Estimation of future scenarios for energy production and its impacts on hydrology in the Hasliaare

EPFL supervisor: Prof. Paolo Perona | KWO supervisor: Steffen Schweizer

Problematic

Who Hydropowerplant of KWO (KraftWerke Oberhasli AG)
What Ecological impact due to hydrological criticity: phenomenon of Hydropeaking
Where Hasliaare river, Berner Oberland
Actual solution Retention basin downstream the hydropowerplant: able to manage the mitigation of hydropeaking effects for the actual water flowing in turbines, called Scenario III
Our problem New catchments: Lake Trift or enlarging Lake Grimsel. Increasing of exploitable water volume

Objectives

1) Predict new water flow for energy production (called Scenarios IV) based on statistical analysis of existing scenarios
2) Verify management of retention basin against Scenarios IV

Method

Strategy Defining discharge corresponding to “basal flow” and “peaks” in Scenario II time series, in order to increase their value in Scenario IV
Constraint Amount of available water
Optimization The calibrated set of parameters is the one which maximizes the exploited volume
Sensitivity Analysis Testing the efficiency of the algorithm under constraints on amount of available water volume and on desired proportions among different uses
Ecological impact Running existing algorithm (D.P. 2013, Maire A. & Theiler Q.) with predicted discharge and test if ecological parameters are respected

Results

Scenario IVA

- Additional available volume per winter season: 55 Mio m3
- Volume exploited: 53 Mio m3

Scenario IVB

- Additional available volume per winter season: 110 Mio m3
- Volume exploited: 105 Mio m3

Take home message

- In both Scenario IVA and IVB, the additional water could be distributed efficiently to the flow regime of the powerplants from November 20th to March 10th.
- Retention volume can be used to minimize adverse hydrological effect, as e.g. increasing and decreasing rate. With the respect to fish spawning activity in November the periods with discharge below 20 m3/s decrease in terms of number of event compare to Scenario II. Discussions with fish experts are suggested.
- In order to improve the results, the analysis can be extend to the whole year (winter plus summer season) and mathematical constraints regarding to energy market could be taken into account.