
© Carnegie Mellon University. All rights reserved. Not for redistribution.

On Learning to Steer Buildings 
(and their occupants) 

Towards Greater Societal Value
Mario Bergés          EPFL, 6.11.2025

Professor @ Carnegie Mellon University

Scholar @ Amazon         https://inferlab.org

https://inferlab.org/


© Carnegie Mellon University. All rights reserved. Not for redistribution.

A group e)ort

F L A N I G A N  S A L U S  L A B

Prof. Flanigan
CMU, CEE

M. Dcotorarastoo
CMU, CEE

Sizhe Ma
CMU, CEE

Kieran Elrod
CMU, CEE

Ozan Mulayim
CMU, CEE

Soon at Google

Bingqing Chen
CMU, CEE

Now at Bosch AI



© Carnegie Mellon University. All rights reserved. Not for redistribution.

Improving the design and operation of civil infrastructures systems 
through data-driven solutions grounded on engineering knowledge.

3



© Carnegie Mellon University. All rights reserved. Not for redistribution.

We spend over 90% of our time 
in designed environments

What do we design them for and how good are we at it?
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What objectives can we write down? 
Which ones can we solve?
• We’re limited by (at least)

• The observations we have access to y(𝑡) 
• The states we can infer from them x!
• The dynamics we can learn 𝑓"(𝑥! , 𝑢!) 

• Can we write down an ℓ(	) function for:

Social capital 
formation

Resilience to 
disruption

Well-being, 
health, and 
opportunity
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Let’s look at the 
case for designing 
your thermal 
comfort 
experience
Closed loop control over relatively short 
horizons and for simple objectives
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What is a practical and scalable solution for building 
control? 

Hey Siri, can you optimize my temperature while 
keeping my costs low?

Reinforcement 
Learning

Model Predictive 
Control

ℓ = ∑ 𝜆 𝑥* − 𝑥∗ ,
, + 𝑢* -
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Where are the proactive controllers? 

Many promises have been 
made.

Many simulation and some real-world 
experiments have been done.

Khabbazi et al. (2025) Lessons learned from field demonstrations of model predictive control and reinforcement learning for residential and commercial 
HVAC: A review  



© Carnegie Mellon University. All rights reserved. Not for redistribution.

What do the existing studies lack?

Interpretable

“Scalable”

Safe

Adaptive

CLUE(2024)
DPC (2022)
MB2C(2020)

Data-hungry

Black-box

Only in 
simulation

DeePC (2024)

Real world 
experiment 

(5 days)

Model-free RL 
(2016,2020,2022)

Needs a 
simulator for 

training

Gnu-RL 
(2020)

Limited 
interpretability

Real world 
experiment
(21 days)

Manual fitting 
of cost 

parameters

Real world 
experiment 
(13 days)

No online 
learning

Black-box Black-box

No online 
learning

Extensive
tuning

Online 
learning Online learning

Checklist

Most studies are validated only in simulation, black-box in nature or not adaptive.
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Training Time in Literature for RL 
Control of HVAC Systems

✕ Liu & Henze

✕ Dalamagkidis et al. ✕ Yang et al.

✕ Li et al.

✕ Wang et al.

✤ Zhang & Lam

✕ Jia et al.
✕ Gao et al.

Tr
ai

ni
ng

 T
im

e
(Y

ea
r)

Training RL agents generally 
takes no less than a year.   

Used their model in 
our simulation study;
47.5 years to reach 
comparable 
performance to the 
existing controller

Gnu-RL 
Agent

✭ Chen et al. 

Chen, Berges, Cai, 
ACM BuildSys (2019)
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We expedited the training by:

Imitation Learning Domain Knowledge

m dT
dt

=Qinternal +Qexternal

A physical-based 
model: 

Model Predictive Control
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Step1: O4line Pretraining Step2: Online Learning

Observation

Reward

Actio
n

Agent

Historical DataBAS Control Program

Environment

Policy

Framework
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1: Offline 
Pretraining

Besides imitating the existing controller, we expedite the training 
by using a policy that encodes knowledge on system dynamics 
and control.

2: Online Learning

Real-World EnvironmentHistorical 
Data

State
Action

Gnu-RL 
Agent

Di<erentiable MPC 
Policy

（Amos et al., 2018）

Optimizer

Model State, Reward

Action
Objective

Constraints

Predicted 
States

Future Disturbances

Action

State
Reward

Amos, B., Jimenez, I., Sacks, J., Boots, B., & Kolter, J. Z. (2018). 
DiIerentiable MPC for End-to-end Planning and Control. 

In Advances in Neural Information Processing Systems (pp. 8289-
8300).
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Experiment 1: Simulation Study

HVAC SchematicHot Water 
Pipes
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O)line Pretraining: Gnu-RL imitates a P-
controller.  

We used a

to generate historical 
data under the TMY3 
weather sequence.

The building operates 
under a fixed schedule
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Online Learning: Gnu-RL is Precocial. 

We evaluated the 
performance of

under the actual weather 
in 2017. 

performed similarly to 

prior to any interaction with 
the environment.  
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Gnu-RL achieved significant energy savings without 
compromising thermal comfort. 

• Gnu-RL achieved 20.6% energy savings compared to the existing controller and 6.6% 
energy savings compared to the best published RL result in the same environment.

Total Heating 
Demand 

Predicted Percentage Dissatisfied

Mean STD

(kWh) (%) (%)

Existing Controller 43709 9.45 5.59

Agent #6 
(✤ Zhang & Lam, 2018) 37131 11.71 3.76

Gnu-RL 34678 9.56 6.39
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Experiment: Real World Icons: flaticon.com

Environment: BOPTEST heat pump
State (x): Indoor air temperature
Control Input (u): Power
Disturbances (d): Solar gain, Outdoor air 
temperature
 

Environment: Purdue House
System: Heat pump with resistive backup heat

State (x): Indoor air temperature
Control Input (u): Power (translated to setpoint)
Disturbances (d): Solar gain, Outdoor air temperature

Objective: Minimize total and peak energy consumption and 
temperature deviation.

Horizon: 24 hours
Control Interval: 60 minutes

Training Data: 30 days
Validation Data: 15 days
Evaluation Data: 30 days

Baselines: 
PID: Existing controller
MPC: (Pergantis2024)

Longest residential RL deployment without pretraining with a simulator
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Limitations of Gnu-RL & D-MPC Icons: flaticon.com

Can we do better?

Simple Dynamics Limitation.

Choice of Controllable 
Action

Gnu-RL: Fitting 𝐴, 𝐵!, 𝐵"  to minimize a 𝐿 when {𝑂, 𝑅}	are fixed.
MPC: Non-quadratic cost function

𝐿 = 𝑢#$!% − 𝑢&$%"
'
+ ƛ 𝑥#$!% − 𝑥&$%"

'

𝑇#() =
𝑑𝑡
𝐶

𝑇* − 𝑇#
𝑅*

+
𝑇+,# − 𝑇#

𝑅+
+ 𝐶𝑂𝑃 ∗ 𝑃-& + 𝜂𝑃.- + 𝛼𝑄/+0

2R1C requires 𝑢 = 𝑃	𝑜𝑟	𝑄
Testbed only accepts 𝑇/%#&+12#

Non-Expert DemonstrationsDiMerentiable MPC: Expert demonstrations will fit the cost 
Using existing data to fit {𝑂, 𝑅} results in suboptimal performance 

Dynamics in Gnu-RL: 
 𝑇!"# = 𝐴𝑇! +𝐵$𝑢%& +𝐵'𝑇()!

Manual Configuration of 
Cost Function

Mulayim, Bergés 
ACM BuildSys (2025)
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Results-Real World Icons: flaticon.com

Ibex-RL learned to do stepped 
increases to avoid using backup heat! 

Ibex-RL achieved 22% improvement in 
savings while MPC got 20%. 

Mulayim, Bergés 
ACM BuildSys (2025)
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Can we change the design/control 
objective?

Making it closer to the types of capital we ultimately want to realize
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How do we coordinate a large population of flexible building 
loads to address challenges arising from modern grid 
operation? 

How do we ensure end-use requirements are satisfied for 
individual buildings given their system-specific dynamics?  
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COHORT is a practical, scalable, and 
versatile solution for coordinating a 
large population of flexible building 
loads to jointly provide grid services, 
while ensuring the end-use 
requirements are satisfied at individual 
buildings.

[Code] https://github.com/INFERLab/COHORT
[Paper] https://doi.org/10.1145/3408308.3427980 Chen et al.

ACM BuildSys (2020)

https://github.com/INFERLab/COHORT
https://doi.org/10.1145/3408308.3427980


© Carnegie Mellon University. All rights reserved. Not for redistribution.

We validated that COHORT is practical for real-world systems through a hardware-in-the-loop 
simulation. 

… … …

………

Simulated
Househol

ds

My 
Apartment

… … … …… … …… … …

based on real-world data traces from ecobee’s
Donate Your Data Program

15-day Experiment Period: 2020/07/11-2020/07/25
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Use Case 3: Peak Load Curtailment (Population)

73

75

77

T
em

pe
ra

tu
re

(o
F
)

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
0

50

100

P
ow

er
(k

W
)

Total Total (Baseline) TCL TCL (Baseline)

COHORT reduced daily peak loads by an average of 12.5%.

(From PJM 
Interconnection)

2020/07/24
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Looks great!
Can we do this for all buildings, and for 

other objectives?
Well, not so fast….
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“Buildings” is a heterogenous target
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Operational Heterogeneity: There are multiple ways to 
sense, model and actuate for each building.

Adaptive 
Controller

Building 
Automation
System

What are the inputs available for your model?
What modeling paradigm should be used?
What actuations are available?

Sorry, MPC cannot be 
installed because …

To scale these solutions we need so much 
more…
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MARIO!
Please check the time. 

Are you doing well?
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And there are many other unknowns
To design, we need to understand and predict well
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Human behavior makes predictions harder

• Reinforcement Learning controllers 
trained on deterministic occupancy 
patterns break down when tested on 
stochastic occupancy.

• The parameters of thermal dynamics 
models of buildings change drastically 
over time and vary significantly across 
rooms in homes. 

Mulayim, Bergés
ACM e-Energy (2025)

Mulayim, Bergés
ACM BuildSys (2023)
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Gray-box models can help us understand the 
causes

36

Mulayim, Bergés, Severnini
DCE Journal (2024)
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Integrating Humans into CPS

IN
FR
AS

TR
U
CT
U
RE

PHYSICAL CYBER

Correc&ve ac&on:
Adjust sea&ng

Σ

Survey
database

Decide

Orient

Act

Analyze

Op2miza2on

CorrectionIn
te

rn
et

Information
model

Functional connection: Physical ↔ infrastructure
Communication link: Cyber ↔ infrastructure

In-network compu2ng
Cyber link
Attribute to be optimized

Monitoring energy 
consump0on

User 
feedback

3 8
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IN
FR
AS

TR
U
CT
U
RE

PHYSICAL CYBER

Functional connection: Physical ↔ infrastructure
Communica2on link: Cyber ↔ infrastructure

In-network computing
Cyber link
ADribute to be op2mized

PHYSICAL CYBER

HU
M
AN

Communication link: Cyber ↔ human agent

CPSIS Framework

Σ

Sensor
database

Decide

Orient

Act

Observe

Analyze

Optimization

Detection

Correc2on

In
te

rn
et

Information
model

Infrastructure 
monitoring

Correc&ve ac&on

Σ

Human
monitoring

State
(human)

…
State

(infrastruc.)

Doctorarastoo et al.
BuildSys (2023)
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Real-time Actuation

Actuation Downtime 

Computational 
Complexity 

Defining Objectives

User Privacy

Measuring Objectives

CPSIS Challenges

HU
M
AN

IN
FR
AS

TR
U
CT
U
RE

Σ

State
(infrastruc.)

PHYSICAL CYBER

Sensor
database

Decide

Orient

Act

Observe

Analyze

Op2miza2on

Detection

Correc2on

In
te

rn
et

Informa2on
model

Infrastructure 
monitoring

Correc&ve ac&on

Σ

Human
monitoring

State
(human)

Functional connection: Physical ↔ infrastructure
Communica2on link: Cyber ↔ infrastructure

In-network computing
Cyber link
ADribute to be op2mizedCommunication link: Cyber ↔ human agent

…

What is an appropriate system modeling framework 
to predict how people use and interact with 
infrastructure based on design interventions?

Challenges

Modeling HumansModeling Humans
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(a) Placement of a 
Kinect sensor on 
ceiling tile.

(b) Kinect sensor

(c) Embedded 
computer: Odroid-
XU4

My humble beginnings…
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Some sample data
Depth Map

RGB Data

Munir et al.
IEEE ICCCPS (2017)
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Becerik-Gerber et al.
Nature Scientific Reports (2022)



© Carnegie Mellon University. All rights reserved. Not for redistribution.

Data-driven 
agent based 

models

How can we model 
human behavior in a 
generalizable way?
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Bottom-up power
Simulates individuals 
and groups, allowing 
complex patterns to 

emerge

Broad adoption
Used in urban planning, 

evacuation modeling, 
crowd dynamics

Appealing vision
Could capture 

heterogeneity, unlike 
top-down models

Oversimplified 
agents

Rely on static, rule-
based behaviors 
(“if X then Y”)

Lack of empirical 
grounding

Rules often theoretical or 
arbitrary, leading to 
unrealistic dynamics

Poor 
generalizability

Models tuned to 
specific scenarios but 

fail in new layouts, 
contexts, or 
populations

Gap in 
representation

Does not reflect 
humans as dynamic, 

adaptive, and context-
sensitive

AGENT-BASED MODELING: PROMISE AND PITFALLS

Need:
Data-driven 

behavior modeling

Need:
Transition from 

survey and census 
data to in-situ, 

interaction-level data

Need:
Embed contextual, 
person-to-person, 

temporal, and scenario-
based generalizability

Need:
Hierarchical decision 

making governing 
strategic and 

execution planning
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EMPIRE
Empirical Modeling of People in Responsive Environments

A hierarchical, data-driven modeling framework for predicting group-level human spatio-
temporal behavior in dynamic physical environments, with a focus on scenario-based 

generalizability.

Flanigan et al.
Under Review
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A hierarchical, data-driven modeling framework for predicting group-level human spatio-
temporal behavior in dynamic physical environments, with a focus on scenario-based 

generalizability.

EMPIRE
Empirical Modeling of People in Responsive Environments

hierarchical,

Flanigan et al.
Under Review
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A hierarchical, data-driven modeling framework for predicting group-level human spatio-
temporal behavior in dynamic physical environments, with a focus on scenario-based 

generalizability.

EMPIRE
Empirical Modeling of People in Responsive Environments

data-driven
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EMPIRE
Empirical Modeling of People in Responsive Environments

A hierarchical, data-driven modeling framework for predicting group-level human spatio-
temporal behavior in dynamic physical environments, with a focus on scenario-based 

generalizability.

group-level

Physiological signals Individual or group 
cognition

Population dynamics



© Carnegie Mellon University. All rights reserved. Not for redistribution.

EMPIRE
Empirical Modeling of People in Responsive Environments

A hierarchical, data-driven modeling framework for predicting group-level human spatio-
temporal behavior in dynamic physical environments, with a focus on scenario-based 

generalizability.
scenario-based

Contextual 
generalizability

Person-to-person 
generalizability

Temporal 
generalizability

Scenario-based 
generalizability
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EMPIRE HIGH-LEVEL ARCHITECTURE
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Agent N

Agent 2

Execution 
Planning

Preference scores 
(at time 𝒕 + 𝟏)

Simulated environment

Environmental space

Social space

Physical space

Course-grained 
observation

(at time 𝒕) 

Selected 
action

(at time 𝒕)

Preference Model

Agent 1

Strategic Planning
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Selected 
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(at time 𝒕 + 𝟏)Fine-grained 
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(at time 𝒕)

Instrumented environment

Environmental space

Social space

Physical space

Fine-
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ILLUSTRATIVE CASE STUDY

AMBIGUOUS
SPACE

POSITIVE
SPACE
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ILLUSTRATIVE CASE STUDY
Physical layer
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ILLUSTRATIVE CASE STUDY
Preference layer
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OK, what about even higher social 
objectives?

Can we infer social capital creation, for example?
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To accomplish this, measuring social 
interactions in social infrastructure

Social interactions Social capital 
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Additional goal: measure influences of 
design changes on social interactions

Social interactions Social interactions
Design change ❄

❄

❄

❄

❄

❄

❄ ❄
❄

❄

☹

❄

❄

❄

❄

❄❄

❄

☹

☹



© Carnegie Mellon University. All rights reserved. Not for redistribution.

Privacy invasive image Privacy preserving 
aggregate 
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Observed data from 
cameras Spatial environment
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Conclusions

• There is a whole new world of design/control spaces to 
explore
• We are getting closer to explicitly designing for social 

objectives 
• We still need better models and solvers to unlock it
• Data is becoming less of a problem, though privacy and 

ethics need to be considered
• Let’s boldly go where no engineers/designers have gone 

before and directly optimize for the objectives we care 
about!
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Thanks! Questions?
https://inferlab.org

marioberges@cmu.edu

65

https://inferlab.org/

