
Code Publishing Cheat Sheet
Documentation Dev Tools

Git workflow

WHY? Be consistent to facilitate work between contributors

A Git workflow will help you to structure how you use Git
(branches, pull/merge requests, …), you can adapt it for your use
case, the point is to be consistent between all contributors.

TOOLS: Git Workflows: Gitflow / Gitlab flow / Github flow

Typical branch structure:
➔ main: always points to the latest release / version
➔ develop: integration/working branch
➔ feature/*: work on separate feature branches

Project

Project documentation

Readme should :
● contain info on how to install, run, deploy the code
● credits authors and share license
● describe input and output data
● Link to open data if relevant - include sample/dummy data

in expected formats to test running the code.

Contributing info:
● Add a CONTRIBUTING.md at root (to help contributors

onboarding)
● More infos on open source projects (guide on how to do a

good open source project)
● Examples of github repository having a good contributing

file: Atom editor

 Code

Packaging
Dependency Management

WHY? Using a dependency management tool is crucial to
ease project setup/installation. It follows the 12 factor
guidelines -> reproducible build step
Tools:
● Python
○ Pipenv: Pipfile
○ conda: environment.yml
○ pip: requirements.txt

● JavaScript/TypeScript
○ npm: package.json

An abstraction layer such as a Docker image can remove the
hassle of dependencies (see Distribution below)

General principles
● Avoid code smell & design smell (cf wikipedia)
● Don’t Repeat Yourself (DRY/AHA)
● Separation of concerns

○ Separate Code and Data
○ Follow design patterns like mvc or mvvm.
○ css/js/html

● REST Principles (for APIs)
○ Statelessness
○ Cacheability
○ Uniform interface

Git commit message

WHY? Having a consistent message format enable a better
collaboration

❏ Separate subject from body with a blank line
❏ Limit the subject line to 50 characters
❏ Capitalize the subject line
❏ Do not end the subject line with a period
❏ Use the imperative mood in the subject line
❏ Wrap the body at 72 characters
❏ Use the body to explain what and why vs. how

TOOLS:
➔ gitmoji
➔ conventional-commit
➔ commit-lint

Project structure my_app/

│
├── my_app/

│ ├── __init__.py

│ ├── core.py

│ └── helpers.py

│
├── tests/

│ ├── test_basic.py

├── docs/

│ ├── conf.py

│ ├── index.rst

└── setup.py

├── .gitignore

├── LICENSE

├── README.md

├── requirements.txt

Following the language and/or
framework scaffolder by using a
project initializer:

WHY? Allow the app to scale: grow,
stay maintainable, extendable;
Easier for new contributors since it
will follow existing patterns.

TOOLS:
● JavaScript/TypeScript

○ Vue CLI (have a look to existing
project like
vuetify/quasar/element-ui)

○ Angular CLI
● Python: there is no “official”

project layout, but a general one
would look like the following on
the right

General advices

● Meaningful names for variables, functions et c
● Avoid acronyms and abbreviations: prefer readability
● Avoid the obvious comment: best practices for writing

code comments
● Better no comment than a faulty comment!
● Be consistent
● Refactor Early and Often
● No dead code: WHY? It’s unnecessary to keep code that is

unused or commented. That’s what the versioning is for.
● No magic numbers: WHY? More readable to name

constant, more maintainable (one place)
● Limit lines per files : If it’s too big you’ll spent time looking

for the part of the code, use modules
● limit characters per line : WHY? you don’t want to scroll

horizontally, it’s more readable for the brain (usually max
120/160 char, 80 char recommended). E.g Books

Coding style

Select a code style for each language and enforce them in the whole project

WHY? consistency is key for maintainability/readability/contributors

TOOLS:

12 Factor (link to an illustrated version)

1. One codebase tracked in revision control, many
deploys/environemnent(prod/test/dev)

2. Explicitly declare and isolate dependencies
(requirements.txt/package.json/lock)

3. Store config in the environement (env
variable/password/port/host_url)

4. Backing services as resources (meaning separate : use
docker-compose)

5. Strictly separate build and run stages
6. Execute the app as one or more stateless processes (OS meaning)
7. Export services via port binding (identity of service is via a port not

a host)
8. Scale-out via the process mode (separate process by

concerns/purpose)
9. Maximize robustness with fast startup and graceful shutdown

Keep development, staging, and production as similar as possible
10. Treat logs as event streams (the app does not handle the logs just

write to stdout)
11. Run admin/management tasks as one-off processes (part of the

release cycle; use code/env same as the app)

Language Style Guide Enforcement tool

Python PEP 8 Flake8

JavaScript/TypeScript Prettier ESLint

C++ Google C++ Style Guide Cpplint

VueJs eslint vue eslint-plugin-vue

Code documentation:

Code should also be documented:
● Python Docstring (pep 257)
● JavaScript/TypeScript: JSDoc

Documentation Generator : you can automate with:
● Python: Sphinx, Read the Docs, Doxygen
● Other languages: Doxygen, Others

Use may use standard-version/conventional changelog to
generate changelog and documentation related to releases

License

Licenses are a legal contract between authors and users of a
creative work; the authors can grant different levels of
permission and usability under specified conditions. The work is
only open-source if it is subject to an open source license.

A license file, containing the full license, can be placed in the root

folder. For common licenses, a license notice (short version of

the license) is enough.

At EPFL, EPFL owns the original data & code, but the authors can

use it for research and IP.

Choose a license: choosealicense.com/, Library RDM Licensing
Guide, tldrlegal.com, choose-the-right-license by EPFL TTO…
Examples :
- GPL3.0 : strong open source license enforcing that copies must

be open-source.

- MIT : permissive open source license allowing any re-use-

Distribution

To distribute your application on a public package repository
(such as PyPI) and make it easily installable by everyone, you
will need to build and pack it in a distribution package.
● Python: Packaging Python Projects to PyPI
● JavaScript/TypeScript: Contributing packages to npm

Docker
Containerization with Docker helps reproducibility of the
project. A container is like a virtual machine, but lighter and
faster: https://www.docker.com/resources/what-container
Once you define the image, it can be run on any machine in
the same way.

Docker Compose
With Docker Compose, you can define how a set of Docker
containers starts.

Versioning
Publishing your application also means creating some
releases. This helps the user to know which version it uses
and what are the existing ones.
Each release should have a version number and it should
follow the well known semantic versioning.

Testing

Testing is key at each release of the software, to avoid breaking the
code. (Read more about tests in Python).

There are many kinds of tests and the most commons are:
● Functional Tests: verify the output given some inputs

○ Unit Tests: test individual methods
○ Integration Tests: check behavior on a running application

with other components (database, service, …)
● Non-Functional Tests: to determine breaking points

○ Performance Tests: check that the application responds in
the expected time

It is a good practice to at least create some unit tests during the
development instead of testing manually your application.

Continuous Integration / Continuous Delivery

WHY? Instead of running the tests, code analysis and/or
generating the documentation manually, this can be done
automatically by a continuous integration pipeline. Whenever you
push some commits on the repository, a process can check if there
is no regression in your application.

TOOLS:

Language Unit Tests Integration Tests

Python unittest

JavaScript/TypeScript Mocha
JEST

Cypress
Nightwatch.js

Vue3 vitest Cypress

User Support

User support is very important to building a community of users
around your software. Choose an outlet to keep track of user’s
comments (and/or bug tracking), and point your users to it.
General forums also work (StackOverflow…)

● Google groups
● GitHub Issues
● GitLab Issues
● Discourse

Communication & dissemination
Dissemination time/effort is not to be underestimated to achieve

best impact of open software

● Website
● Communication strategy (community of users, who’s the

audience?)
● Publications: Open software journals such as JOSS.

Why Open Software (Open Science) ? Don’t forget license
file
Societal impact : scientific vulgarisation, research valorisation
Academic career recognition: peers usage, citations…
Innovation/private sector : a start-up out of your research
software!

References:

● Guide for Reproducible Research
● Follow FAIR principles
● Code & Data mgt workshop, EPFL Library
● Awesome list of references

List of dev resources related to every topics concerning computer
science: hosted on github/open-source
(code/blog/article/documentation/books..)

Funding:

You can find below potentially interesting funding opportunities, at
ENAC, EPFL, Swiss or International level, selected by the Dean’s Office
due to their connection with ENAC’s sustainability challenges.

For an exhaustive list of research funding opportunities, you can
consult following webpages and tools of the EPFL Research office and
the Swiss Federal Office for the Environment FOEN:

 Research Office selection
 Research Office memento (ordered by deadline)
 Research Office Foundations Compendium
 Research Office Collaborations Compendium
 Research Professional
 Overview national and international funding instruments FOEN

CI Static Code Analysis

GitHub GitHub Actions Code Scanning

GitLab GitLab CI Code Quality
Code Security

Any Platforms Jenkins
Travis CI

SonarCloud

Storage & version control

Source code should be stored & published on a
version control system, such as Git. Most
platforms offer other functionalities (collaborative
tools, bugs tracking, wiki, CI/CD..).

WHY? Allow collaboration in an async way at any
time. Allow you to go back in time in your project.

TOOLS:
❏ GitHub
❏ GitLab (self-hosted version)
❏ c4science (deprecated platform of EPFL).

Interactive scripts in Jupyter notebooks may be
shared via nbviewer (open to the world), Noto
EPFL (for EPFL community).

M
us

t:
Sh

ar
e

th
e

so
ur

ce
 c

od
e

M
us

t:
D

oc
um

en
t t

he

pr
oj

ec
t/c

od
e

M
us

t:
C

ho
os

e
a

lic
en

se

Publish

M
us

t:
Ex

pl
ai

n
ho

w
 to

ru
n

th
e

co
de

M
us

t:
Li

st
 d

ep
en

de
nc

ie
s

Resources

pierre.guilbert@epfl.ch /
21.06.2022 / enac-it4r

https://www.atlassian.com/fr/git/tutorials/comparing-workflows/gitflow-workflow
https://docs.gitlab.com/ee/topics/gitlab_flow.html
https://docs.github.com/en/get-started/quickstart/github-flow
https://github.blog/2012-09-17-contributing-guidelines/
https://opensource.guide/starting-a-project/
https://github.com/atom/atom/blob/master/CONTRIBUTING.md
https://pipenv.pypa.io/
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html
https://pip.pypa.io/en/stable/user_guide/#requirements-files
https://www.npmjs.com/
https://en.wikipedia.org/wiki/Code_smell
https://en.wikipedia.org/wiki/Design_smell
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Separation_of_concerns
https://en.wikipedia.org/wiki/Representational_state_transfer
https://cbea.ms/git-commit/#separate
https://cbea.ms/git-commit/#limit-50
https://cbea.ms/git-commit/#capitalize
https://cbea.ms/git-commit/#end
https://cbea.ms/git-commit/#imperative
https://cbea.ms/git-commit/#wrap-72
https://cbea.ms/git-commit/#why-not-how
https://gitmoji.dev/
https://www.conventionalcommits.org/en/v1.0.0/
https://commitlint.js.org/
https://cli.vuejs.org/
https://angular.io/cli
https://docs.python-guide.org/writing/structure/
https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/
https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/
https://eslint.org/docs/rules/max-lines
https://eslint.org/docs/rules/max-len
https://12factor.net/de/
https://www.redhat.com/architect/12-factor-app
https://www.python.org/dev/peps/pep-0008/
https://flake8.pycqa.org
https://prettier.io/
https://eslint.org/
https://google.github.io/styleguide/cppguide.html
https://github.com/cpplint/cpplint
https://eslint.vuejs.org/rules/
https://eslint.vuejs.org/user-guide/#installation
https://www.python.org/dev/peps/pep-0257/
https://jsdoc.app/
https://www.sphinx-doc.org/
https://readthedocs.org/
https://www.doxygen.nl/index.html
https://www.doxygen.nl/index.html
https://en.wikipedia.org/wiki/Comparison_of_documentation_generators
https://github.com/conventional-changelog/conventional-changelog
https://choosealicense.com/
https://www.epfl.ch/campus/library/wp-content/uploads/2019/09/EPFL_Library_RDM_FastGuide_All.pdf#page=12
https://www.epfl.ch/campus/library/wp-content/uploads/2019/09/EPFL_Library_RDM_FastGuide_All.pdf#page=12
https://tldrlegal.com/
https://www.epfl.ch/research/services/protect-intellectual-property/software-licenses/choose-the-right-license/
https://pypi.org/
https://packaging.python.org/tutorials/packaging-projects/#generating-distribution-archives
https://docs.npmjs.com/packages-and-modules/contributing-packages-to-the-registry
https://www.docker.com/
https://www.docker.com/resources/what-container
https://docs.docker.com/compose/
https://semver.org/
https://realpython.com/python-testing/
https://martinfowler.com/articles/continuousIntegration.html
https://docs.python.org/3/library/unittest.html
https://mochajs.org/
https://jestjs.io/
https://www.cypress.io/
https://nightwatchjs.org/
https://groups.google.com/
https://github.com/features/issues/
https://docs.gitlab.com/ee/user/project/issues/
https://www.discourse.org/
https://joss.theoj.org/
https://the-turing-way.netlify.app/reproducible-research/reproducible-research.html
https://www.go-fair.org/fair-principles/
https://hmd.youmi-lausanne.ch/sVv06rvzRgmNMhvlusdi6A
https://awesome.re/
https://www.epfl.ch/schools/enac/sustainability-challenges/
https://www.epfl.ch/research/services/fund-research/funding-opportunities/
https://memento.epfl.ch/research-office/
https://drive.google.com/file/d/1O6IONx0Bc5CEQmITjBIEQ6J5pO7eBn5E/view
https://drive.google.com/file/d/1x3vjKyAbhvM2cOwGGHE8fYkqzZ4UEL6h/view
https://www.researchprofessional.com/0/rr/home
https://www.bafu.admin.ch/bafu/en/home/topics/education/environmental-research--mandate--objectives--funding/innovation-landscape.html#region=0&category=0&type=0,1,2
https://github.com/features/actions
https://docs.github.com/en/code-security/code-scanning/automatically-scanning-your-code-for-vulnerabilities-and-errors/setting-up-code-scanning-for-a-repository
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/user/project/merge_requests/code_quality.html
https://docs.gitlab.com/ee/user/application_security/
https://www.jenkins.io/
https://www.travis-ci.com/
https://sonarcloud.io/
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
https://github.com/
https://gitlab.com/
https://c4science.ch/
https://nbviewer.jupyter.org/
https://noto.epfl.ch/hub/login?next=%2Fhub%2F
https://noto.epfl.ch/hub/login?next=%2Fhub%2F
mailto:pierre.guilbert@epfl.ch

