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Improving the design and operation of civil infrastructures systems
through data-driven solutions grounded on engineering knowledge.
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We spend over 90% of our time
N environments

What do we design them for and how good are we at it?




Act

XTI

Sense

&

Plan

© Carnegie Mellon University. All rights reserved. Not for redistribution.



Act

Sense

&

Years Plan

© Carnegie Mellon University. All rights reserved. Not for redistribution.



Act

Sense

Rot
?énse

@@ Blan A

Hours
Years

© Carnegie Mellon University. All rights reserved. Not for redistributiorF)la N



min Zfrf_xt: ut:ytart)

TP N T

t=0
-

Plan

© Carnegie Mellon University. All rights reserved. Not for redistribution.



© Carn

What objectives can we write down?

Which ones can we solve?

* We’re limited by (at least)
* The observations we have access to y(t)
* The states we can infer from them x;
* The dynamics we can learn fg(x¢, u)

-
min E -E.-'[Xt.-_ut.-}“rt-rt;]
iy Thy.. . . U7
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* Can we write down an £( ) function for:
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Let’s look at the
case for designing

your thermal
comfort

Closed loop control' :
horizons and for simple ok




Hey Siri, can you optimize my temperature while
keeping my costs low?

HHHE /ﬂ\ ﬂ R

Model Predictive Reinforcement
Control Learning

What is a practical and scalable solution for building
control?

=3 (Al — 2] +[leel],)
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Where are the proactive controllers?

™y
Cumulative numbers of fleld and non-fleld studles of MPC and RL
{19897 to 2025)
MPC (Fisld)
90 papers
(3%
MPC [nan-Field) RL {nan-field)
Z148 papers B8 papers
(74% of totall {22%]
RL {Miela)
18 papers
L 11%) )

Many promises have been Many simulation and some real-world

made. experiments have been done.

Khabbazi et al. (2025) Lessons learned from field demonstrations of model predictive control and reinforcement learning for residential and commercial
HVAC: A review
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What do the existing studies lack?

CLUE2024)

: DPC (2022) Model-free RL  Gnu-RL
Checklist MB2C(2020) DeePC (2024)  (2016,2020,2022)  (2020)
o i gy PSS

|
“Scalable” |
|
Interpretable | | [ BlackBox
|
; Online _ :
Adaptive : learning Online learning
: Real world Real yvorldt Real world
Safe : experiment 2AISIIE experiment
| (5 days) (13 days) (21 days)

Most studies are validated only in simulation, black-box in nature or not adaptive.
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Training Time in Literature for RL
Control of HVAC Systems

ng & Lam

1074 X Wang et al.

X Dalamagkidis et al. XYanget al.

X Liu & Henze

Training Time (Year)

7{&5 Chen et al.

] L
" 5

_ Chen, Berges, Cai,
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We expedited the training by:

Imitation Learning Domain Knowledge

A physical-based

model: AT
m E = Qinternal + external
Model Predictive Control
ﬁ MPC
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Framework

(Stem: Offline Pretraining
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Besides imitating the existing controller, we expedite the training
by using a policy that encodes knowledge on system dynamics

and control.

. . N
(2: Online Learning
4 i . N\ Action
. ( Differentiable MPC \’/—\(\ h
a PollcszAmo ‘ Aktion el B
Gnu-RL | Objective— K State |-
Agent i fad )
gent [Constraints— Optimizer Reward| Real-World Environment |
\_ / 4
Predicted
States A
< tate,P‘e\Nan
Model S
< Future Disturbances
\ \ ‘) |
Amos, B., Jimenez, |., Sacks, J., Boots, B., & Kolter, J. Z. (2018).
Differentiable MPC for End-to-end Planning and Control.
In Advances in Neural Information Processing Systems (pp. 8289
8300).
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Experiment 1: Simulation Study
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Offline Pretraining: Gnu-RL imitates a P-

controller.

States

The building operates

=

under a fixed schedule
........ SetpOint
----- Occupancy

Occupanc

N 18 F=== +0
> ® ; Ld\/We used a

\QT. 501 © Baseline P-Controller
5 35 i % to generate historical

; l S data under the TMY3

0 20 F== = 0 weather sequence.

01-01 01-02 01-03 01-04 01-05 01-06

© Carnegie Mellon University. All rights reserved. Not for redistribution.




Online Learning: Gnu-RL is Precocial.

N
(o)}

o
S - \
@ o g We evaluated the
= GE) 9 S performance of
&' o —— Gnu-RL
é 18 © under the actual weather
. , | ' ) in 2017. /
o 65{ | ' >
0n — ! ! (@)
Scso | 5/ GnuRL N
s € ; : < _
U O 35 i 0 performed similarly to
g - O i
= 20 !ﬂmﬂ M o Baseline P-Controller
(0p)] ] " - ; ™ 0 . . . .
17-01-01 17-01-02 17-01-03 17-01-04 17-01-05 prior to any interaction with

the environment. /
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Gnu-RL achieved significant energy savings without
compromising thermal comfort.

* Gnu-RL achieved 20.6% energy savings compared to the existing controller and 6.6%
energy savings compared to the best published RL result in the same environment.

Total Heating Predicted Percentage Dissatisfied

Demand Mean STD

(%) (%)

Existing Controller 43709 9.45 5.59
ST 37131 11.71 3.76

(% Zhang & Lam, 2018)

Gnu-RL 34678 9.56 6.39
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Icons: flaticon.com

Environment: Purdue House

System: Heat pump with resistive backup heat

State (x): Indoor air temperature
Control Input (u): Power (translated to setpoint)
Disturbances (d): Solar gain, Outdoor air temperature

Objective: Minimize total and peak energy consumption and
temperature deviation.

Horizon: 24 hours
Control Interval: 60 minutes

Training Data: 30 days
Validation Data: 15 days
Evaluation Data: 30 days

Figure % Testbed House is a 208 m*® | 1920s-pra house with
all=clectric applinnees in West Lafayette, Indinna, LiSA,

Baselines:
PID: Existing controller
MPC: (Pergantis2024)

© carnegie Longest residential RL deployment without pretraining with a simulator



Limitations of Gnu-RL & D-MPC

=3 o
Cognition 2l Vellon
& Action L niversity
Icons: flaticon.com
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o,

Dynamics in Gnu-RL:
Tiy1 = AT, + Byugy + BTyt

==

Choice of Controllable
Action

dt (T, =Ty Toqe — T
- =_< m t+ oat t+COP*Php+nth+aQsol)
C Rm RO
2R1Crequiresu = P or Q
Testbed only accepts Tgerppint

p
Gnu-RL: Fitting {4, B,, B;} to minimize a L when {0, R} are fixed.
MPC: Non-quadratic cost function

=4

R

Manual Configuration of
Cost Function

Differentiable MPC: Expert demonstrations will fit the cost
Using existing data to fit {O, R} results in suboptimal performance

Non-Expert Demonstrations

- J

Can we do better?
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Results-Real World
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Ibex-RL learned to do stepped

increases to avoid using backup heat!
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Daily HVAC Electrical Energy Use (KWh)
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Ibex-RL achieved 22% improvement in
savings while MPC got 20%.
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Can we change the design/control
objective?

Making it closer to the types of capital we ultimately want to realize




How do we coordinate a large population of flexible building
loads to address challenges arising from modern grid
operation?

How do we ensure end-use requirements are satisfied for
individual buildings given their system-specific dynamics?

© Carnegie Mellon University. All rights reserved. Not for redistribution.



COHORT: Coordination of Heterogeneous Thermostatically
Controlled Loads for Demand Flexibility

Bingqing Chen Jonathan Francis Marco Pritoni
Carnegie Mellon University Carnegie Mellon University Lawrence Berkeley Mational Lab

Pittsburgh, PA, USA Fittshurgh, PA, USA Berkeley, CA, USA
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Soummya Kar Mario Bergés

Carnegie Mellon University Carnegie Mellon University
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t+T COHORT is a practical, scalable, and
grv | Z l.li]l = Z |Ppetk — Pretk-1l versatile solution for coordinating a
i k=t+1 large population of flexible building
where, Pret = Protal = Pyen loads to jointly provide grid services,
while ensuring the end-use
Piotal = Pron-shiftable + Z u; requirements are satisfied at individual
i buildings.

Chen et al.

[Paper] https://doi.org/10.1145/3408308.3427980 )
ACM BuildSys (2020)

© Carnegie Mellon University. All rights reserved. Not for redistribution.
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https://github.com/INFERLab/COHORT
https://doi.org/10.1145/3408308.3427980

We validated that COHORT is practical for real-world systems through a hardware-in-the-loop

simulation.
Simulated My jai
Househol Apartment

) .

based on real-world data traces from ecobee’s
Donate Your Data Program

15-day Experiment Period: 2020/07/11-2020/07/25
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Use Case 3: Peak Load Curtailment (Population)

COHORT reduced daily peak loads by an average of 12.5%.

2020/07/24
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Wolo] CRAGE]N
Can we do this for all buildings, and for
other objectives?

Well, not so fast....




“Buildings” is a heterogenous target
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To scale these solutions we need so much

more. [ N J
o = ==
2 0 e ! /A ? =
VR Tl iy
PN a8 <7 Sorry, MPC cannot be
Building : installed because ...
Automation
System

Operational Heterogeneity: There are multiple ways to
sense, model and actuate for each building.

What are the inputs available for your model?
What modeling paradigm should be used?

: _ ?
© Carnegie Mellon U What ?ctuatlons are available”

~






And there are many other unknowns

To design, we need to understand and predict well




Human behavior makes predictions harder

* Reinforcement Learning controllers
trained on deterministic occupancy
patterns break down when tested on
stochastic occupancy.

* The parameters of thermal dynamics
models of buildings change drastically

over time and vary significantly across
rooms in homes.

© Carnegie Mellon University. All rights reserved. Not for redistribution.
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Gray-box models can help us understand the
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{a) Cooling Scason {b) Heating Season
Figure 8. This histogram depicts the collective distribution of RC values (top), accompanied by boxplots
Jor individual room distributions (botiom) for cooling and heating seasons, Markers indicated in light
© C blue represent the RC values for the room where the thermastat is located..
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Integrating Humans into CPS

PHYSICAL CYBER
,ﬁ I =
wl ) <
o User ___5" Orient | Analyze
E feedback )y
Q | i | @ Decide) Optimization
S e i =
o o L i 2 '
= 5 Monitoring e.nergy f E<—| Act | Correction |
2 + 'l \‘, consumption
P +g . E ’ 7\ <% Information
'-Z'- ‘ E model
= A 4
Corrective action:|| \=b Survey
Adjust seating L database

—> Functional connection: Physical < infrastructure
---» Communication link: Cyber < infrastructure

— In-network computing
— Cyber link
[] Attribute to be optimized

© Carnegie Mellon University. All rights reserved. Not for redistribution.

38



Integrating Humans into CPS

PHYSICAL CYBER
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---» Communication link: Cyber <> infrastructure — Cyber link
[] Attribute to be optimized
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CPSIS Framework

PHYSICAL CYBER
State
(human) Human
> —> monitoring O—>|0bserve| Detection |
g Y l
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---» Communication link: Cyber <> infrastructure —> Cyber link
---» Communication link: Cyber © human agent [ Attribute to be optimized Doctorarastoo et al.
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CPSIS Challenges

What is an appropriate system modeling framework Challenges
to predict how people use and interact with
infrastructure based on design interventions?

1 [Observe| Detection |
Orient | Analyze
Decide) Optimization

.

Q

£

=

«— Act | Correction |
Modeling Humans
‘ Information
— model

—> Sensor
database
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My humble beginnings...

(&)

© Carnegie Mellon University. All rights reserved.
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Not for redistribution.

(a) Placement of a
Kinect sensor on
ceiling tile.

(b) Kinect sensor

(c) Embedded
computer: Odroid-
XU4d



Some sample data

Depth Map
RGB Data :g. 5

: e . _...
'|'.
“ -
— = . 3 3
e .;' iy
b
' 4
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Munir et al.
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Figure 7. Color (top) and depth (bottom) image of two human subjects with different hair types as measured

by an active infrared stereo camera. The depth map is color-coded such that darker (more black) is farther away
from the camera while lighter (more red) is closer.

L Becerik-Gerber et al.
— | Nature Scientific Reports (2022)
© Carnegie Mellon University. All rights reserved. Not for redistributiorr



Data-driven How can we model
human behavior in a

agent based | generalizable way?

models




AGENT-BASED MODELING: PROMISE AND PITFALLS

Bottom-up power Broad adoption Need: Need: Need:
Simulates individuals Used in urban planning, Could capture Data-driven Transition from Embed contextual, Hierarchical decision
and groups, allowing evacuation modeling, heterogeneity, unlike behavior modeling survey and census person-to-person, making governing
complex patterns to crowd dynamics top-down models data to in-situ, temporal, and scenario- strategic and

emerge interaction-level data based generalizability execution planning

gie Mellon University. All rights reserved. Not for redistribution.



EMPIRE
Empirical Modeling of People in Responsive Environments

A hierarchical, data-driven modeling framework for predicting group-level human spatio-
temporal behavior in dynamic physical environments, with a focus on scenario-based
generalizability.

- Flanigan et al.
— Under Review
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EMPIRE

Empirical Modeling of People in Responsive Environments

A hierarchical,data-driven modeling framework for predicting group-level human spatio-
temporal behavior in dynamic physical environments, with a focus on scenario-based
generalizability.

——[ Strategic Planning J~

saelected
action

sElected
actnaty
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~[ Execution Planning ],

- Flanigan et al.
— Under Review




EMPIRE
Empirical Modeling of People in Responsive Environments

A hierarchical, data-driven modeling framework for predicting group-level human spatio-

temporal behavior in dynamic physical environments, with a focus on scenario-based
generalizability.

3D joints Depth

RGE
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EMPIRE
Empirical Modeling of People in Responsive Environments

A hierarchical, data-driven modeling framework for predicting group-level human spatio-
temporal behavior in dynamic physical environments, with a focus on scenario-based
generalizability.

Physiological signals Individual or group Population dynamics
cognition
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EMPIRE
Empirical Modeling of People in Responsive Environments

A hierarchical, data-driven modeling framework for predicting group-level human spatio-
temporal behavior in dynamic physical environments, with a focus on scenario-based
generalizability.

Contextual Person-to-person Temporal Scenario-based
generalizability generalizability generalizability generalizability
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EMPIRE HIGH-LEVEL ARCHITECTURE

Simulation phase Training phase
Agent N
Agent 2
Agent 1
[Strategic Planning]f -
\ 4

@
[Preference Model] %
[ Execution }_ -
Planning r
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EMPIRE HIGH-LEVEL ARCHITECTURE

Simulation phase Training phase

AgentN
Simulated environment Agent 2 Instrumented environment
-
Agent1
Avironmental space [Strategic Planning]f - Avironmental space
/ Social space / Social space
/ Physical space / Physical space
\ 4
(@)
Preference Model P4
z
[ Execu'Flon }_ -
Planning r
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EMPIRE HIGH-LEVEL ARCHITECTURE

Simulation phase

Simulated environment

Environmental space

Social space

NN

Physical space

gie Mellon University. All rights reserved.
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[ Execution }_
Planning

Not for redistribution.

1d

Training phase

Instrumented environment
-

Course-
gralned

...... data ; Environmental space

; Social space
g / Physical space

graphQL (REST-based API)



EMPIRE HIGH-LEVEL ARCHITECTURE

Simulation phase Training phase

Agent N
Simulated environment A Instrumented environment
c gent 2
ourse-grained -
observation
(attimet) Agent 1

Course-
/ gralned
Awronmental space, Strategic Planning— = FE<- data Environmental space
Social space Selttact;ad Socialspace
activity :
bsedvation (at time £ 2+ 1) | 7

Physical space (attime t) f o ——, Physical space

MRE

\ 4

@ & -
—{Preference Model] Z oriererenenieennn
Selected z
action |
(attime ) Preference scores
(attimet + 1)

1d

graphQL (REST-based API)

:.( Execution }_
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ILLUSTRATIVE CASE STUDY
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ILLUSTRATIVE CASE STUDY
Physical layer
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ILLUSTRATIVE CASE STUDY
Preference layer
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OK, what about even higher social
objectives?

Can we infer social capital creation, for example?




To accomplish this, measuring social
Interactions in social infrastructure

] % | |I
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Social interactions ~ Social capital
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Additional goal: measure influences of
deS|gn changes on somal mteractlons

Design change

Social interactions » Social interactions

© Carnegie Mellon University. All rights reserved. Not for redistribution.
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Conclusions

* There is a whole new world of design/control spaces to
explore

* We are getting closer to explicitly designing for social

objectives

* We still need better models and solvers to unlock it

* Data is becoming less of a problem, though privacy and
ethics need to be considered

* Let’s boldly go where no engineers/designers have gone
before and directly optimize for the objectives we care

© Carn@bl@a‘.lﬂw!umversity. Allrights reserved. Not for redistribution.



Thanks! Questions?

https://inferlab.org

marioberges@cmu.edu
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