
ENAC-IT4R Working version v2 2022-06

Code Publishing Good Practice
for Open Research Scripts and Software @ ENAC

This document provides guidelines for publishing research scripts and software openly,
following software architecture and open science best practices, according to the FAIR
principles to ensure reproducibility of codes.

Publishing Open Source Code
1. Share & version the source code
2. Document the project
3. List dependencies
4. Document the code
5. Choose a license

Scaling Open Software: best practices
6. Git Workflow
7. Project layout
8. Coding conventions
9. Software tests
10. Packaging

a. Create a Docker image which package your app
b. Upload to public repositories

11. Distribution
a. User support
b. Communication & dissemination
c. Why open science ?

12. Resources

ENAC-IT4R Working version v2 2022-06

1.Share & version the source code
Must: Share the source code

Source code should be stored & published on a version control system, such as Git. Most
platforms offer other functionalities (collaborative tools, bugs tracking, wiki, CI/CD..).

WHY? Allow collaboration in an async way at any time. Allow you to go back in time in your
project.

TOOLS:
● GitHub (recommended)
● GitLab (self-hosted version)
● c4science (deprecated platform of EPFL).

Interactive scripts in Jupyter notebooks may be shared via nbviewer (open to the world),
Noto EPFL (for EPFL community).

2.Document the project
Must: Document the project

README.md: The repository should always have one in the root folder:
● Contain info on how to install, run, deploy the code
● Credit authors and share license
● Describe input and output data
● Link to open data if relevant - include sample/dummy data in expected formats to

test running the code.

Contributing.md
● Add a CONTRIBUTING.md at root (to help contributors onboarding)
● More infos on open source projects (guide on how to do a good open source

project)
● Examples of github repository having a good contributing file: Atom editor or VS

Code

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://github.com/
https://gitlab.com/
https://c4science.ch/
https://nbviewer.jupyter.org/
https://noto.epfl.ch/hub/login?next=%2Fhub%2F
https://github.blog/2012-09-17-contributing-guidelines/
https://opensource.guide/starting-a-project/
https://github.com/atom/atom/blob/master/CONTRIBUTING.md
https://github.com/microsoft/vscode/wiki/How-to-Contribute
https://github.com/microsoft/vscode/wiki/How-to-Contribute

ENAC-IT4R Working version v2 2022-06

3.List dependencies
Must: List dependencies

Dependency Management
Using a dependency management tool is crucial to ease project setup/installation.
Typical tools:

a. Python
i. Pipenv: Pipfile
ii. conda: environment.yml
iii. pip: requirements.txt

b. JavaScript/TypeScript
i. npm: package.json

An abstraction layer such as a Docker image ease the reproducibility (see below)

4.Document the code
Must: Document the project/code

Code should also be documented:
- Python

- Docstring
- JavaScript/TypeScript

- JSDoc

Documentation Generator
Once the code is documented, you can automate generating the documentation which come
along with the application (usually in html format).

- Python: Sphinx, Read the Docs, Doxygen
- Other languages: Doxygen, Others

https://pipenv.pypa.io/
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://pip.pypa.io/en/stable/user_guide/#requirements-files
https://www.npmjs.com/
https://www.python.org/dev/peps/pep-0257/
https://jsdoc.app/
https://www.sphinx-doc.org/
https://readthedocs.org/
https://www.doxygen.nl/index.html
https://www.doxygen.nl/index.html
https://en.wikipedia.org/wiki/Comparison_of_documentation_generators

ENAC-IT4R Working version v2 2022-06

5.Choose a license
Licenses are a legal contract between authors and users of a creative work; the authors can
grant different levels of permission and usability under specified conditions. The work is only
open-source if it is subject to an open source license.

At EPFL, EPFL owns the original data & code, but the authors can use it for research and IP.

● https://choosealicense.com/
● Library RDM Guide on Licensing
● https://tldrlegal.com/
● https://www.epfl.ch/research/services/protect-intellectual-property/software-licenses/c

hoose-the-right-license/

A license file, containing the full license, can be placed in the root folder. For common
licenses, a license notice (short version of the license) is enough.

In addition, each script can include in header:
○ License, authors, date, last update...
○ You may streamline scripts headers with py-licenser.

6.Git Workflow

WHY? Be consistent to facilitate work between contributors

A Git workflow will help you to structure how you use Git (branches, pull/merge requests,
…), you can adapt it for your use case, the point is to be consistent between all contributors.

TOOLS: Git Workflows: Gitflow / Gitlab flow / Github flow

Typical branch structure:

➔ main: always points to the latest release / version
➔ develop: integration/working branch
➔ feature/*: work on separate feature branches and merge them to develop

https://choosealicense.com/
https://www.epfl.ch/campus/library/wp-content/uploads/2019/09/EPFL_Library_RDM_FastGuide_All.pdf#page=12
https://tldrlegal.com/
https://www.epfl.ch/research/services/protect-intellectual-property/software-licenses/choose-the-right-license/
https://www.epfl.ch/research/services/protect-intellectual-property/software-licenses/choose-the-right-license/
https://c4science.ch/source/py-licenser/repository/master/)
https://www.atlassian.com/fr/git/tutorials/comparing-workflows/gitflow-workflow
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://docs.github.com/en/get-started/quickstart/github-flow

ENAC-IT4R Working version v2 2022-06

7.Project layout
Following the language and/or framework use a project initializer:

● JavaScript/TypeScript
○ Vue CLI
○ Angular CLI

● Python: there is no “official” project layout, but a general one would look like:
my_app/
│
├── my_app/
│ ├── __init__.py
│ ├── core.py
│ └── helpers.py
│
├── tests/
│ ├── test_basic.py
├── docs/
│ ├── conf.py
│ ├── index.rst
└── setup.py
├── .gitignore
├── LICENSE
├── README.md
├── requirements.txt

○ More details

8.Coding Conventions
Select a code style guide for each language and enforce them in the whole project:

Language Style Guide Enforcement tool

Python PEP 8 Flake8 + black

JavaScript/TypeScript Prettier ESLint

C++ Google C++ Style Guide Cpplint

VueJs eslint vue eslint-plugin-vue

https://cli.vuejs.org/
https://angular.io/cli
https://docs.python-guide.org/writing/structure/
https://www.python.org/dev/peps/pep-0008/
https://flake8.pycqa.org
https://github.com/psf/black/blob/main/README.md
https://prettier.io/
https://eslint.org/
https://google.github.io/styleguide/cppguide.html
https://github.com/cpplint/cpplint
https://eslint.vuejs.org/rules/
https://eslint.vuejs.org/user-guide/#installation

ENAC-IT4R Working version v2 2022-06

Static Analysis Tool
Having consistent formatted code is good, but you can do better with a static code analysis
tool: it can warn you about code duplications, security flaws, syntax errors, unreachable
codes, ...

● Python
○ Pylint

● JavaScript
○ JSHint

● C++
○ Cppcheck

● Multiple languages
○ SonarQube

9.Software tests
Testing is key at each release of the software, to avoid breaking the code. (Read more about
tests in Python).

There are many kinds of tests and the most commons are:
● Functional Tests: verify the output given some inputs

○ Unit Tests: test individual methods
○ Integration Tests: check behavior on a running application with other

components (database, service, …)
● Non-Functional Tests: to determine breaking points

○ Performance Tests: check that the application responds in the expected time

Language Unit Tests Integration Tests

Python unittest

JavaScript/TypeScript Mocha
JEST

Cypress
Nightwatch.js

Vue3 vitest Cypress

It is a good practice to at least create some unit tests during the development instead of
testing manually your application.

https://pylint.org/
https://jshint.com/docs/
https://cppcheck.sourceforge.io/
https://www.sonarqube.org/
https://realpython.com/python-testing/
https://realpython.com/python-testing/
https://docs.python.org/3/library/unittest.html
https://mochajs.org/
https://jestjs.io/
https://www.cypress.io/
https://nightwatchjs.org/

ENAC-IT4R Working version v2 2022-06

CI/CD
Instead of running the tests, code analysis and/or generating the documentation manually,
this can be done automatically by a continuous integration pipeline.
Whenever you push some commits on the repository, a process can check if there is no
regression in your application.

Depending on the chosen CI, some tools are included

Platform CI Static Code Analysis

GitHub GitHub Actions Code Scanning

GitLab GitLab CI Code Quality
Code Security

Any Platforms Jenkins
Travis CI

SonarCloud

Security

At each release, ensure compliance with secure coding practices (e.g. input validation,
proper error handling, password use in code, etc.) and take into consideration common
application security vulnerabilities (e.g., code injection, etc.).

10. Packaging

Packaging
To distribute your application on a public package repository (such as PyPI) and make it
easily installable by everyone, you will need to build and pack it in a distribution package.

● Python: Packaging Python Projects to PyPI
● JavaScript/TypeScript: Contributing packages to npm

Docker
Containerization with Docker helps reproducibility of the project. A container is like a virtual
machine, but lighter and faster: https://www.docker.com/resources/what-container
Once you define the image, it can be run on any machine in the same way.

Docker Compose
With Docker Compose, you can define how a set of Docker containers starts.

https://martinfowler.com/articles/continuousIntegration.html
https://github.com/features/actions
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/setting-up-code-scanning-for-a-repository
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/user/project/merge_requests/code_quality.html
https://docs.gitlab.com/ee/user/application_security/
https://www.jenkins.io/
https://www.travis-ci.com/
https://sonarcloud.io/
https://pypi.org/
https://packaging.python.org/tutorials/packaging-projects/#generating-distribution-archives
https://docs.npmjs.com/packages-and-modules/contributing-packages-to-the-registry
https://www.docker.com/
https://www.docker.com/resources/what-container
https://docs.docker.com/compose/

ENAC-IT4R Working version v2 2022-06

Versioning
Publishing your application also means creating some releases. This helps the user to know
which version it uses and what are the existing ones.
Each release should have a version number and it should follow the well known semantic
versioning.

11. Distribution

User Support
User support is very important to building a community of users around your software.
Choose an outlet to keep track of user’s comments (and/or bug tracking), and point your
users to it. General forums also work (StackOverflow…)

● Google groups
● GitHub Issues or Github discussions
● GitLab Issues

Communication & dissemination
Dissemination time/effort is not to be underestimated to achieve best impact of open
software

● Website
● Communication strategy (community of users, who’s the audience?)
● Publications: Open software journals such as JOSS.

Why Open Software (Open Science) ?

● Societal impact : scientific vulgarisation, research valorisation
● Academic career recognition: peers usage, citations...
● Innovation/private sector : a start-up out of your research software!

12. Resources
● Guide for Reproducible Research
● Code & Data mgt workshop, EPFL Library
● Funding opportunities for Open Scripts & Software (internal ENAC)

https://semver.org/
https://semver.org/
https://groups.google.com/
https://github.com/features/issues/
https://docs.gitlab.com/ee/user/project/issues/
https://joss.theoj.org/
https://the-turing-way.netlify.app/reproducible-research/reproducible-research.html
https://hmd.youmi-lausanne.ch/sVv06rvzRgmNMhvlusdi6A
https://inside.epfl.ch/enac-intranet/funding-highlights/

