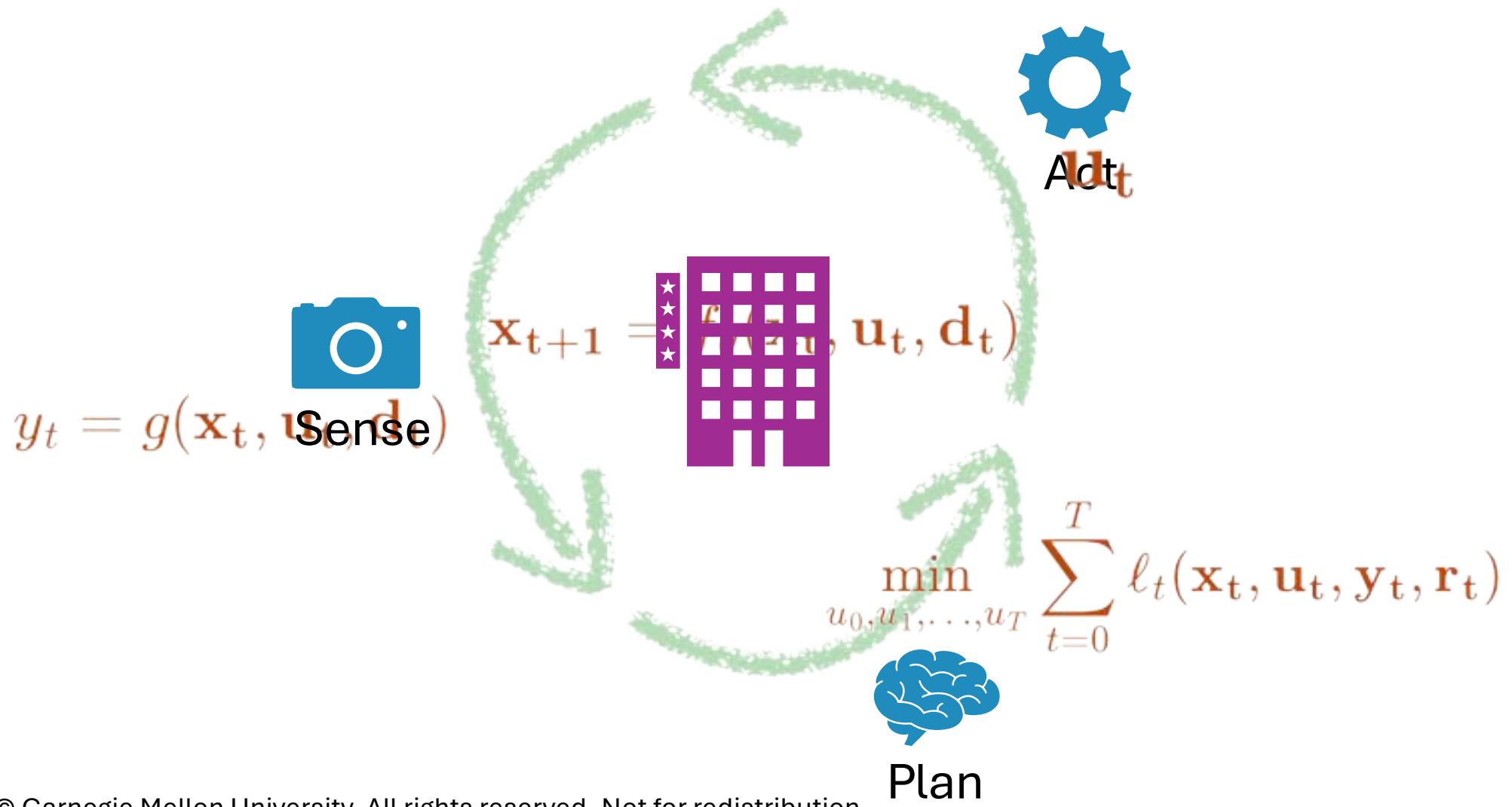
Years

Sense



© Carnegie Mellon University. All rights reserved. Not for redistribution.





What objectives can we write down? Which ones can we solve?

- We're limited by (at least)
 - The observations we have access to $y(t)$
 - The states we can infer from them x_t
 - The dynamics we can learn $f_\theta(x_t, u_t)$

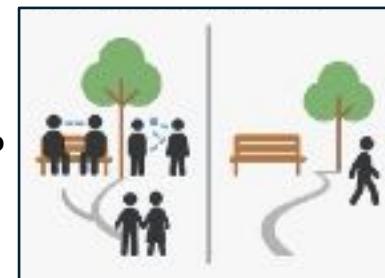
$$\min_{u_0, u_1, \dots, u_T} \sum_{t=0}^T \ell_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{y}_t, \mathbf{r}_t)$$

- Can we write down an $\ell()$ function for:

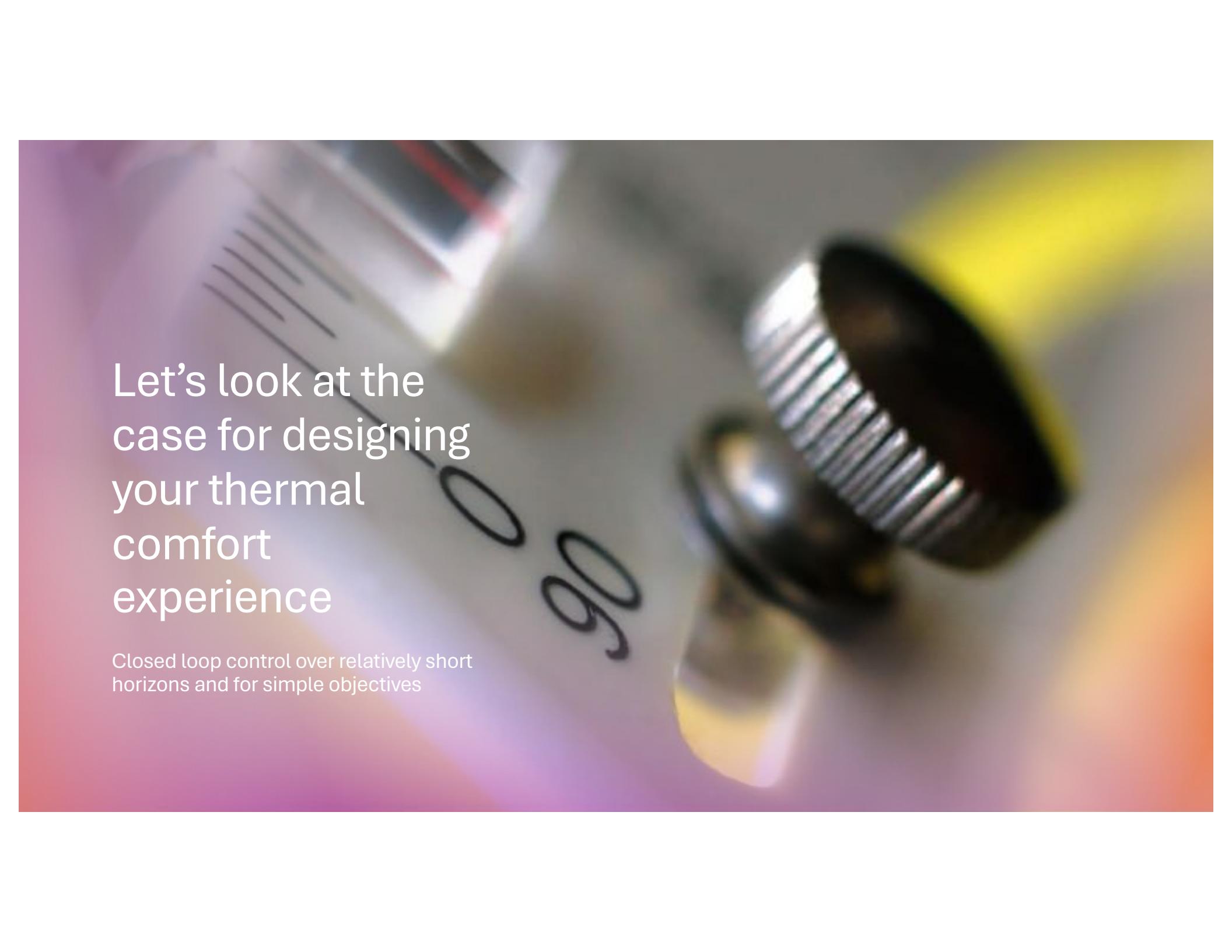
All rights reserved

Well-being,
health, and
opportunity

Resilience to
disruption



Social capital
formation



Let's look at the
case for designing
your thermal
comfort
experience

Closed loop control over relatively short
horizons and for simple objectives

**Hey Siri, can you optimize my temperature while
keeping my costs low?**

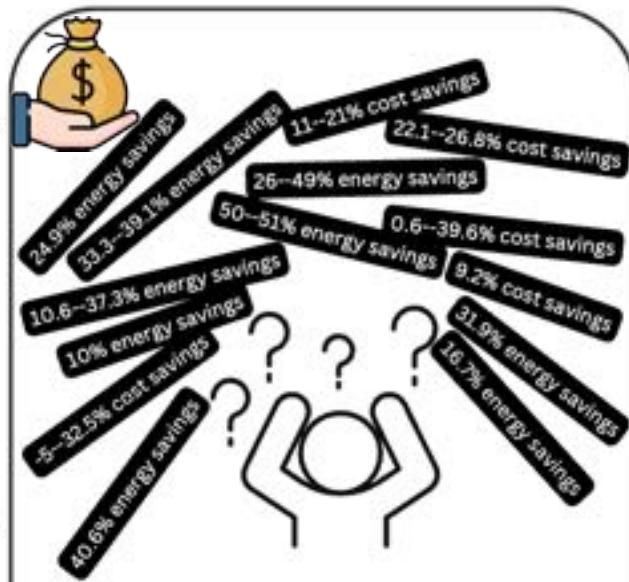
**Model Predictive
Control**

**Reinforcement
Learning**

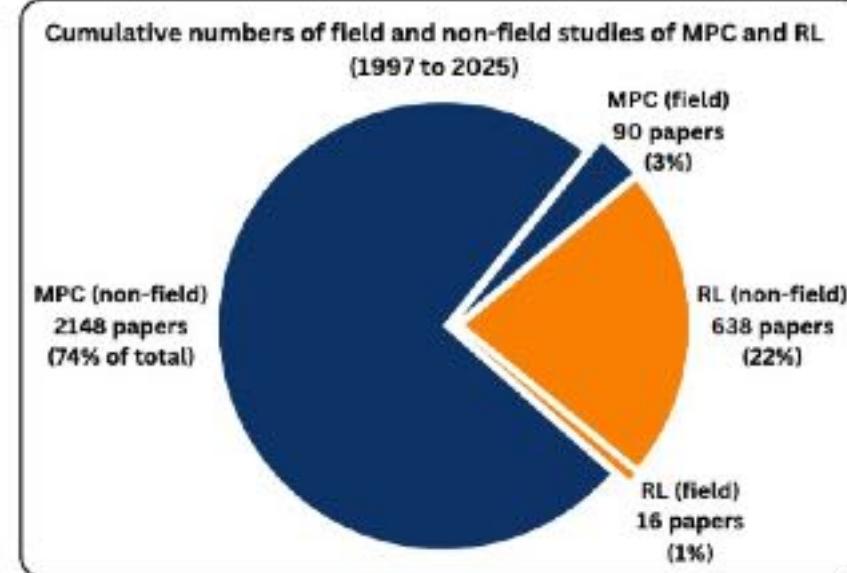
**What is a practical and scalable solution for building
control?**

$$\ell = \sum \left(\lambda \left\| x_t - x^* \right\|_2^2 + \left\| u_t \right\|_1 \right)$$

Where are the proactive controllers?



Many promises have been made.



Many simulation and some real-world experiments have been done.

Khabbazi et al. (2025) Lessons learned from field demonstrations of model predictive control and reinforcement learning for residential and commercial HVAC: A review

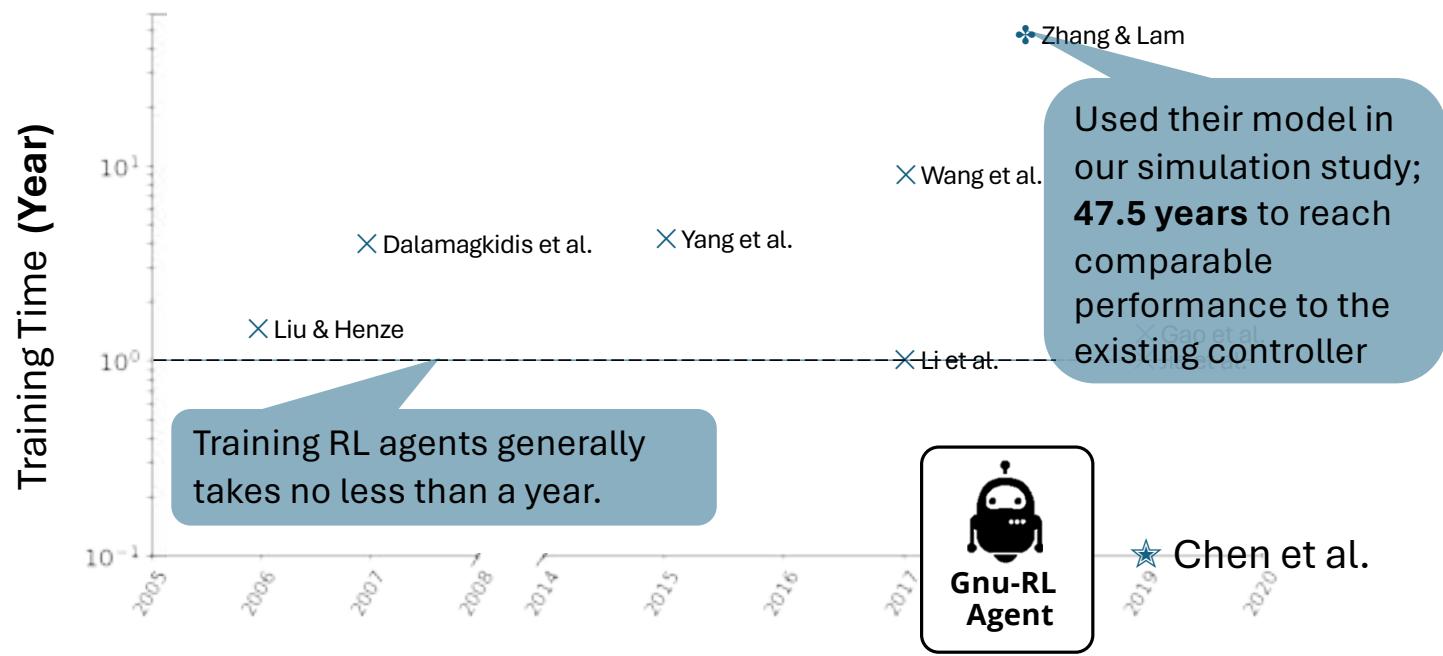
© Carnegie Mellon University. All rights reserved. Not for redistribution.

What do the existing studies lack?

Checklist	CLUE(2024) DPC (2022) MB2C(2020)	DeePC (2024)	Model-free RL (2016,2020,2022)	Gnu-RL (2020)
“Scalable”	Data-hungry	Extensive tuning	Needs a simulator for training	Manual fitting of cost parameters
Interpretable	Black-box	Black-box	Black-box	Limited interpretability
Adaptive	No online learning	No online learning	Online learning	Online learning
Safe	Only in simulation	Real world experiment (5 days)	Real world experiment (13 days)	Real world experiment (21 days)

Most studies are validated only in simulation, black-box in nature or not adaptive.

Training Time in Literature for RL Control of HVAC Systems



We expedited the training by:

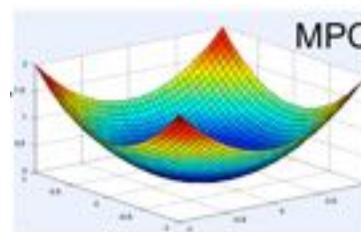
Imitation Learning

Domain Knowledge

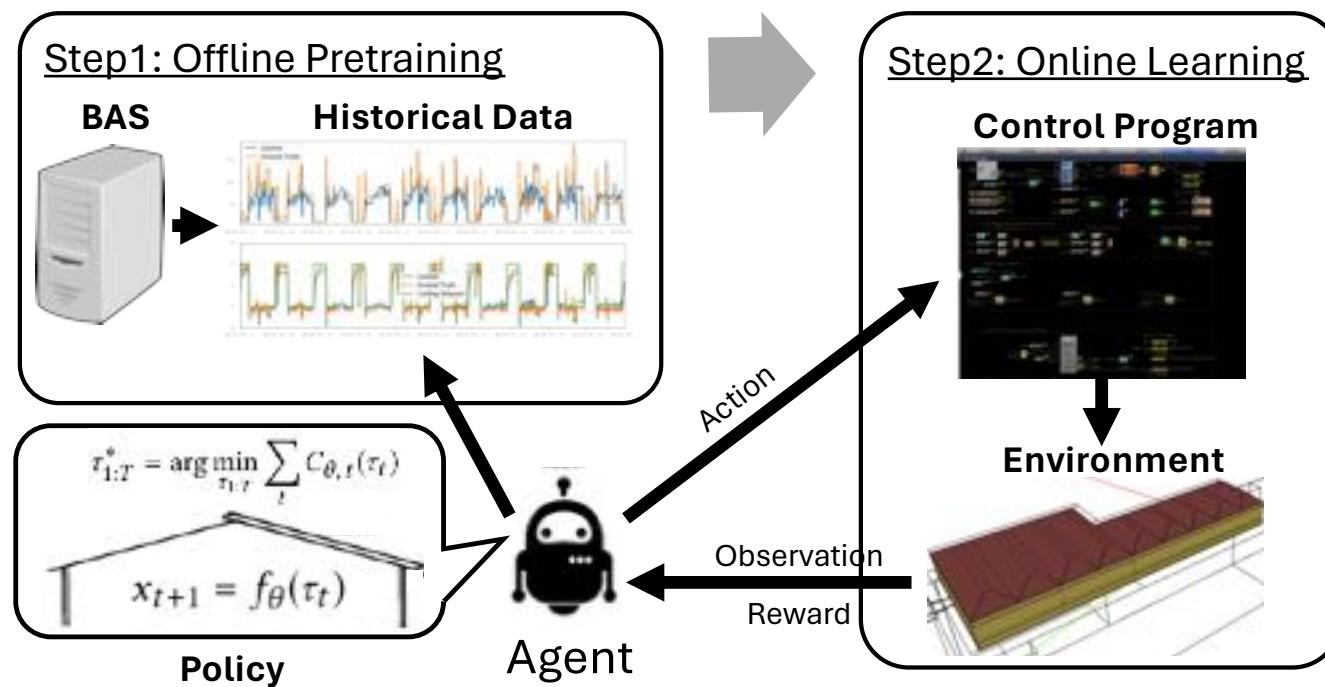
A physical-based model:

$$m \frac{dT}{dt} = Q_{\text{internal}} + Q_{\text{external}}$$

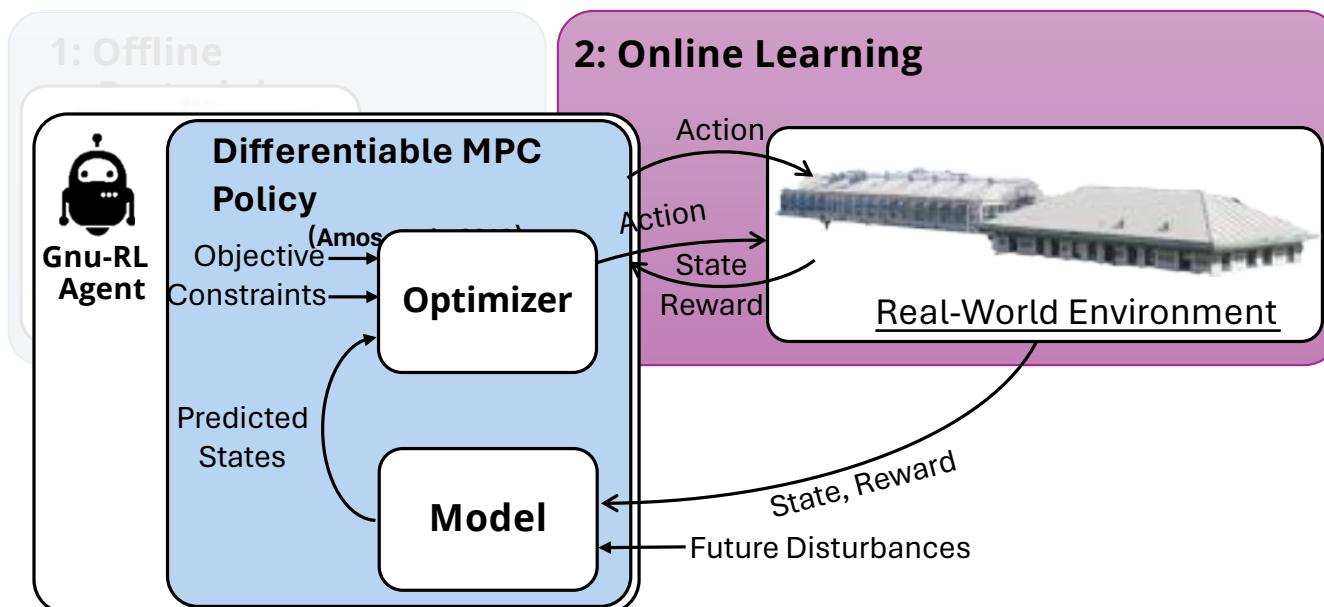
Model Predictive Control



Framework

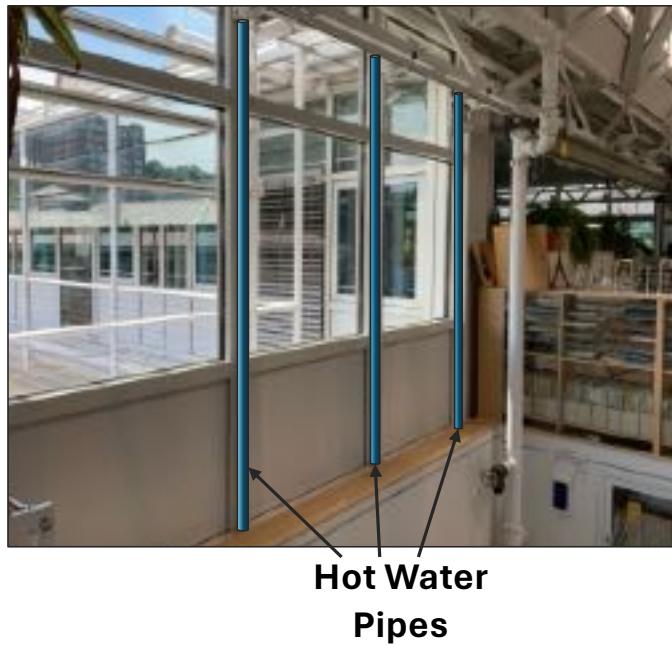
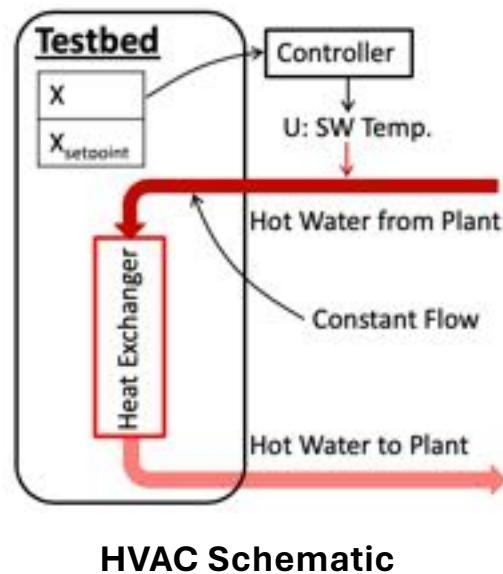


Besides imitating the existing controller, we expedite the training by using a policy that encodes knowledge on system dynamics and control.

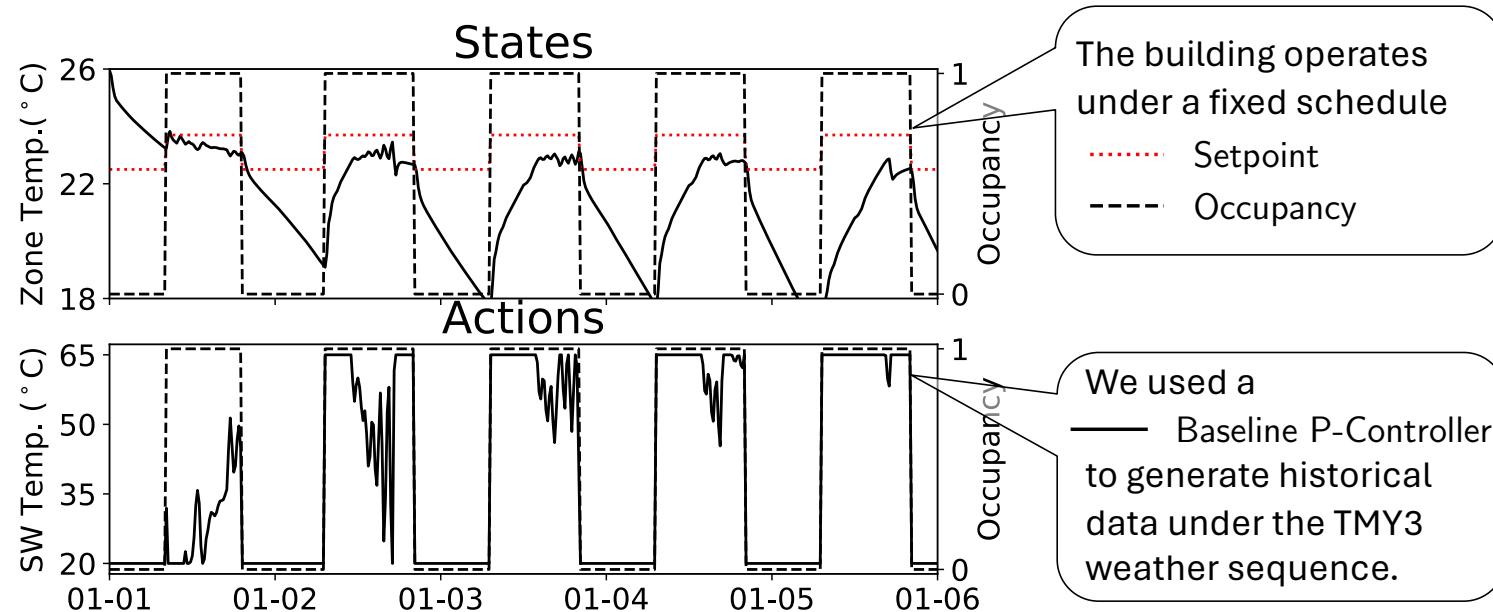


Amos, B., Jimenez, I., Sacks, J., Boots, B., & Kolter, J. Z. (2018). Differentiable MPC for End-to-end Planning and Control. In Advances in Neural Information Processing Systems (pp. 8289-8300).

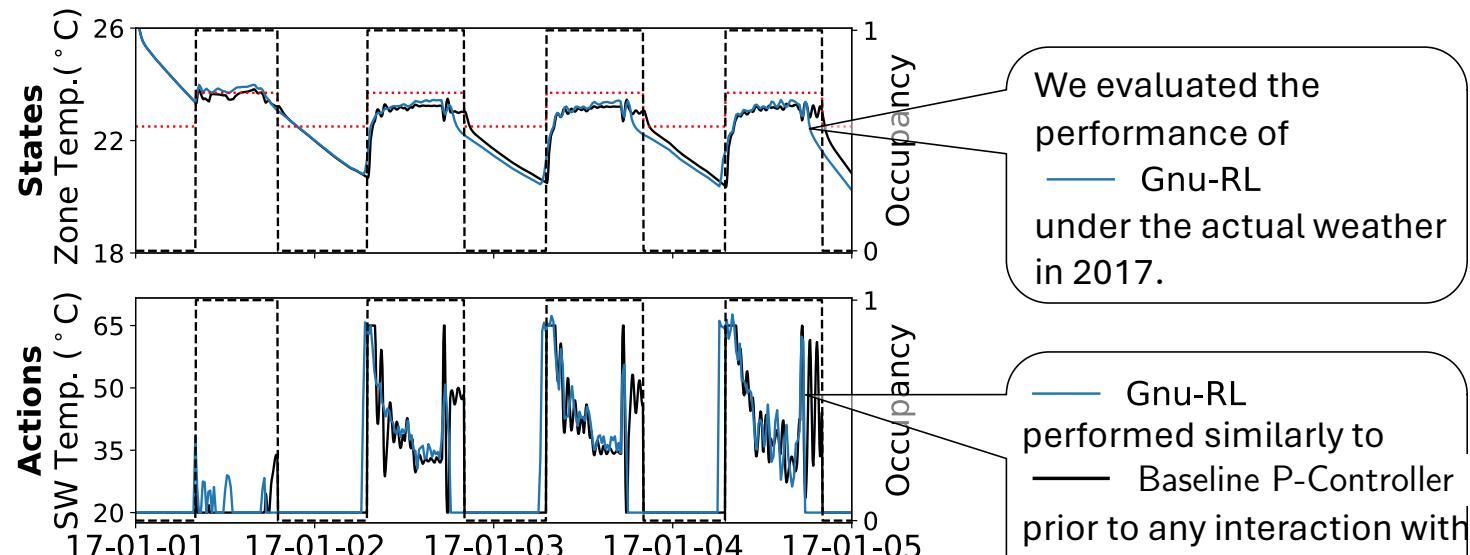
Experiment 1: Simulation Study



Offline Pretraining: Gnu-RL imitates a P-controller.



Online Learning: Gnu-RL is Precocial.



Gnu-RL achieved significant energy savings without compromising thermal comfort.

- Gnu-RL achieved **20.6%** energy savings compared to the existing controller and **6.6%** energy savings compared to the best published RL result in the same environment.

	Total Heating Demand	Predicted Percentage Dissatisfied	
		Mean	STD
	(kWh)	(%)	(%)
Existing Controller	43709	9.45	5.59
Agent #6 ([‡] Zhang & Lam, 2018)	37131	11.71	3.76
Gnu-RL	34678	9.56	6.39

Experiment: Real World

Environment: Purdue House

System: Heat pump with resistive backup heat

State (x): Indoor air temperature

Control Input (u): Power (translated to setpoint)

Disturbances (d): Solar gain, Outdoor air temperature

Objective: Minimize total and peak energy consumption and temperature deviation.

Horizon: 24 hours

Control Interval: 60 minutes

Training Data: 30 days

Validation Data: 15 days

Evaluation Data: 30 days

Baselines:

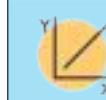
PID: Existing controller

MPC: (Pergantis2024)

Figure 3: Testbed House is a 208 m^2 , 1920s-era house with all-electric appliances in West Lafayette, Indiana, USA.

Limitations of Gnu-RL & D-MPC

$$T_{t+1} = \frac{dt}{C} \left(\frac{T_m - T_t}{R_m} + \frac{T_{oat} - T_t}{R_o} + COP * P_{hp} + \eta P_{bh} + \alpha Q_{sol} \right)$$



Dynamics in Gnu-RL:
 $T_{t+1} = AT_t + B_u u_{SW} + B_d T_{oat}$

2R1C requires $u = P$ or Q
Testbed only accepts $T_{setpoint}$

Choice of Controllable Action

Gnu-RL: Fitting $\{A, B_u, B_d\}$ to minimize a L when $\{O, R\}$ are fixed.
MPC: Non-quadratic cost function

Manual Configuration of Cost Function

Differentiable MPC: Expert demonstrations will fit the cost
Using existing data to fit $\{O, R\}$ results in suboptimal performance

Non-Expert Demonstrations

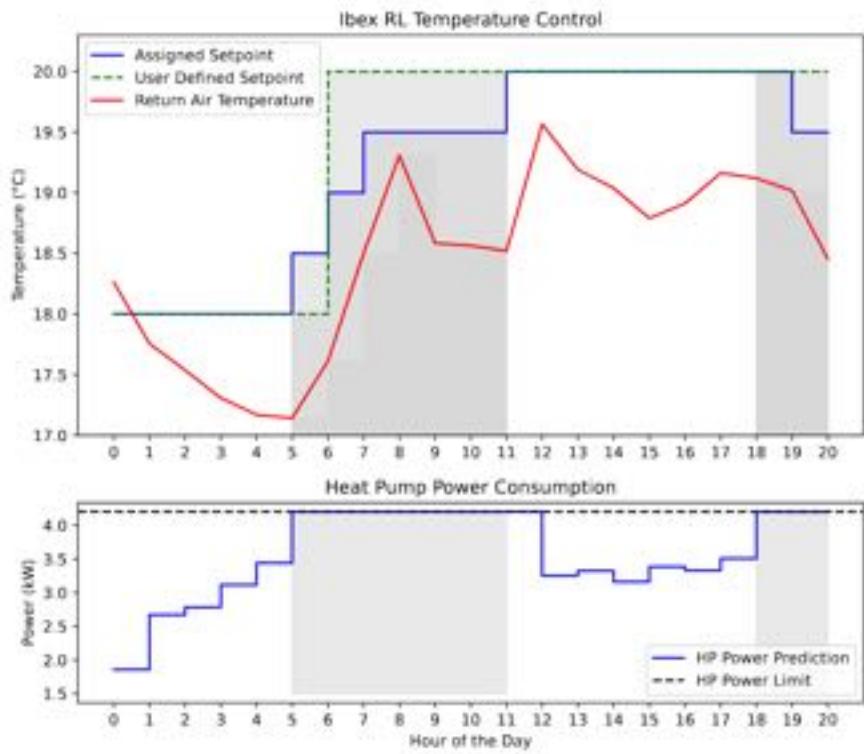
Can we do better?

© Carnegie Mellon University. All rights reserved. Not for redistribution.

Ibex-RL Agent

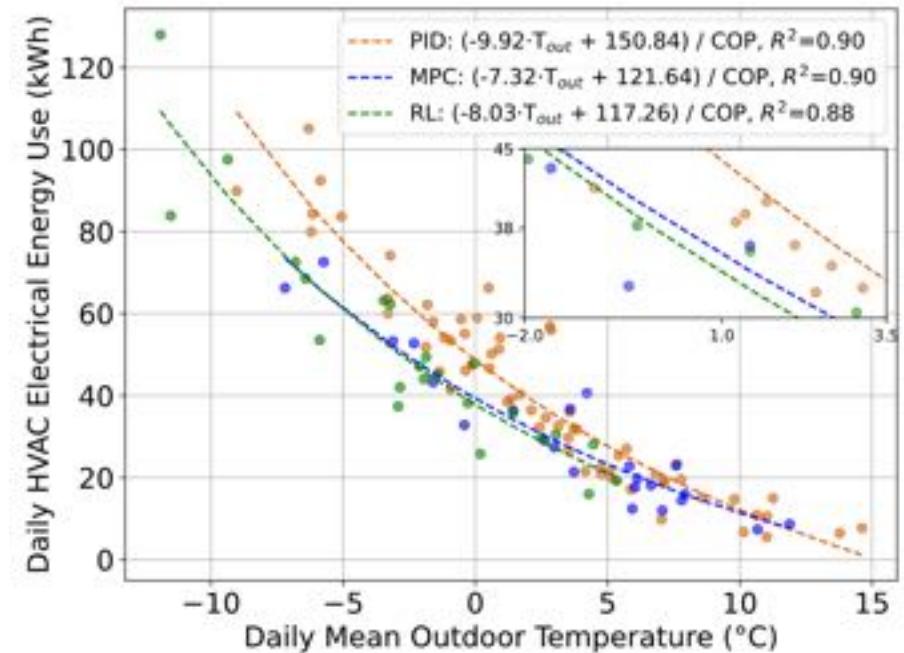
Mulayim, Bergés
ACM BuildSys (2025)

Results-Real World



Ibex-RL learned to do **stepped increases** to avoid using backup heat!

© Carnegie Mellon University. All rights reserved. Not for redistribution.



Ibex-RL achieved **22% improvement** in savings while MPC got 20%.

Mulayim, Bergés
ACM BuildSys (2025)

Can we change the design/control objective?

Making it closer to the types of *capital* we ultimately want to realize

How do we coordinate a large population of flexible building loads to address challenges arising from modern grid operation?

How do we ensure end-use requirements are satisfied for individual buildings given their system-specific dynamics?

COHORT: Coordination of Heterogeneous Thermostatically Controlled Loads for Demand Flexibility

Bingqing Chen
Carnegie Mellon University
Pittsburgh, PA, USA
bingqinc@andrew.cmu.edu

Jonathan Francis
Carnegie Mellon University
Pittsburgh, PA, USA
jmfl@cs.cmu.edu

Marco Pritoni
Lawrence Berkeley National Lab
Berkeley, CA, USA
mpritoni@lbl.gov

Soummya Kar
Carnegie Mellon University
Pittsburgh, PA, USA
soummyak@andrew.cmu.edu

Mario Bergés
Carnegie Mellon University
Pittsburgh, PA, USA
mberges@andrew.cmu.edu

$$g_{tv}\left(\sum_i \mathbf{u}_i\right) = \sum_{k=t+1}^{t+T} |P_{\text{net},k} - P_{\text{net},k-1}|$$

where, $P_{\text{net}} = P_{\text{total}} - P_{\text{gen}}$

$$P_{\text{total}} = P_{\text{non-shiftable}} + \sum_i \mathbf{u}_i$$

COHORT is a practical, scalable, and versatile solution for coordinating a large population of flexible building loads to jointly provide grid services, while ensuring the end-use requirements are satisfied at individual buildings.

[Code] <https://github.com/INFERLab/COHORT>

[Paper] <https://doi.org/10.1145/3408308.3427980>

© Carnegie Mellon University. All rights reserved. Not for redistribution.

Chen et al.

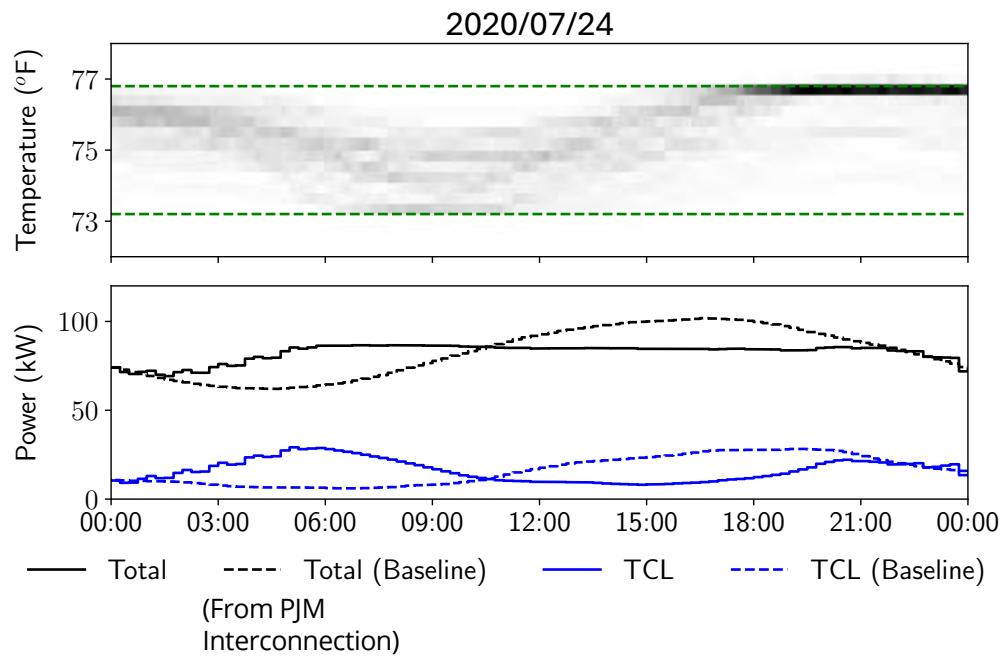
ACM BuildSys (2020)

We validated that COHORT is practical for real-world systems through a hardware-in-the-loop simulation.

15-day Experiment Period: 2020/07/11-2020/07/25

Use Case 3: Peak Load Curtailment (Population)

COHORT reduced daily peak loads by an average of **12.5%**.

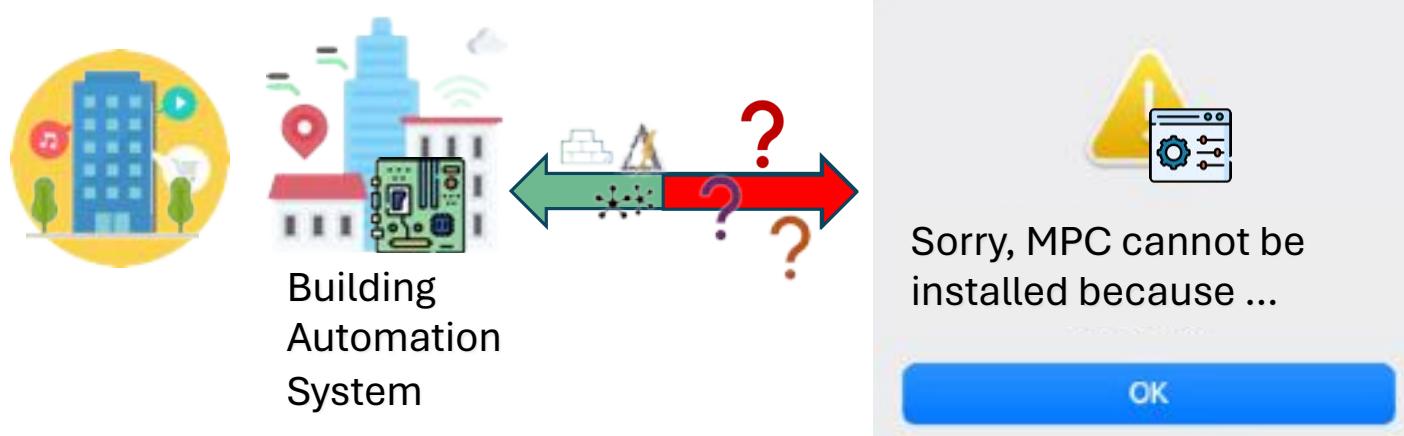


Looks great!
Can we do this for all buildings, and for
other objectives?

Well, not so fast....

“Buildings” is a heterogenous target

To scale these solutions we need so much more...

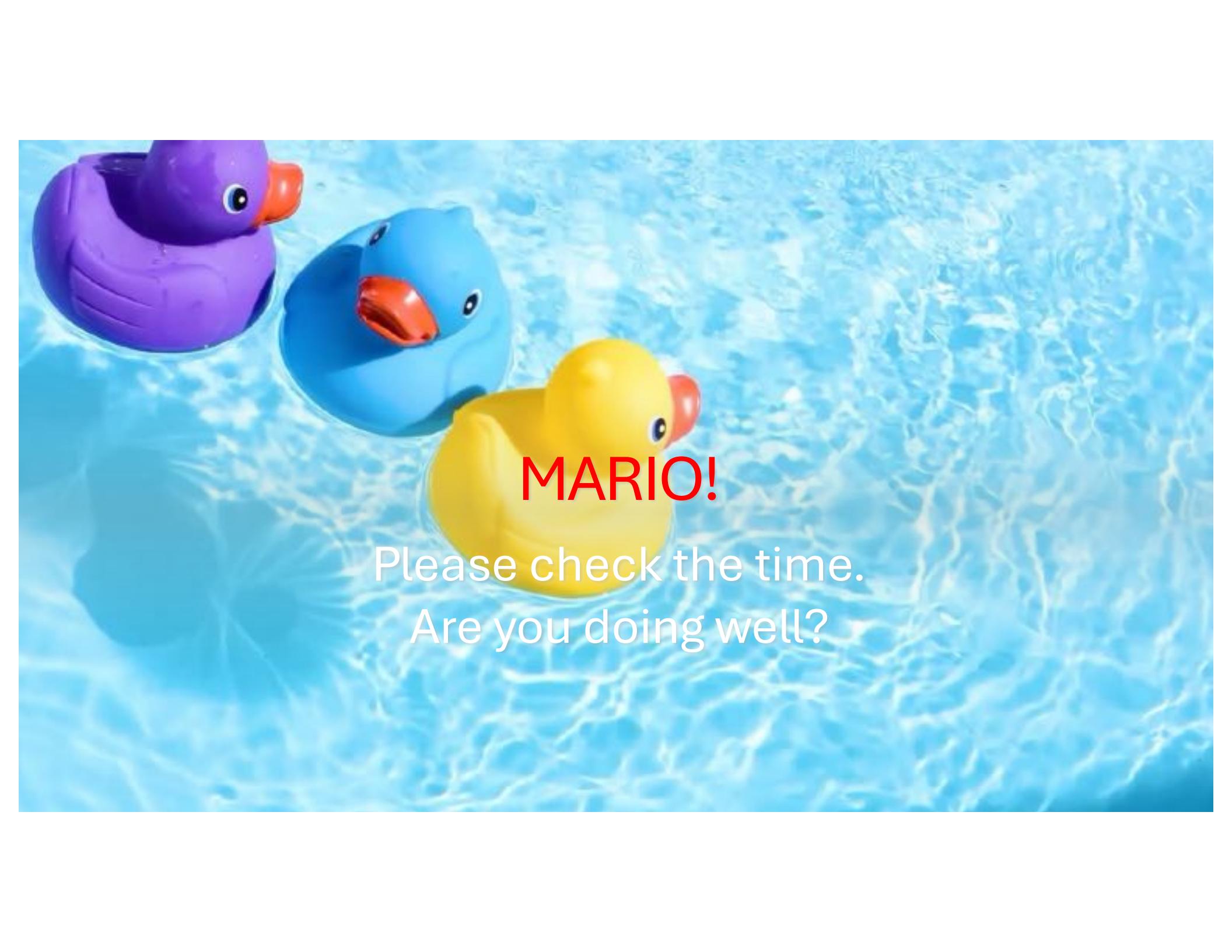


Operational Heterogeneity: There are multiple ways to **sense**, **model** and **actuate** for each building.

What are the **inputs** available for your model?

What **modeling** paradigm should be used?

What **actuations** are available?

A photograph of three rubber ducks floating in clear blue water. A purple duck is on the left, a blue duck is in the center, and a yellow duck is on the right. The yellow duck has the word "MARIO!" written in red capital letters on its back.

MARIO!

Please check the time.
Are you doing well?

And there are many other unknowns

To design, we need to understand and predict well

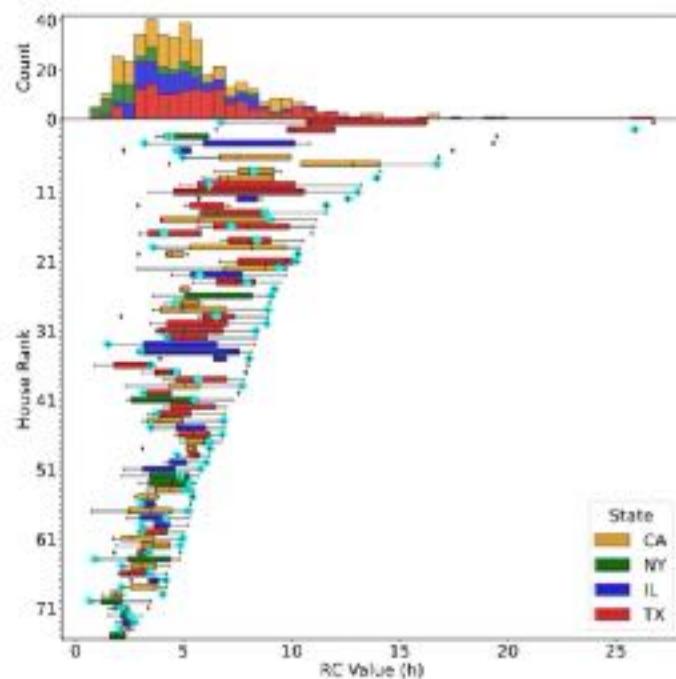
Human behavior makes predictions harder

- Reinforcement Learning controllers trained on deterministic occupancy patterns break down when tested on stochastic occupancy.
- The parameters of thermal dynamics models of buildings change drastically over time and vary significantly across rooms in homes.

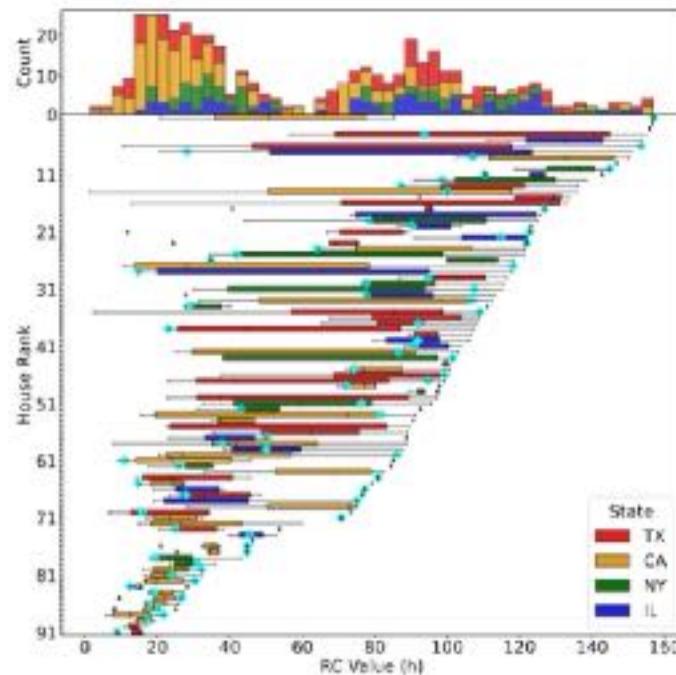
Mulayim, Bergés
ACM e-Energy (2025)

Mulayim, Bergés
ACM BuildSys (2023)

Gray-box models can help us understand the causes



(a) Cooling Season

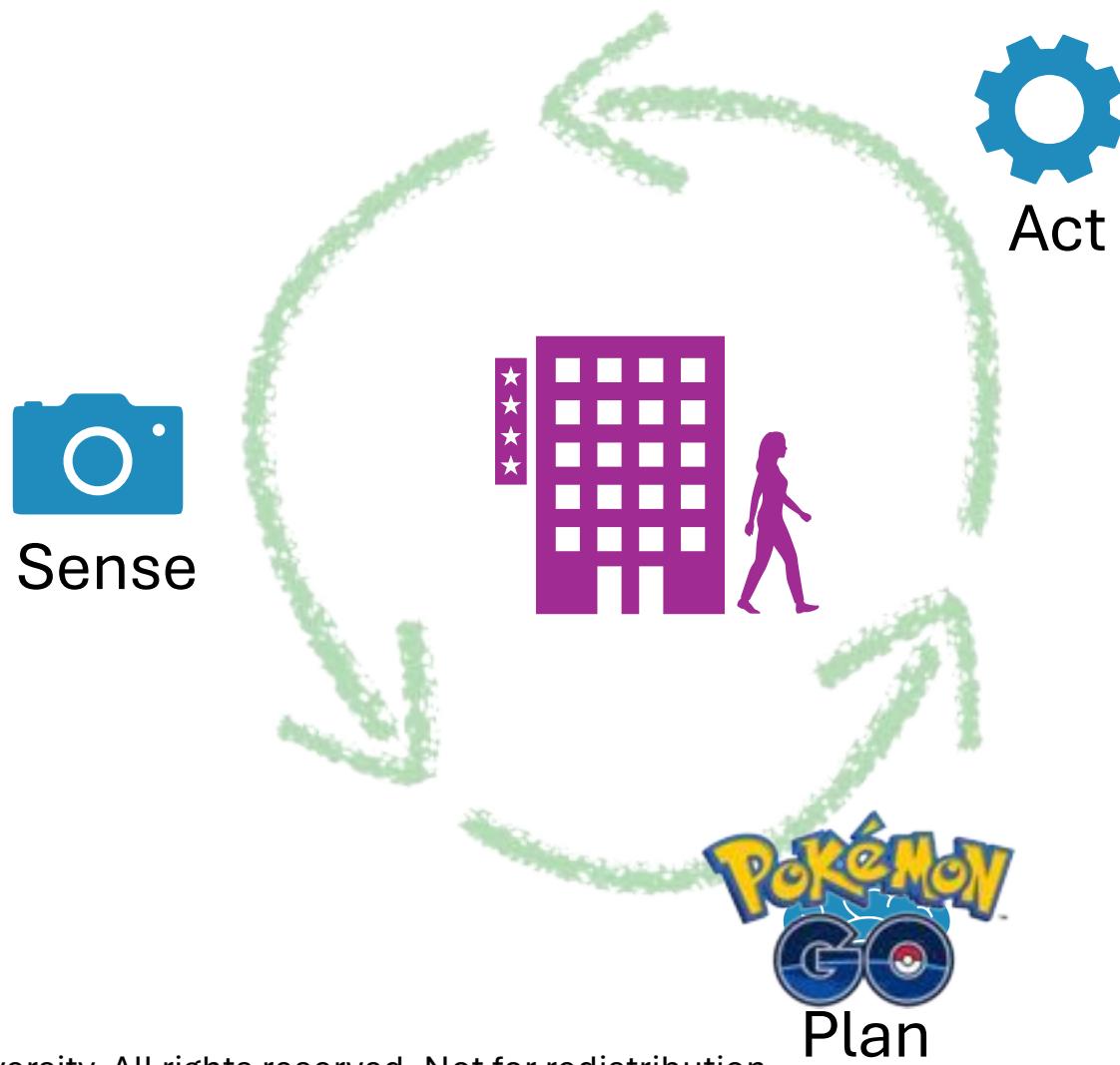


(b) Heating Season

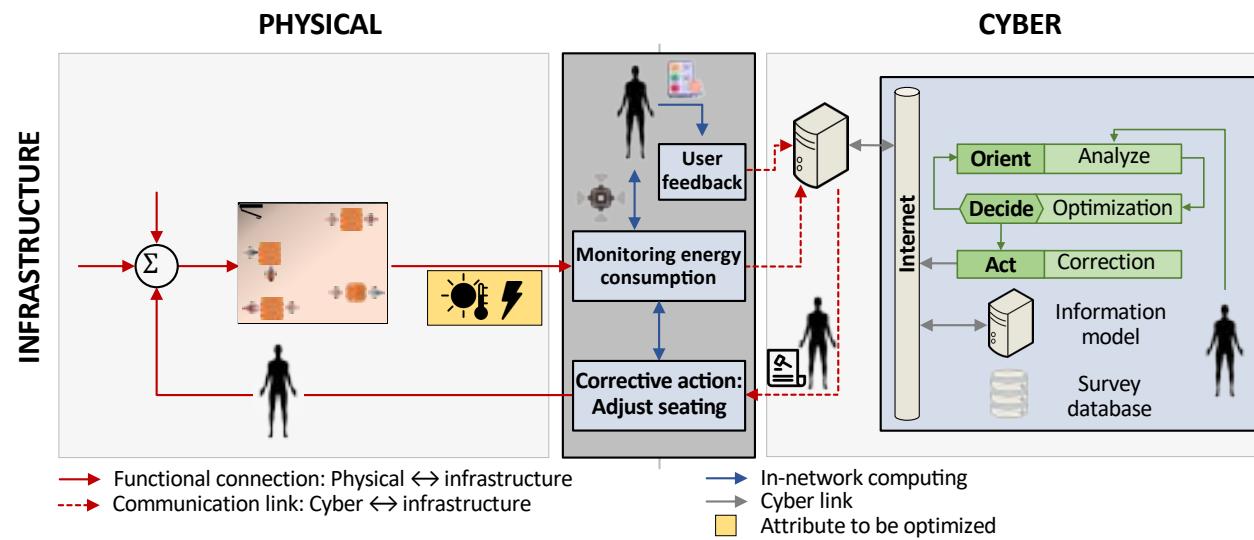
Figure 8. This histogram depicts the collective distribution of RC values (top), accompanied by boxplots for individual room distributions (bottom) for cooling and heating seasons. Markers indicated in light blue represent the RC values for the room where the thermostat is located..

© C

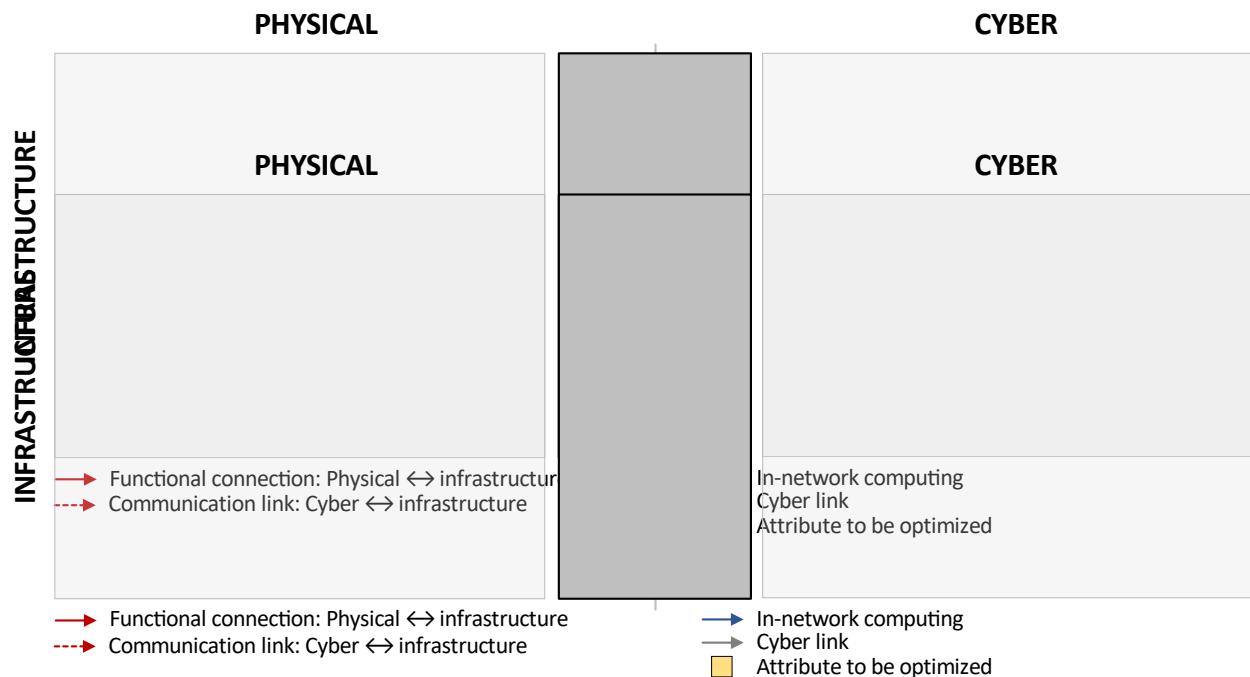
Mulayim, Bergés, Severnini
DCE Journal (2024)



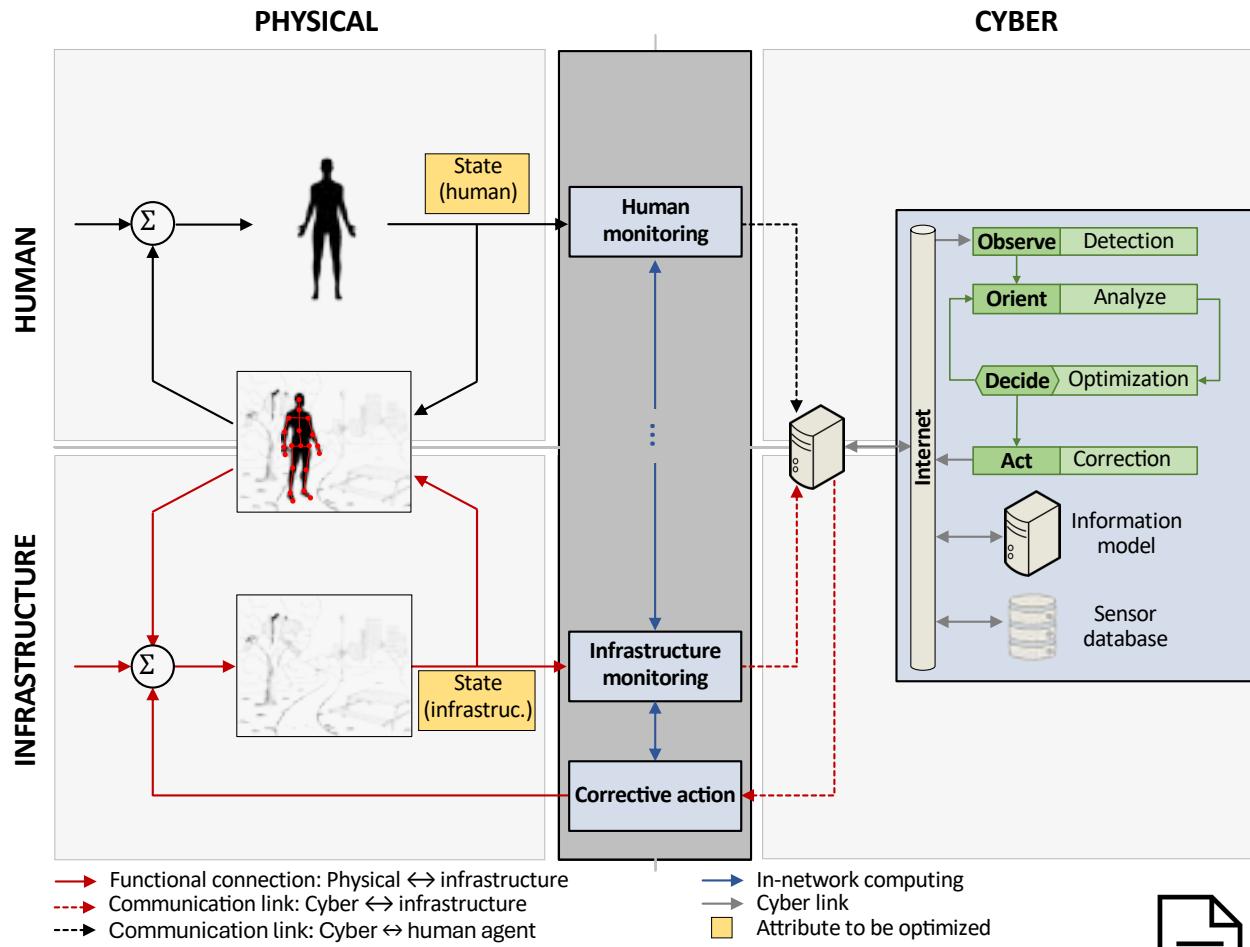
Integrating Humans into CPS



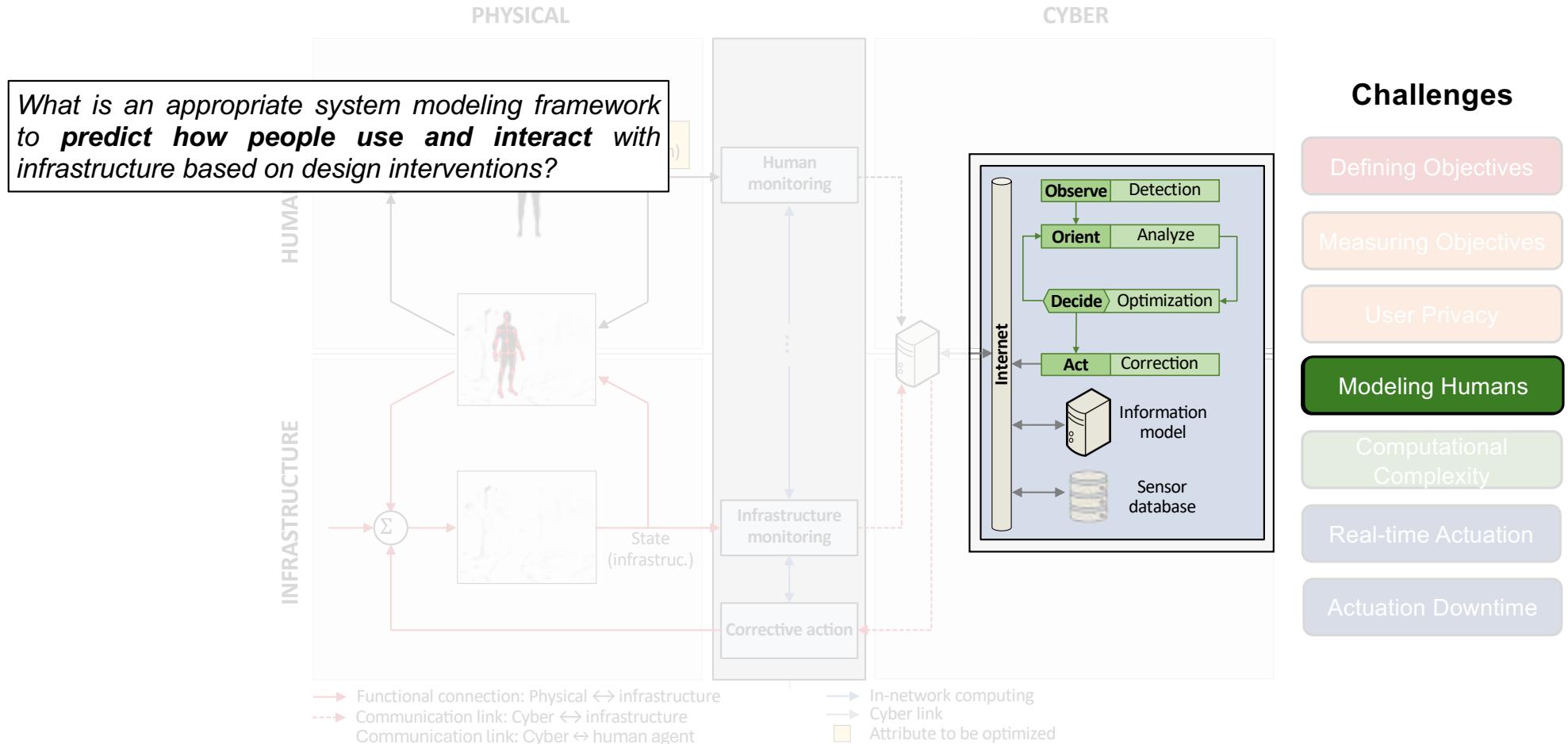
Integrating Humans into CPS



CPSIS Framework



CPSIS Challenges



My humble beginnings...

(a) Placement of a Kinect sensor on ceiling tile.

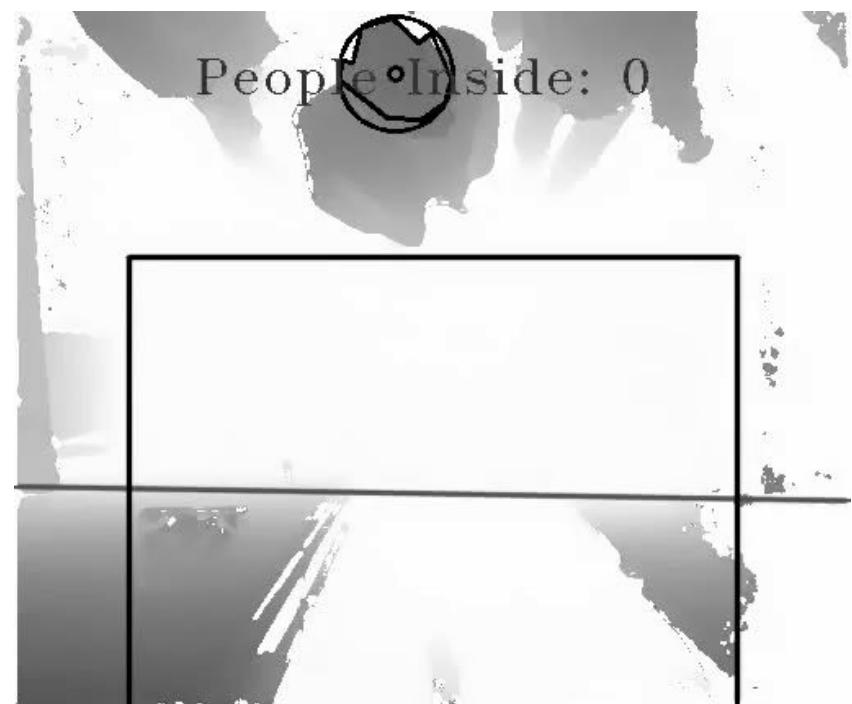
(b) Kinect sensor

(c) Embedded computer: Odroid-XU4

Some sample data

Depth Map

RGB Data



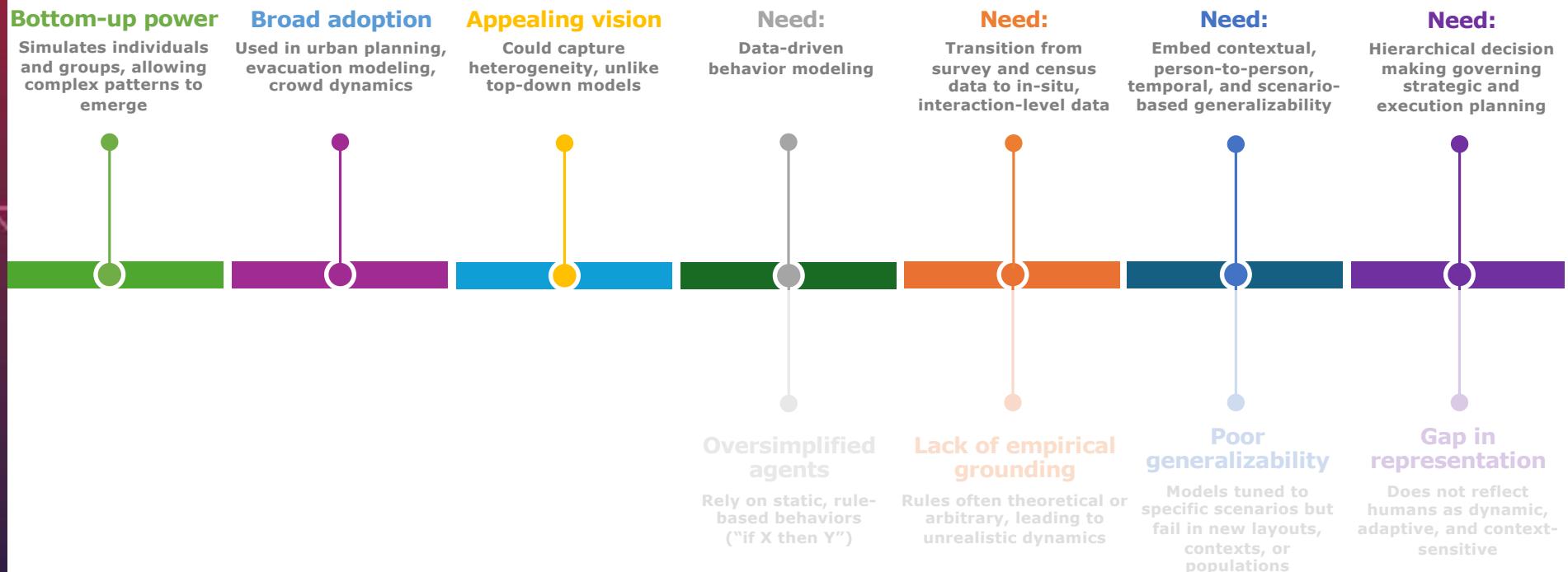
Munir et al.
IEEE ICCCPS (2017)

Figure 7. Color (top) and depth (bottom) image of two human subjects with different hair types as measured by an active infrared stereo camera. The depth map is color-coded such that darker (more black) is farther away from the camera while lighter (more red) is closer.

Data-driven agent based models

How can we model
human behavior in a
generalizable way?

AGENT-BASED MODELING: PROMISE AND PITFALLS



EMPIRE

Empirical Modeling of People in Responsive Environments

A hierarchical, data-driven modeling framework for predicting group-level human spatio-temporal behavior in dynamic physical environments, with a focus on scenario-based generalizability.

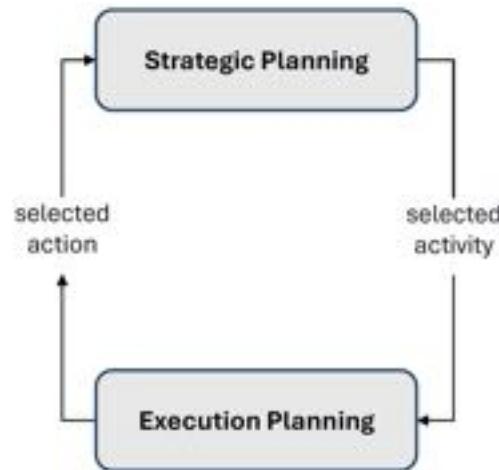
1 Carnegie Mellon University. All rights reserved. Not for redistribution.

Flanigan et al.
Under Review

EMPIRE

Empirical Modeling of People in Responsive Environments

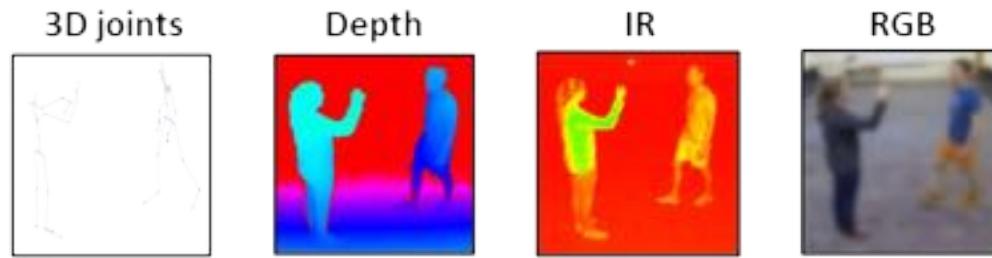
A **hierarchical**, data-driven modeling framework for predicting group-level human spatio-temporal behavior in dynamic physical environments, with a focus on scenario-based generalizability.



EMPIRE

Empirical Modeling of People in Responsive Environments

A hierarchical, **data-driven** modeling framework for predicting group-level human spatio-temporal behavior in dynamic physical environments, with a focus on scenario-based generalizability.



EMPIRE

Empirical Modeling of People in Responsive Environments

A hierarchical, data-driven modeling framework for predicting **group-level** human spatio-temporal behavior in dynamic physical environments, with a focus on scenario-based generalizability.

Physiological signals

Individual or group cognition

Population dynamics

EMPIRE

Empirical Modeling of People in Responsive Environments

A hierarchical, data-driven modeling framework for predicting group-level human spatio-temporal behavior in dynamic physical environments, with a focus on **scenario-based** generalizability.

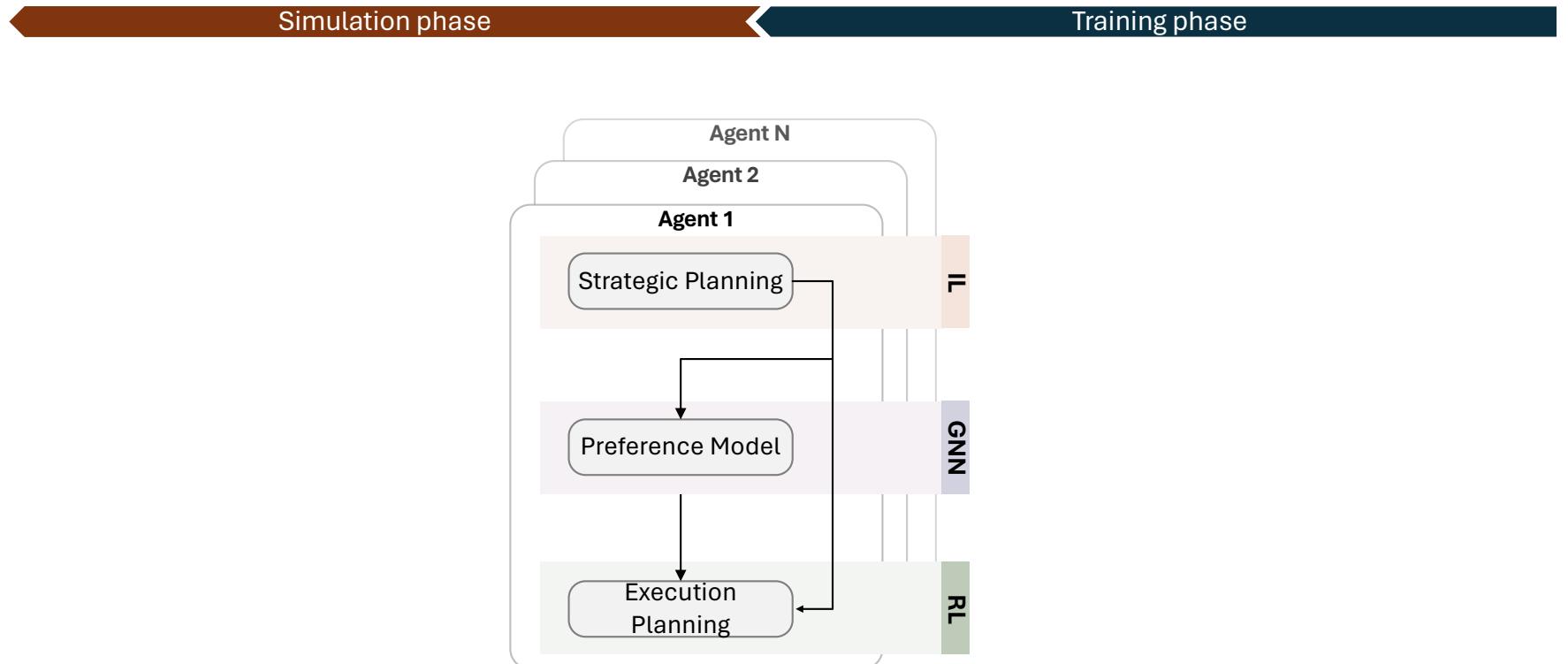
Contextual
generalizability

Person-to-person
generalizability

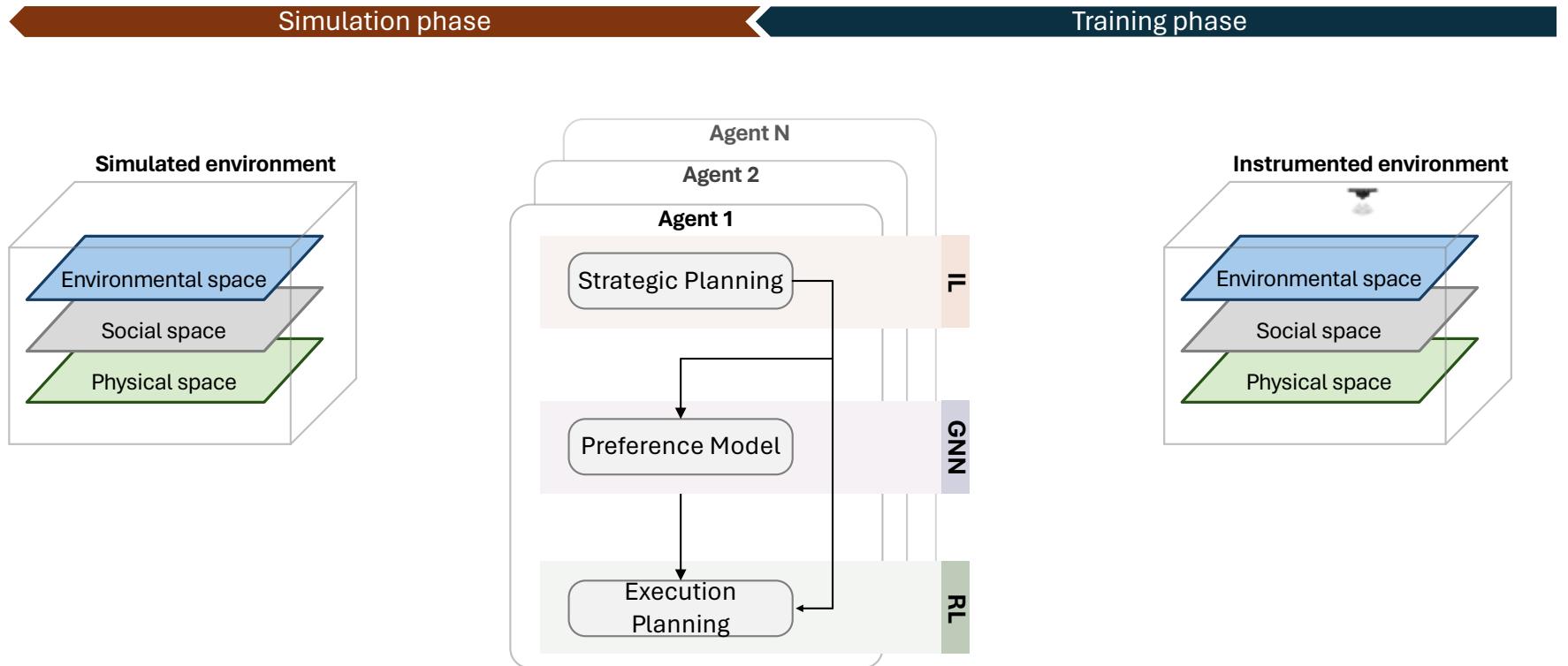
Temporal
generalizability

Scenario-based
generalizability

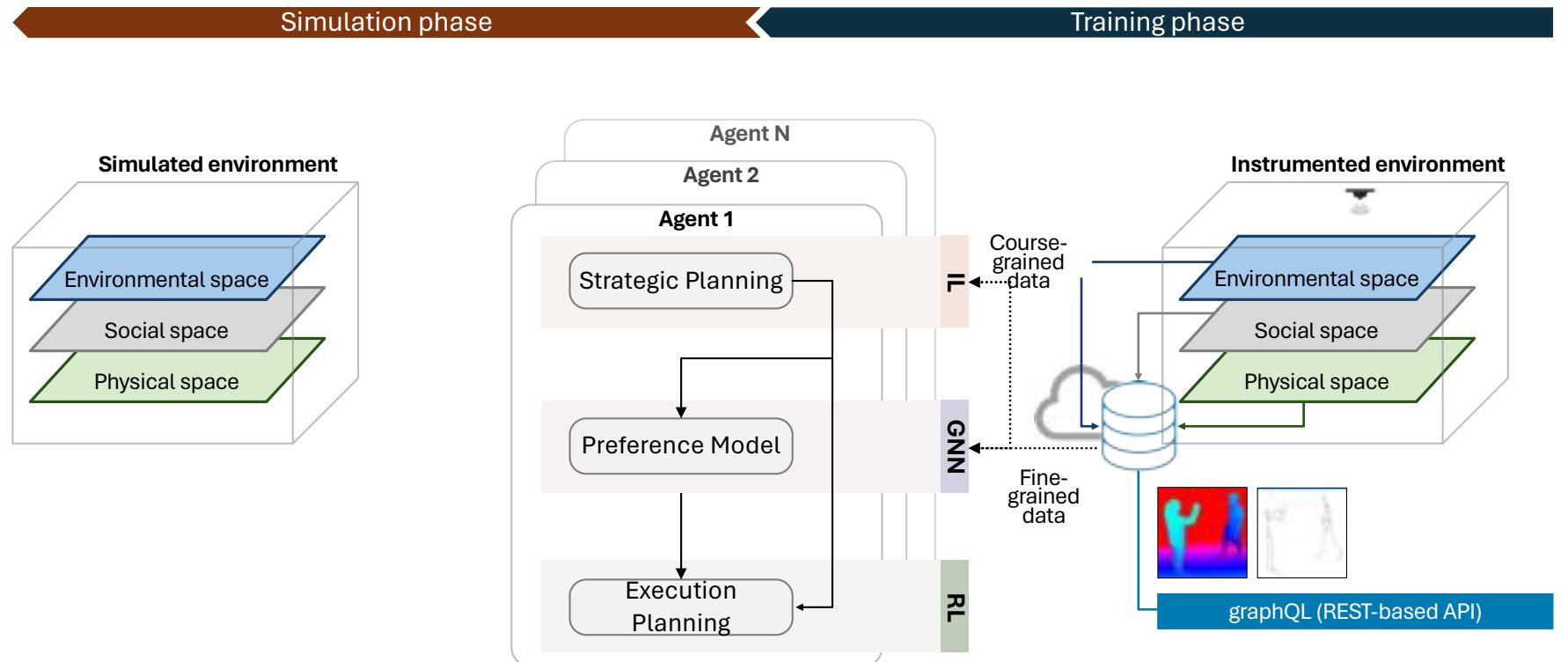
EMPIRE HIGH-LEVEL ARCHITECTURE



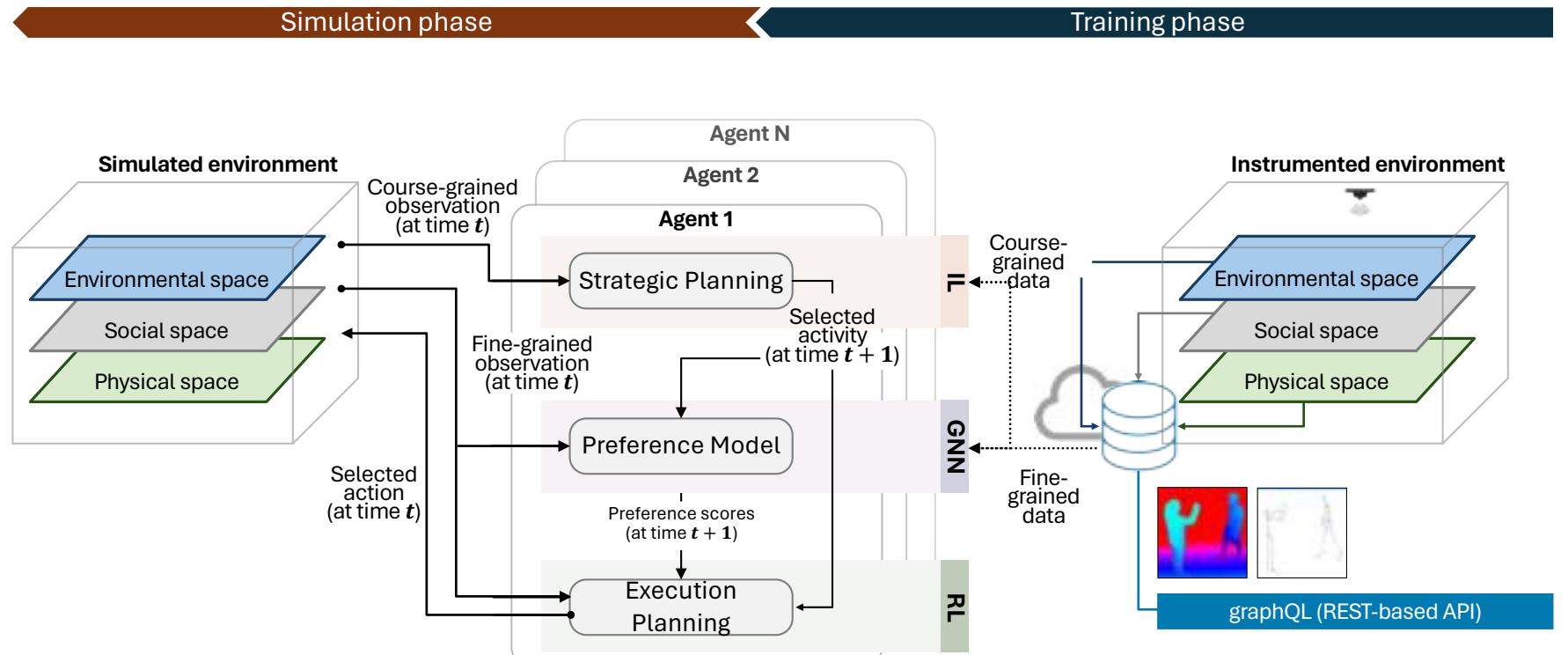
EMPIRE HIGH-LEVEL ARCHITECTURE



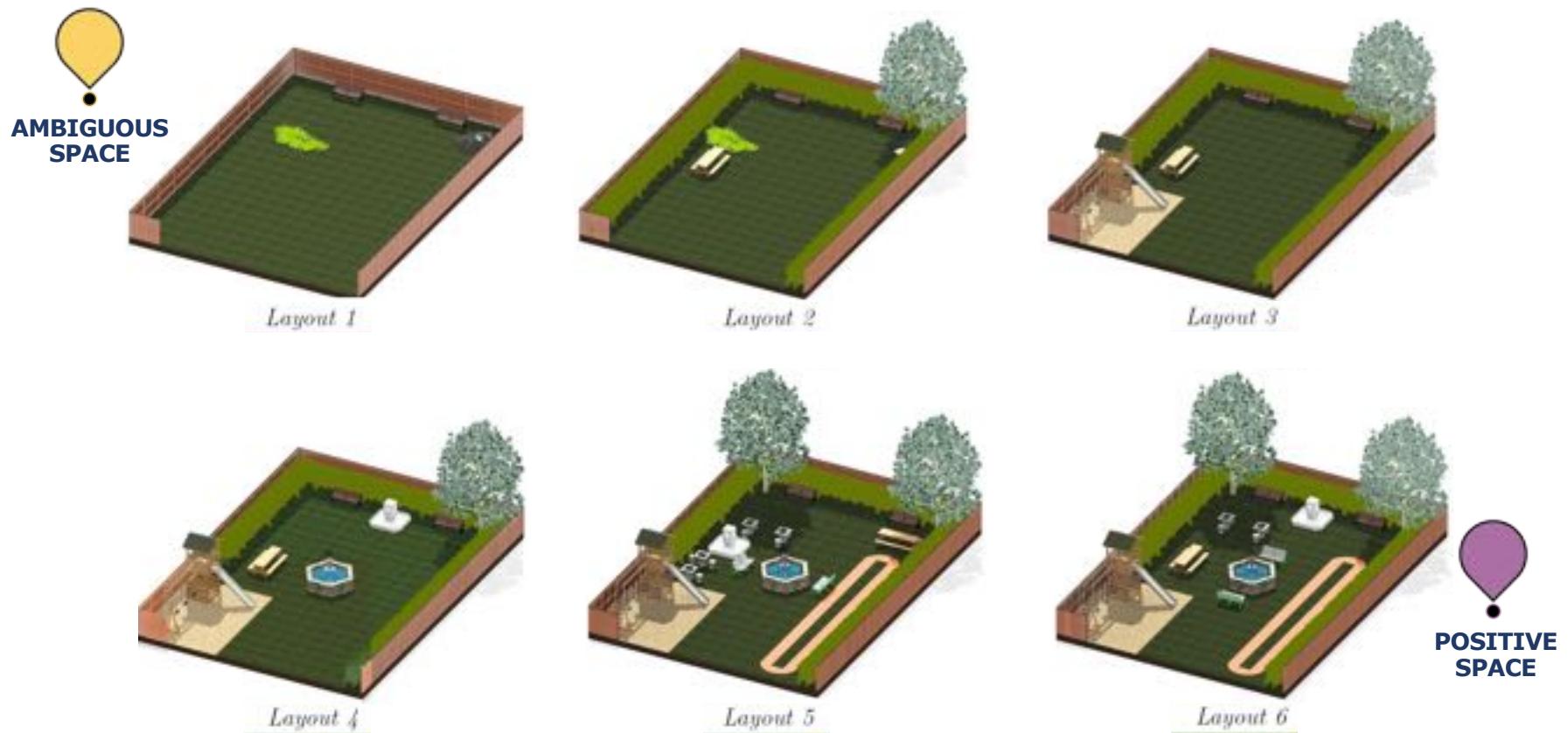
EMPIRE HIGH-LEVEL ARCHITECTURE



EMPIRE HIGH-LEVEL ARCHITECTURE

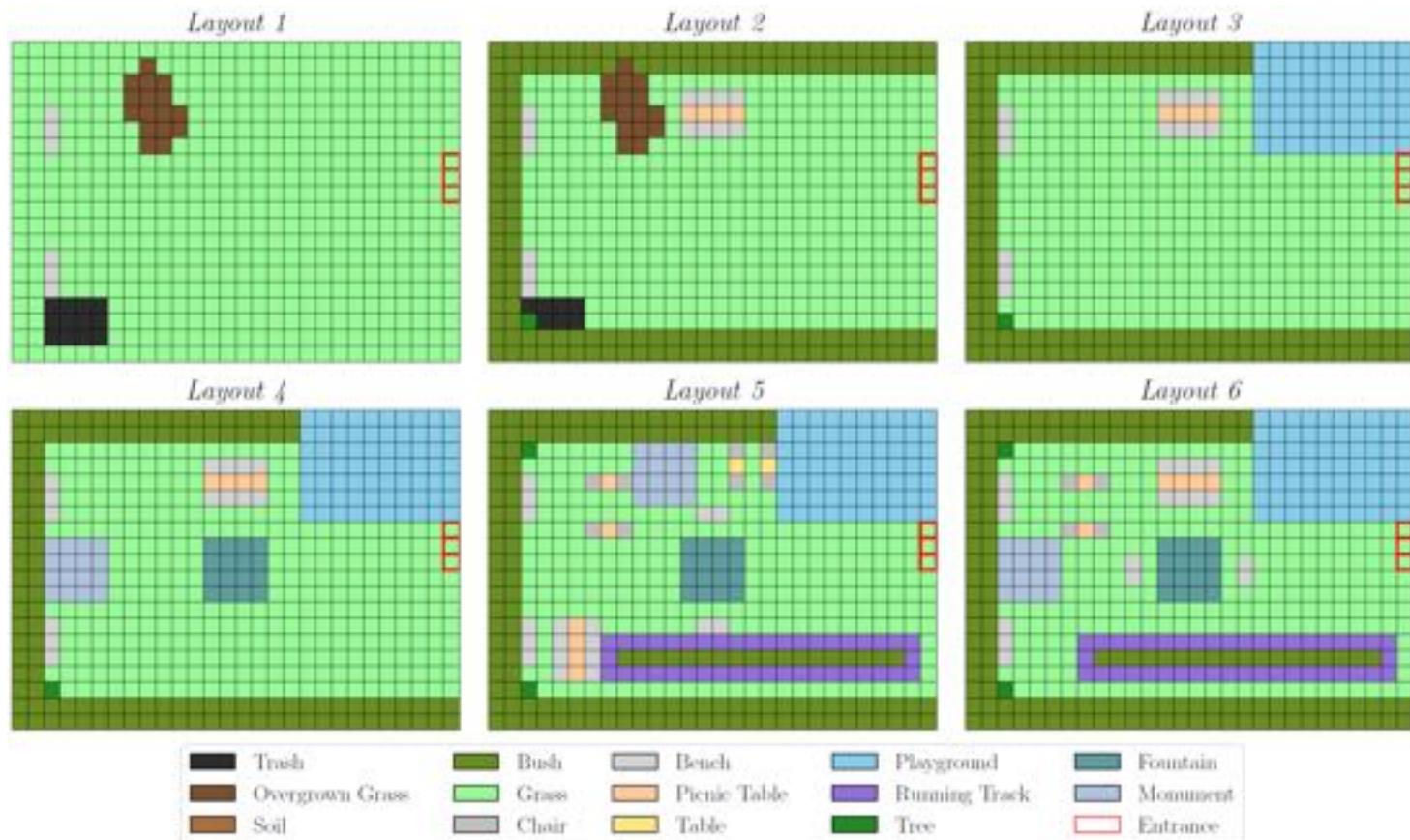


ILLUSTRATIVE CASE STUDY



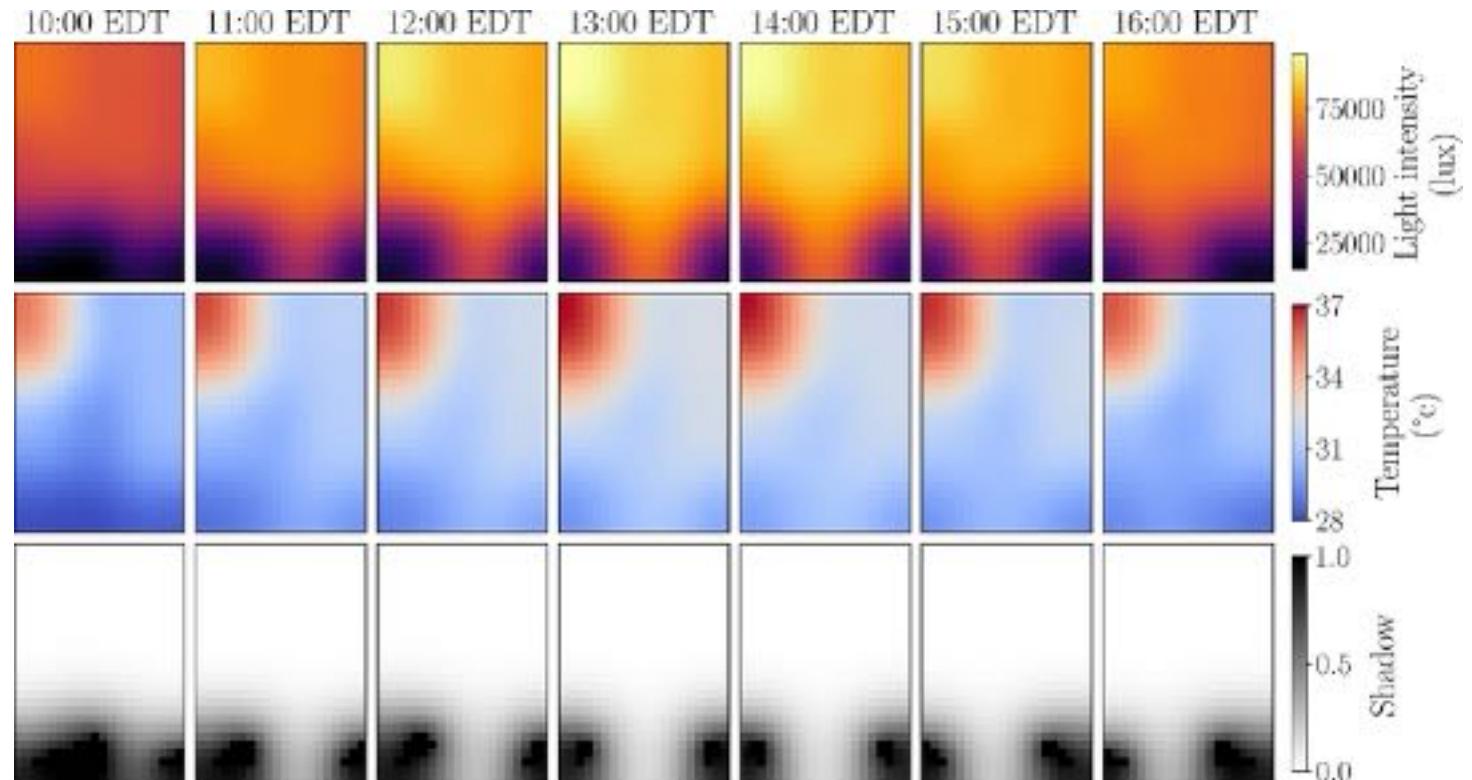
ILLUSTRATIVE CASE STUDY

Physical layer



ILLUSTRATIVE CASE STUDY

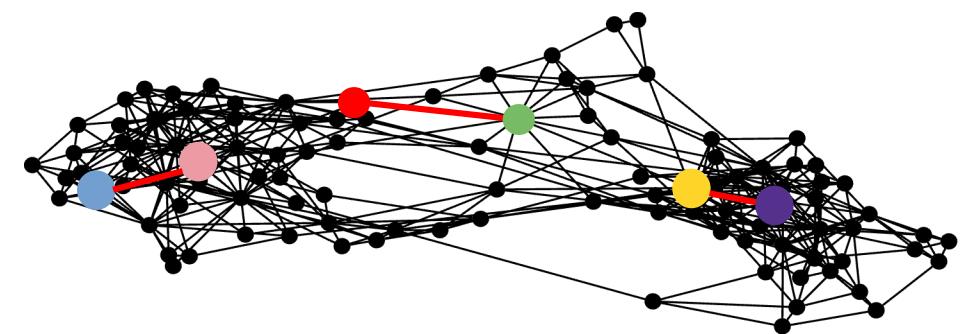
Preference layer



OK, what about even higher social objectives?

Can we infer social capital creation, for example?

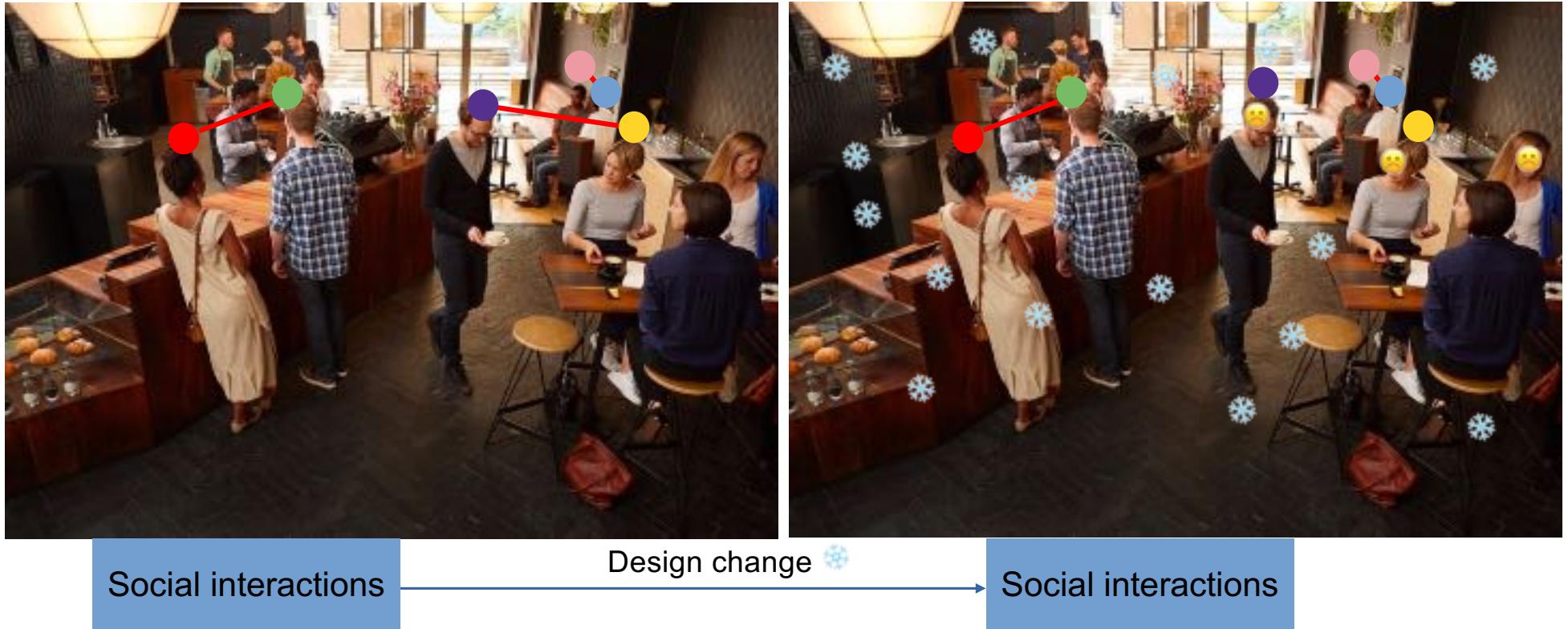
To accomplish this, measuring social interactions in social infrastructure



Social interactions

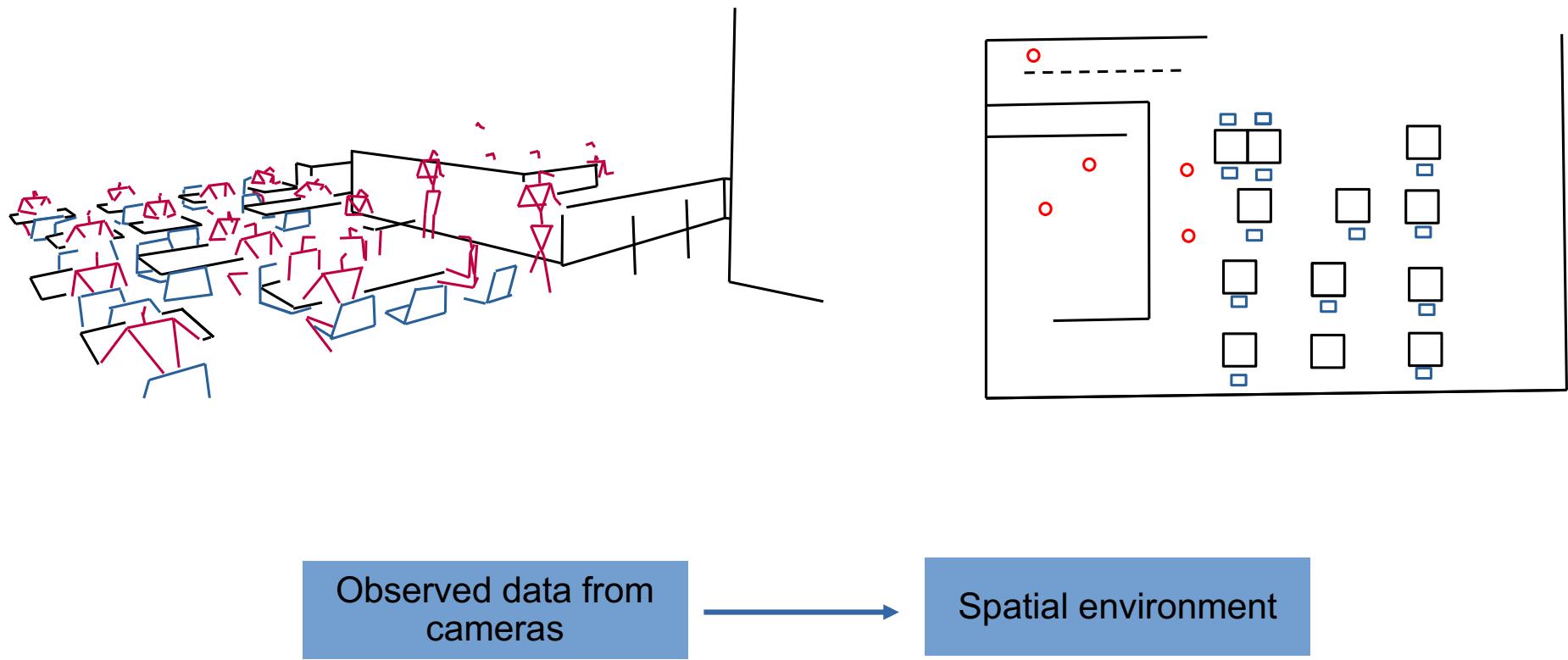
Social capital

Additional goal: measure influences of design changes on social interactions



Privacy invasive image

Privacy preserving
aggregate



Conclusions

- There is a whole new world of design/control spaces to explore
- We are getting closer to explicitly designing for social objectives
- We still need better models and solvers to unlock it
- Data is becoming less of a problem, though privacy and ethics need to be considered
- Let's boldly go where no engineers/designers have gone before and directly optimize for the objectives we care about!

Thanks! Questions?

<https://inferlab.org>

marioberges@cmu.edu

Carnegie Mellon University
Wilton E. Scott Institute
for Energy Innovation

© Carnegie Mellon University. All rights reserved. Not for redistribution.