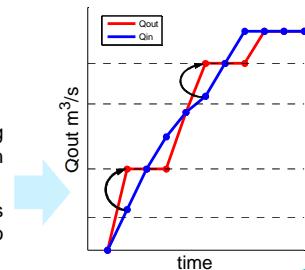

MANAGEMENT OF A RETENTION BASIN TO MITIGATE EFFECTS OF HYDROPEAKING

1. Problematic

Who:	KWO (Kraftwerke Oberhasli AG) hydropowerplant in the Berner Oberland
What:	Releases its turbined water in the river Aare in Innertkirchen, creating hydropeaking
Problem:	In order to lower the impact of the hydro power plants on the river and to respect the federal prescriptions: plan to construct a retention basin and a tunnel (initially 80'000m ³ , expectation 94'000m ³) to mitigate the effects of hydropeaking
Constraints:	<ul style="list-style-type: none"> - Increasing rate (to limit the macrozoobenthos drifting) - Decreasing rate (to avoid fish stranding on the gravel banks)
3 cases studied:	<ul style="list-style-type: none"> A) Simulation from 2009 to 2012 for two volumes: A1: 80'000 m³ A2: 94'000 m³ with different increasing rates. B) Simulation for November only, with a constraint of a maximal outflow (20 m³/s) for fish spawning. C) Algorithm with a bearing (German: Vorschwall) for both volumes (80'000 and 94'000 m³) to create a "warning" effect when the flow increases.

2. Methods


I) Datasets and data treatment

Why: To perform the simulation: need of the data of the water released by the turbines (Qturb) and the residual Aare from 2009 to 2012.

How: Values were missing from March to November: extrapolation from downstream.

II) Design of the algorithm

- Starting from the algorithm developed by Martin Bieri during his thesis at EPFL
- Respect the environmental constraints
- Manage to keep a minimal stored water volume (Vtot = 12'000m³)
- Addition of specific constraints in November
- Addition of constraints for the bearings

III) Choice of the bearing parameters

- Determine the optimal parameters corresponding to 4 different bearing's limits : 2 in summer, 2 in winter.
- By iterations, we looked for the parameters allowing the highest number of bearings to happen.

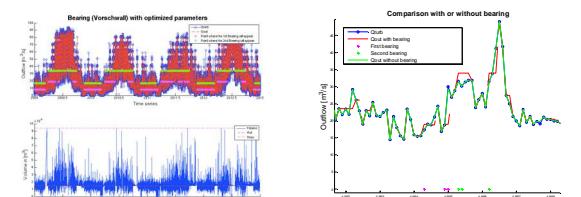
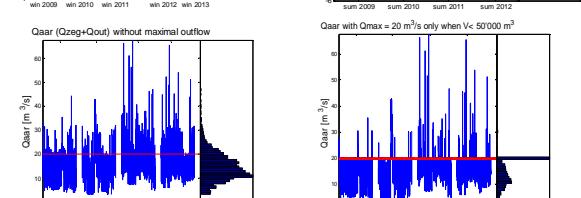
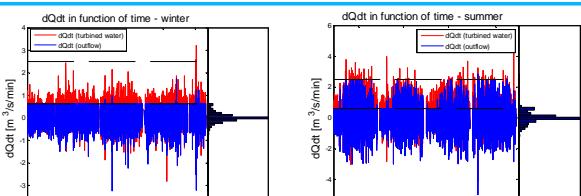
3. Results

A) First case : 2009 to 2012

Volume max	A1: 80'000 m³	A2: 94'000 m³
Increasing rate	0.7 m ³ /s/min	0.5 to 0.7 m ³ /s/min
Decreasing rate	0.14 m ³ /s/min	0.14 m ³ /s/min

Respect of the constraints
all the constraints respected at 95%

B) Second case : November




Volume = 94' 000 m ³	without constraint	with Qmax = 20 m ³ /s
Q = 20 m ³ /s excess ratio	92 %	37%
Ratio of events with Q<20 m ³ /s for 12 hr	37.5%	91.4 %

The algorithm is able to increase significantly the number of events where Qout < 20 m³/s during 12 hours, respecting the other constraints at 95%.

C) Third case : bearing (Vorschwall)

Vmax: 94'000 m ³ Vtot: 12'000 m ³	95% increasing rate: 0.7 m ³ /s/min	95% decreasing rate: -0.24 m ³ /s/min
Optimized parameters	Winter: 5 m ³ /s -> 8 m ³ /s, 14 m ³ /s -> 17 m ³ /s. Summer: 16 m ³ /s -> 19 m ³ /s, 29 m ³ /s -> 34 m ³ /s.	

The problem of the decreasing rate could be avoided by using a Vtot volume of 15' 000 m³, and we would have a decreasing rate at 95% of -0.14 m³/s/min.

4. Take Home Message

Algorithm

Evaluate the outflow of the retention basin
Using 20 different possibilities

Based on the next 15-minutes value
Depending on several constraints

The results are quite good and promising for the future retention basin management with these 3 different scenarios

Doesn't take several technical difficulties that could be encountered into account.

Retention basin: great potential to reduce the impact of the hydropeaking on the environment