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A B S T R A C T   

In sensed buildings, information related to occupant movement helps optimize important func-
tionalities such as caregiving, energy management, and security enhancement. Typical sensing 
approaches for occupant tracking rely on mobile devices and cameras. These systems compromise 
the privacy of building occupants and may affect their behavior. Occupant detection and tracking 
using floor-vibration measurements that are induced by footsteps is a non-intrusive and inex-
pensive sensing method. Detecting the presence of occupants on a floor is challenging due to 
ambient noise that may mask footstep-induced floor vibrations. In addition, spurious events such 
as door closing and falling objects may produce vibrations that are similar to footstep impacts. 
These events have to be detected and disregarded. Tracking occupants is complicated due to 
uncertainties associated with walking styles, walking speed, shoe type, health, and mood. Also, 
spatial variation in structural behavior of floor slabs adds ambiguity to the task of occupant 
tracking, which cannot be addressed using data-driven strategies alone. In this paper, a frame-
work for occupant detection and tracking is developed. Occupant detection is carried out based 
on signal information. This method outperforms existing threshold-based methods. Support- 
vector-machine classifiers, trained with time and frequency-domain features, successfully 
distinguish footsteps from spurious events and determine the number of occupants walking 
simultaneously. A model-based data-interpretation approach is used for occupant tracking. 
Structural-mechanics models are used to identify a population of possible occupant locations and 
trajectories. Up to two occupants can be tracked by accommodating systematic bias and un-
certainties from sources such as modeling assumptions and variability in walking gaits. A hybrid 
framework for occupant detection and tracking that combines model-free approaches for occu-
pancy detection with structural behavior models for tracking is developed and tested on two full- 
scale case studies. These studies successfully validate the utility of the framework for buildings 
having sparse sensor configurations that measure floor vibrations.   

1. Introduction 

Recent progress in sensing and computing technology has resulted in reliable and economic sensors and low-cost computing 
infrastructure to study human-building interactions. Available technologies have encouraged the development of an automated un-
derstanding of occupant information in smart buildings with the goal to optimize important functionalities such as security 
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enhancement [1], healthcare [2,3], as well as space and energy management [4–7]. 
Proposals for sensing technologies that detect occupants inside buildings have included optical sensors [8–10], and radio-frequency 

devices [11–13]. Occupant detection using radio-frequency devices have been shown to depend on a highly instrumented infra-
structure [14–16] that needs regular maintenance. Although detection of occupants using radio-frequency devices has improved in 
accuracy over recent years [13,17], accuracy is still compromised due to multi-path problems [18] that are induced by elements such 
as walls and furniture [14,18–20] in a sparsely instrumented infrastructure. Also, wearable-device-based approaches are intrusive and 
require occupants to carry permanently connected devices. This has led to problems when a device was either off, not connected to the 
network or when the user decided not to wear a device [21]. These studies have resulted in inaccurate detection and localization of 
occupants. 

Video recording and to a lesser extent, motion sensors, undermine the privacy of indoor occupants due to their intrusive nature 
[22–24]. For instance, cameras in office environments may influence the behavior of occupants. Employing optical sensors for 
occupant detection and tracking requires highly instrumented zones and dense sensor configurations to maintain clear lines of sight 
and large angles of coverage [25–27]. This has led to dense deployment and high maintenance resulting in impractical and costly 
infrastructure. 

Non-intrusive sensing technologies, such as acoustic sensors [28,29], CO2 sensors [30,31], and smart-flooring systems [32,33] have 
been proposed. However, acoustic-based methods have been found to be sensitive to ambient audible noise [28,29,34]. The major 
limitations of CO2-based approaches are related to the slow spreading of CO2 within an indoor space where air ventilation influences 
the concentration of CO2, leading to ambiguous interpretations of occupancy levels [34,35]. Smart flooring systems require highly 
instrumented floors (thousands of sensors) [32,33]. Such systems are not suitable for large full-scale applications. In this study, 
structural-vibration sensors [36–39] are used since they are non-intrusive and have the potential to avoid the shortcomings discussed 
above. 

Detection of events (from footsteps and other sources) has been carried out by assuming the ambient vibrations (i.e. white noise) 
has the statistical form of an independent zero-mean Gaussian distribution [21]. Events have been detected as anomalies when vi-
bration amplitudes exceed a previously defined baseline level of ambient vibrations (three standard deviations) [22,40]. Another 
threshold-based method, based on evaluating the auto-correlation of measured vibrations [41,42] has been used to detect and extract 
footstep-event signals. However, these approaches show limitations due to surrounding noise that hide vibration events having low 
signal to noise ratios (SNR) [22]. 

In order to distinguish footstep events from other events, footstep events were classified using one-class support vector machine 
(SVM) [43] based on 13 features in time and frequency domains [44,45]. Spurious events such as dropping objects, closing doors and 
drawers, hitting tables and jumping were included to estimate performance compared with Gaussian process and k-nearest neighbors 
(KNN) classifiers [46]. One-class SVM led to an F1 score of 92 % for footstep classification compared with 38 % for fall classification. 
However, the type II error, defined as the rate of non-footstep events identified as footstep events, was approximately 10 %. Thus, 
training with only footstep events might miss-classify spurious events as footstep events. 

Event classification using a binary-SVM classifier has been proposed by Drira et al [47]. Based on frequency and time domain 
features, the classifier was trained by footstep events and several spurious events such as book dropping, opening/closing doors and 
chair dragging. This study involved the selection of frequency ranges that enhance the time domain features to distinguish between 
classes. Despite high classification performance (accuracy exceeding 97 %), the classifier has been trained only with footstep events 
from individual occupants [47]. 

Detected footstep-event signals have been used to estimate the number of occupants on floor slabs [48–50]. A neural network 
classifier (ANN) [51] has been proposed to determine whether one or two occupants were walking on several floor slabs [42]. Features 
that were used to train the ANN classifier were signal periodicity using autocorrelation function, signal energy and cross-correlation 
between adjacent sensor responses. The proposed ANN classifier has been reported to achieve an average accuracy of 86 %. However, 
several succeeding footstep-event signals are required for training, since measured footstep-induced floor vibrations are segmented 
into signals of 5 s duration. 

Cross-correlation coefficients between event signals at all sensor locations from each footstep event, σ values of event signals 
recorded at each sensor location and maximum CPSD of all sensors have been used to train the SVM classifier to determine the number 
of occupants walking together on a floor, Drira et al [47]. These features have been shown to provide high classification performance 
with an accuracy exceeding 94 %. However, this classification was limited to two occupants walking together [47]. 

Most existing studies for occupant localization have been based on data-driven approaches. A typical model-free approach involves 
the assessment of time-difference-of-arrivals (TDoAs) between footstep-induced floor vibrations at multiple sensors to provide esti-
mations of occupant locations [22,40,45,52]. However, these techniques require a monotonic relationship between signal charac-
teristics and the distance from footstep-impact to sensor locations [21]. They have failed to provide accurate localization for varying- 
rigidity floors (upper floors) and in the presence of obstructions [40,53]. In these floors, a monotonic relationship between event 
signals and the distance to sensor locations is not satisfied [54–56]. 

Although model-free approaches have been shown to provide precise results on slabs on grade, complex structural configurations 
(upper floors) and the presence of obstructions (such as beams, walls and furniture) limit their applicability [40,53]. TDoA techniques 
rely on Lamb-wave propagation velocity in a medium to estimate the location of an impact source [40]. The propagation velocity 
depends on material properties of floor slabs such as modulus of elasticity, density and Poisson’s ratio. These properties may vary 
across the floor. Columns, beams and walls contribute to the heterogeneity of typical floor slabs. These elements result in varying floor 
rigidities that have affected wave propagation properties which make determination of the propagation velocity a challenging task 
[57]. This limits the applicability of triangulation-based techniques for occupant localization when floors have varying vertical rigidity 
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[40]. 
Mirshekari et al [53] have proposed a new triangulation-based approach for occupant localization that estimates the obstruction 

mass by characterizing the wave attenuation rate. This mass estimation was used to approximate the propagation velocities for ac-
curate localization. However, case studies, presenting uniform vertical rigidities, were limited to the placement of obstructions with 
several mass levels that did not exceed 60 Kg between sensors and footstep-impact locations. In real applications, typical floors are 
obstructed with structural elements such as columns, beams and walls and non-structural elements such as heavy furniture. Apart from 
mass levels, these obstructions can be characterized by their dimensions, materials and connections that may affect significantly the 
structural behavior of the slab, thereby leading to ambiguous measurement interpretation through triangulation [55]. 

The presence of structural elements such as beams, columns and walls typically lead to highly dispersive mediums. Due to the 
dispersive nature of floor slabs, the Lamb-wave propagation induced by footstep impacts is degraded because various wave compo-
nents of the signal have different propagation velocities. This might result in low SNR vibrations due to the attenuation of signal 
characteristics, which lead to inaccurate localization [40]. Thus, highly instrumented floors have been required to provide accurate 
localization results [40,44,58] (a sensor per ~ 2 m2). This limits the application of TDoA techniques to scenarios where many sensors 
are deployed. 

Moreover, most of the data-driven techniques (triangulation-based approaches) that involved processing and analyzing vibration 
measurements for localization have been conducted for only single occupants [40,59,60] walking on small-floor areas. In full-scale 
applications, multiple people walk regularly at the same time on the same floor-slab. Resulting floor-vibration measurements 
include a superposition of the structural responses from multiple occupants walking with their own speed on their respective tra-
jectory. A few studies have attempted to localize multiple occupants [61,62]. For instance, Shi et al [62] have used continuous wavelet 
transform (CWT) [63] to decompose the floor vibrations from multiple occupants (up to three). Assuming that people rarely walk in 
perfect synchrony, filtering the floor vibrations at a high-frequency range (50–125 Hz) was shown to provide better delimitations 
between footstep excitations (peaks) from multiple occupants. The detected peaks are used for localization based on TDoA technique. 
Despite the accurate localization results, tests have been carried out on a small unobstructed and highly instrumented space (a sensor 
per ~ 2 m2). This concentration of sensors made event-signal separation possible and the estimation of TDoA values achievable. Real 
scenarios presenting wide and varying rigidity floors may limit the applicability of their methodology. 

To date, the most common strategy has been to analyze signals in the absence of a structural behavior model. No research has been 
found on the application of multiple model-based measurement interpretation for multiple occupant localization using footstep- 
induced vibrations. 

Recent studies have proposed frameworks to identify indoor occupants recorded floor-vibrations induced by footsteps [40,44,49]. 
Poston et al. [49] have proposed a framework for real-time occupancy tracking that involved separating the floor into zones. Mir-
shekari et al. [40] has presented a framework for occupant localization that started by detecting event signals from floor responses. A 
classification module is then used to distinguish between footstep and non-footstep events. Footstep events are subsequently used to 
provide estimates of occupant locations. More recently, a similar framework has been proposed by Clemente et al. [44] to detect 
footstep-impact signals from spurious events using supervised-learning classification. In addition to footstep-event detection and 
classification, the framework included the detection of fall events, occupant localization and identity recognition. However, all of these 
frameworks are operational only for localizing single occupants on highly instrumented floors (a sensor per ~ 2 m2) [40,45] having 
uniform vertical rigidity (slabs on grade) [50,58]. Also, none of these studies proposed a framework to detect, count, and track more 
than one occupant walking simultaneously on large full-scale varying-rigidity floors (upper floors) using sparse sensing (a sensor 
per ~ 10 m2 at least). 

This paper contains a proposal for a framework for detection and tracking of building occupants using floor vibrations that are 
measured from sparse velocity-sensor configurations (one sensor per ~ 12 to 75 m2). The framework combines model-free approaches 
for occupancy detection, with structural behavior models for tracking. The framework brings together results reported in several recent 
papers by the authors [47,55,64] to create a coherent workflow of methods. The framework is then validated using two full-scale case 
studies. Occupant detection is carried out using structural information such as fundamental frequencies for supervised learning 
classifiers based on a support vector machine (SVM). A novel model-based methodology for accurate occupant tracking using error- 
domain model falsification (EDMF) [65] is proposed to alleviate the limitations of structural-model-free approaches. Accounting for 
systematic errors and model bias, EDMF combines information related to measured footstep event signals with simulated physics- 
based models to identify a population of candidate occupant locations [36]. Simulations model the dynamic responses of the floor 
that are induced by footstep impacts and they include real structural obstructions without introducing artificial masses. 

The paper starts with a presentation of the challenges in the interpreting vibration measurements (Section 2). Description of the 
occupant detection and tracking framework is presented in Section 3. Model-free occupant detection strategies are explained in Section 
4. Details of model-based multiple- occupant tracking strategies are described in Section 5. The application of the framework to a full- 
scale varying-rigidity floor slab (area of 100 m2) is described in Section 6. The utility of the model-based occupant-tracking meth-
odology is evaluated on another full-scale floor slab (area of 950 m2) in Section 7. Finally, in Section 8, results obtained from both case 
studies are discussed. 

2. Challenges interpreting vibration measurements 

Detecting the presence of occupants on a floor is challenging due to variations in rigidities of floor slabs and the presence of ob-
structions such as beams and walls [66]. Moreover, the dispersive nature of floor slabs creates variations in footstep-impact signatures 
at various floor locations [40]. This may result in footstep-impact events with low signal-to-noise ratios (SNR). 
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High levels of ambient noise undermine detection of events that have low SNR values [23]. A footstep-event signal that is recorded 
by a vibration sensor is compared with amplitude of ambient vibration (three standard deviations, 3σ) is presented in Fig. 1. Threshold- 
based detection using metrics, such as three standard deviation (3σ) limits, shown in Fig. 1 are not able to detect events when signal 
amplitudes do not exceed the ambient-vibration level. 

Floor-vibration measurements that are recorded by sensors can be caused by activities such as footsteps, closing of doors, moving of 
furniture and other interactions between occupants and the building space. The duration of dynamic structural responses to an impact 
event (event-signal duration) depends on the type of event and the walking gaits of occupants. Also, the propagation of Lamb waves in 
a dispersive medium that are induced by footstep impacts results in shape changes of the floor responses at sensors [40]. This behavior 
leads to distortion in the time-of-arrival of measured footstep-impact signals. This creates ambiguity in structural responses, both in 
amplitude and duration, which complicate occupant detection and tracking. 

Examples of signals that are induced by chair dragging, door closing and footstep events are shown in Fig. 2. For each event shown 
in Fig. 2, the duration of structural response recorded by the sensor is different. Chair dragging has larger noise and contribution from 
higher modes. Door closing excites somewhat lower and higher modes than footstep events. Footstep events are damped faster than 
door closing events. 

Footstep impacts of multiple people walking simultaneously may be fully synchronized (no time offset in the floor response), off- 
synchronized (varying time offset in the floor response), and staggered (floor response from each individual is separated) [50].Off- 
synchronized footstep events result in overlapping signals from multiple occupants walking simultaneously on a floor, which make 
occupant detection and tracking challenging. 

Walking gaits of occupants (and thus the impact on the floor) are affected by factors such as their anatomy, walking speed, shoe 
type, health and mood [67–69]. Since the same occupant may produce several walking patterns, there is inherent variability amongst 
footstep-impact signatures. 

An example of footstep-event signals recorded by the same sensor induced by an occupant walking at the same location is presented 
in Fig. 3. In Fig. 3a and b, the occupant walks at a slow speed and wearing soft (a) and hard (b) soled shoes. In Fig. 3c and d, the 
occupant walks at a fast speed and wearing soft (c) and hard (d) soled shoes. Change in walking speed and shoe type leads to a sig-
nificant variability in amplitudes of footstep-event signals from the same occupant. 

3. Framework for occupant detection, localization and tracking 

Steps that are part of the occupant detection and tracking framework are shown in Fig. 4. In view of the importance of floor-slab 
characteristics on vibration response as well as the significant walking-gait variability, as shown by Drira et al [55] and Section 2, this 
framework combines information on structural behavior and uncertainties from multiple sources to achieve accurate and precise 
detection and tracking of occupants. 

The framework starts with model-free approaches for the detection of footstep events and the determination of the number of 
occupants. These operations involve extracting event signals, from footstep and other spurious events, and then determining those that 
correspond to footstep events. After this, extracted footstep-event signals are used to count the number of walking occupants on the 
floor. Strategies that are involved in the model-free occupant detection strategies are discussed in Section 4. 

Event detection requires the understanding of structural characteristics such as the fundamental frequencies of the structure, which 
are estimated using ambient vibrations. Using structural information (frequency ranges that cover the first few vertical modes of the 
floor slab), event detection and subsequently signal extraction are carried out (see Section 4.1). Then, a supervised learning classifier 
based on a support vector machine (SVM) is used to distinguish between extracted footstep and non-footstep-event signals (see Section 
4.2). The footstep-event signals are then used to count the number of occupants on the floor using another SVM classifier (see Section 
4.3). 

The number of occupants is used to select appropriate model simulations for occupant localization as shown in Fig. 4. Occupant 
localization is carried out using a model-based approach for each detected footstep event. Model-based localization involves the 
combination of information from footstep-event signals with physics-based simulation models. Inferring potential structural behavior 
models from measurement data to localize occupants is an inverse engineering task. Systematic errors and high levels of biased un-
certainty from multiple sources mean that model-based approaches are ill-posed. Wrong behavior predictions may be obtained if single 
so-called “optimal” solutions are proposed. A model-based measurement interpretation approach that takes multi-source biased un-
certainties explicitly into account is required to find sets of locations of occupants. Error-domain model falsification (EDMF) is used 

Fig. 1. Footstep-event signals compared with ambient-vibration levels of three standard deviations (3σ) represented by dashed-dotted lines. Tri-
angles locate two footstep events. 
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[36,55,70]. 
EDMF is a model-based data interpretation approach that is applied to identify a population of possible locations of occupants. In 

this paper, the population of possible locations of occupants is referred to as a candidate-location set (CLS). Details of model-based 
occupant localization are described in Section 5.1. 

In Fig. 4, the CLS related to each succeeding detected event is then subjected to a sequential analysis based on information from the 
previously detected event to enhance the precision of occupant location for the current footstep event. Sequential analysis, as 
explained in Section 5.2, involves the assumption that the distance between two successive impact events cannot exceed a predefined 
step-length. 

Finally, the CLS of each detected event, resulting from sequential analysis, is investigated to determine possible trajectories. The 
trajectory-determination operation, as explained in Section 5.3, involves the assumption that occupants walk until reaching their 

Fig. 2. (a) chair dragging, (b) door closing and (c) footstep event signals. Event signals are recorded by the same sensor.  

Fig. 3. Footstep-event signals recorded by the same sensor from the same occupant walking at the same location. (a) and (b) the occupant walks 
with soft-and-hard-soled shoes at a slow speed. (c) and (d) the occupant walks with soft-and-hard-soled shoes at a fast speed. 

Fig. 4. Occupant detection, localization and tracking framework using footstep-induced floor vibrations.  
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destinations without backtracking. Once CLSs of all detected event signals are investigated, paths connecting remaining candidate 
departures with possible arrivals that define candidate locations are taken as candidate trajectories. 

4. Model-free occupant detection 

4.1. Event detection 

The first step of the framework involves detecting all possible events from floor vibrations and subsequently, extracting the relevant 
event signals as described in detail by Drira et al [47]. The event-detection strategy is intended to capture the occurrence times that 
contains prominent indications of possible events within the measurements. 

Occupants strike the floor differently. Their footsteps unequally activate several bending modes of the structure. Information from 
multiple frequency components of floor vibrations has potential to enhance the detection of events with low SNR values [37,47]. These 
frequency ranges contain the fundamental bending modes of the structure. Using ambient vibrations, prominent peaks in the first 
singular values of the cross-power spectral density (CPSD) [71] help delimit the range with most energy contribution. This range is 
then divided into at least four equivalent and overlapping frequency ranges to cover the fundamental vertical modes of the structure. 
Floor vibrations are then decomposed using continuous wavelet transform (CWT) [63] and reconstructed using inverse wavelet 
transform (IWT) at these frequency ranges in order to filter extraneous signal elements. 

Filtered floor vibrations are then segmented into windows with a length 0.2 s moving with an increment of 0.1 s. The duration of the 
moving window helps cover all possible walking frequencies [47,68]. The maximum standard deviation, comparing all sensors, 
STDmax,f (i), at a frequency range, f , as shown in Eq. (1), is used as metric to find abrupt variations in data due to possible footsteps. 

STDmax,f (i) = max
s

⎛

⎝

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Ns − 1

∑Ns

j=1

(
Si,s,f (j) − μi,s,f

)
2

√
√
√
√

⎞

⎠ (1) 

In Eq. (1), the signal, Si,s,f that is delimited by the segment number, i, is recorded by the sensor, s, and processed using CWT and IWT 
at frequency range, f . The number of data defining the signal segment, Si,s,f , is denoted as Ns. The mean value of the signal segment, Si,s,f , 
is denoted as μi,s,f . 

Similarly, ambient vibrations (no footstep activity) are decomposed at the same frequency ranges to establish detection thresholds 
(DTf ). DTf is defined using STDmax,f ,Sa values of filtered ambient vibrations (Sa) at frequency range (f) as shown in Eq. (2). For each 
frequency range, f , the maximum value of the resulting STDmax,f ,Sa values are taken to be a DTf . In Eq. (2), i is the signal segment index. 

DTf = max
i

(
STDmax,f ,Sa

)
(2) 

It has been shown that a local maximum resulting from STDmax,f values corresponds to a signal segment that contains prominent 
magnitudes (from all sensors) of an event signal [47,70]. Thus, local maxima within STDmax,f values that exceed DTf over at least one 
filtered signal indicate the occurrence times of possible events. Since the minimum time between two footsteps when an occupant 
walks at maximum speed of 2.5 Hz [68], each local maximum has to be defined within an interval of 0.4 s at least. Moreover, multiple 
occurrence times pointing to a same event may occur since times of local maxima resulting from STDmax,f values at each frequency 
range are not equivalent. In order to avoid extracting the same event signal twice, the event-occurrence time has to be greater than the 
ending time of the last extracted event signal. 

Starting and ending times of detected events are determined dynamically based on a filtered signal at frequency range greater than 
the first natural frequency of the structure that has been shown to provide better event delimitation in the time domain [37,47,70]. 
Thus, STDmax,f (Eq. (1)) values that are defined above the natural frequency of the floor slab are used as inputs for event extraction. A 
backward and forward search of STDmax,f values from the local maximum is carried out to determine the starting and ending times for 
each event. A local maximum is hence compared with its preceding and succeeding STDmax,f values to search for two local minima 
defining the signal segments that contain the starting and ending times of detected events. Subsequently, the sums of the absolute 
values of the amplitudes of the raw signal of all sensors are computed for the signals delimited by the determined segments. Minimum 
values of the resulting trends define the starting and the ending times of a detected event. These times also serve to extract the event 
signal separately for all sensor locations. Signal-extraction operation to determine dynamically the starting and ending times of each 
detected event signal at sensor locations is then applied as described in detail by Drira et al [47]. 

4.2. Event classification 

Floor vibrations are affected by indoor activities such as chair dragging and falling objects as well as external sources such as traffic 
and wind. These sources might produce vibration amplitudes that are similar to footstep-impact signals, as explained in Section 2. 
Thus, the next step of the occupant detection and tracking framework is event classification to distinguish between footstep and non- 
footstep event signals as described in details by Drira et al [47]. This is carried out using a supervised learning technique based on a 
support-vector-machine (SVM), which provides good performance with small training sets with respect to feature numbers compared 
with neural-network-based methods [24,72]. A binary-SVM classifier is trained with footstep and non-footstep events to improve 
accuracy and prevent miss-classification of spurious impulses when compared with one-class SVM. 
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Features are assessed in time and frequency domains to discriminate between footstep and non-footstep events [44]. This is due to 
the natural vibration modes of structures that affect the floor vibrations. Frequency-domain metrics include the frequency value that 
corresponds to the maximum of the first singular values of CPSD (see Section 4.1) of all sensors (FSVmax) and the centroid of first 
singular values of CPSD (CCPSD). Time-domain metrics include standard deviation (σ) and kurtosis (Kr) of event signals. Other metrics 
such as maximum difference in amplitudes (Δamp), root-mean-square (RMS) and median (Md) are found to be correlated with the σ and 
therefore excluded from the training process to avoid overfitting. 

Since events from various sources may have differentiable signal characteristics at different frequency ranges, time-domain metrics 
are assessed for filtered event signals at various frequency ranges using CWT. The frequency band characterizing the vibration sensors 
is divided into equivalent ranges with an overlap to cover signal components with low and high frequency ranges. The size of each 
frequency range is fixed using engineering judgment [47]. The maximum and the average values of all sensors are evaluated for all 
time-domain metrics. 

Time-domain metrics assessed at specific frequency ranges that maximize the discrepancy between footstep and other events are 
selected as features for classification. In order to select the appropriate frequency ranges for each time-domain metric, independent 
statistical testing is used. This is carried out using null-hypothesis based on the Kolmogorov-Smirnov test [73] that estimates the 
discrepancy level between footstep and non-footstep populations for each time-domain metric and for each frequency range [47]. 
Thus, for each time-domain metric, the frequency range that has the highest discrepancy level between footstep and non-footstep 
populations is selected. 

4.3. Occupant counting 

Footstep-event signals can originate from one or multiple people walking together on the floor slab as presented in Section 2. The 
next step of the occupant detection and tracking framework is the determination of the number of occupants on the floor. The occupant 
counting operation is carried out using a multi-class SVM classification as described in detail by Drira et al [47]. 

The resulting floor vibrations include a superposition of the structural responses from multiple occupants walking at their own 
speed on their trajectories. In addition, footstep-induced floor vibrations at sensor locations are further altered by the structure and 
depend on footstep locations [55,70]. Although floor vibrations are influenced by the structure and even though there is often no 
reliable relationship between amplitudes and proximity, the highest amplitudes at sensor locations are generally recorded when 
footstep impacts are very close [47,55,70]. Thus, cross-correlation coefficients between event signals at all sensor locations are used as 
features to train the multi-class SVM classifier. The cross-correlation coefficient matrix is calculated based on the Pearson linear- 
correlation method [74]. 

In addition, standard deviation (σ) values of event signals recorded at each sensor location and maximum CPSD of all sensors are 
used as features to increase the classification performance to determine the number of occupants walking on the floor [47]. It has been 
shown that σ values and maximum CPSD of event signals are correlated to the impact force induced by footsteps at a sensor [38] and 
have higher magnitudes induced by multiple occupants than values from single occupants [70]. 

5. Model-based occupant tracking 

The model-based occupant tracking methodology is intended to identify possible locations of either a single occupant or multiple 
occupants walking simultaneously on a floor slab. This methodology presents the final step of the occupant detection and tracking 
framework, Section 3. This methodology accounts for uncertainties from multiple sources to achieve accurate and precise tracking of 
occupants. 

Measured and simulated footstep-event signals are inputs of the model-based occupant localization operation. The number of 
occupants is used to select the appropriate model simulations for occupant localization as shown in Fig. 4. Explicitly accounting for 
uncertainties from multiple sources using error-domain model falsification (EMDF) as presented in detail by Drira et al [36,55,75], 
measured footstep-event signals are compared with the selected impact simulations at possible locations. Impact locations that do not 
contradict measured floor response define a candidate-location set (CLS). This operation is carried out separately for each footstep- 
event signal. Subsequently, resulting CLSs of event signals induced by a signal occupant or multiple occupants are used to deter-
mine possible trajectories. Further details on model-based occupant localization are presented in Section 5.1. 

Possible departure/arrival points are defined prior to sequential analysis (Section 5.2) trajectory-determination (Section 5.3) 
operations as inputs. Candidate locations (CLs) resulting from the first detected event help determine candidate departures (starting 
locations). Departure points that do not contain CLs within a radius of twice the distance between the two footsteps (i.e. step length) 
are rejected. Departure points that are not rejected are taken to be candidate departures. 

Prior observations reveal that step length is found to vary between approximately 60 cm and 90 cm with respect to the walking- 
speed level (from slow to fast walking) [68,76,77]. In this paper, an average step length of 75 cm is chosen for model simulations. This 
step length is used for a sequential analysis to enhance the precision of resulting CLSs (Section 5.2). CLSs associated with possible 
departures are then used to determine possible trajectories of each occupant (Section 5.3). 
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5.1. Occupant localization using model-based approach 

5.1.1. Single occupant 
Floor vibrations that are induced by occupants walking individually are found to be independent from the consecutive footstep 

event [36,40]. Thus, footstep-impact simulations for a single occupant are carried out separately using a grid of predefined possible 
locations. The distance between two possible locations is fixed to be equal to the average step length (75 cm, see Section 5). In this 
paper, these predefined possible locations are referred to as initial location set and they are represented by dots in Fig. 5. 

Model simulation results and measurement values are affected by uncertainty from several sources [36,55,75]. Common modeling 
uncertainties are related to model assumptions, such as idealized boundary conditions, and omissions. Also, unknown model pa-
rameters and an idealized footstep-impact load function contribute to the total modeling uncertainty. In the context of occupant 
localization, the natural variability in walking gaits significantly contributes to the variability in floor-vibration measurements [55] 
(see Section 2). These variations are influenced by occupant anatomy, walking speed, shoe type, health and mood [55]. Modelling and 
measurement uncertainties are estimated based on previous work, engineering judgment and prior floor-vibration measurements 
[36,55,75]. 

For occupant-localization applications, parameters to be identified (θ) as shown in Eq. (3), are x and ycoordinates of possible 
occupant locations on the floor slab as shown in Fig. 5. Using EDMF, location instances are falsified when residuals between measured 
(ml,e) and simulated (gl(θ)) responses lie outside the predefined thresholds that are represented by dashed lines in Fig. 5. Localization 
thresholds, denoted as Thigh,l,e and Tlow,l,e in Eq. (3), are determined from the combined uncertainty distribution (Uc,l in Fig. 5) and a 
target reliability of localization that is fixed at 95 %. 

Tlow,l,e ≤ gl(θ) − ml,e ≤ Thigh,l,e∀l ∈ {1, .., nm} (3) 

Given an initial location set, for each detected footstep event (e), all location instances whose residuals lie inside the localization 
thresholds (Tlow,l,e and Thigh,l,e) at each sensor location (l) are accepted and form the candidate-location set (CLS) as represented by the 
encapsulated dots in Fig. 5. Together, these model instances are the CLS that includes the real location of a footstep event (see real 
footstep location in Fig. 5). Candidate locations (CLs) are generated for each detected footstep event. 

The identification of position vector θ (x and y coordinates) of occupants is not computationally expensive since measured footstep- 
event signals are compared with pre-simulated vibrations from footstep impacts at a grid of possible locations. This allows repeated use 
of the same simulation results for multiple comparisons with all measured footstep-event signals. Model falsification thus enables a 
near-real-time localization of occupant footsteps. EDMF provides a population of possible locations. All CLs are assumed to be equally 
probable due to the lack of information of the true uncertainty distributions. Finally, since EDMF is a constrained satisfaction pro-
cedure, there are no difficulties associated with convergence as there may be with conventional optimization methods. Superposition 
of simulations also result in low computational costs for more than one occupant. This is described in the next section. 

5.1.2. Two occupants 
In full-scale applications, multiple people walk regularly at the same time on the same floor-slab. The resulting floor-vibration 

measurements include a superposition of the structural responses from multiple occupants walking with their own speed on their 

Fig. 5. Occupant localization using error-domain model-falsification (EDMF) starts with an initial location set. Model simulations are compared 
with measured response in order to identify candidate locations among the initial population. Threshold boundaries are derived from combined 
uncertainties. Model instances are falsified when the residual value between simulations and measurements exceeds thresholds at any 
sensor location. 
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respective locations. Footstep impacts of multiple people may be either fully synchronized, off-synchronized or staggered, as described 
in Section 2. 

Unlike military marching, the footstep impacts of multiple people walking simultaneously are usually off-synchronized. This results 
in overlapping signals with varying time-offsets in floor responses. To a lesser extent, footstep impacts from multiple occupants may 
also be staggered, leading to separate floor responses from each individual. 

A graphical representation of floor responses resulting from two occupants (O1 and O2) walking together on a floor slab is pre-
sented in Fig. 6. In Fig. 6, dots represent the footstep-impact locations related to the two occupants. The circled signals on top of Fig. 6 
represent floor responses that are induced by each occupant walking separately at a same speed level (i.e. walking frequency). In this 
representation, both signals are assumed to have a similar duration (D = 1/walking frequency). 

In Fig. 6a and b, two scenarios, in which footstep impacts from occupants O1 and O2 are off-synchronized are presented. The 
resulting floor responses recorded at the sensor location (S) are generated considering two time-offsets: one-third (a) and two-thirds (b) 
of the impact duration (D). In Fig. 6c, the scenario when the two footstep impacts are staggered is presented. The floor responses 
induced by off-synchronized footstep impacts as shown in Fig. 6a and b results in overlapping signals. However, staggered footstep 
impacts result in a succession of impact signals that are contributed by each occupant. 

A similar strategy that is used to localize single occupants, as explained in Section 5.1.1, EDMF is carried out to identify possible 
locations of two occupants walking simultaneously on a floor slab. Using EDMF, simulated and measured floor responses induced by 
the two occupants are compared. Footstep-impact simulations for two occupants are generated following three steps. 

Initially, the footstep impacts of a single occupant are simulated using a grid of predefined possible locations using a finite-element 
model. A moderate walking speed of 1.6 Hz (impact duration of 0.625 s) is maintained during simulations since the variability in gaits 
due to change in speed level during walking tests is accounted for the combined uncertainty for localization (see Section 5.1). 

Subsequently, using the initial location set, all possible location combinations, resulting from two occupants, are generated. Then, 
two time-offsets: one-third (0.2 s) and two-thirds (0.4 s) of a footstep-impact duration are used to superpose contributions from each 
occupant at each possible location, see Fig. 6a and b. These time offsets are chosen based on prior observations of measured vibrations 
from two occupants walking together. A fixed duration of 0.625 s of the superposed signals is investigated for localization. Moreover, 
simulations from a single occupant are included in the initial model instances to account for staggered footstep events, see Fig. 6c. 

5.2. Sequential analysis 

Occupant-localization using model falsification (Section 5.1) may be enhanced by a sequential analysis as presented in Fig. 4. 
Sequential analysis for footstep-impact localization involves the assumption that a person walks continuously with a fixed step length. 
This behavior is tested for all CLSs related to each succeeding detected footstep-event based on information from the previously 
detected event. 

A graphical explanation of the sequential analysis is presented in Fig. 7. The size of the CLS at each detected footstep event is further 

Fig. 6. Floor vibrations resulting from two occupants walking together. (a and b) two scenarios when footstep impacts are off-synchronized. The 
resulting floor responses recorded at sensor location regarding two time-offsets: one-third (a) and two-thirds (b) of a footstep-impact duration. (c) 
scenario when footstep impacts are staggered. 
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reduced using information from the previously detected event. In Fig. 7, each CL of current detected event (s), represented by squares, 
is compared with all CLs of the previously detected event (s − 1) that are represented by dots. 

When the minimum distance between a CL of current detected event (CLs) and all CLs of a previously detected event (CLSs− 1) is 
higher than the pre-defined distance between two footsteps, the CLs is rejected as represented by diamonds in Fig. 7. Assuming that a 
person carries on walking until reaching their destination, information from previous footstep events helps reduce the size of the CLSs. 

The sequential analysis is repeated separately, for each CLS that is allocated to each candidate departure, from the previously 
detected footstep event as described in Section 5. This operation is mathematically expressed by the following equation: 

min
(
‖CLs − CLSd,s− 1‖2

)
. > Steplength, ∀d ∈ {1, .., nd} (4) 

In Eq. (4), A CL of a current detected event (CLs) is rejected when its minimum distance to all CLs related to a candidate departure of 
a preceding event (CLSd,s− 1) exceed the predefined step length.nd denotes the number of remaining candidate departure from a pre-
viously detected event. CLS of each footstep event related to each candidate departure is subsequently used to determine possible 
occupant trajectories as explained in the next section. 

5.3. Trajectory determination 

Occupants are often in motion, thus determining their trajectories has the potential to provide valuable information related to 
occupied regions on the time history. This information helps optimize important functionalities such as energy management, and 
security enhancement. 

Trajectory determination involves the assumption that occupants walk until reaching their destinations without backtracking. The 
determination of the possible trajectories starts with considering all potential departure/arrival points (see Fig. 4) as possible de-
parture spots based on the resulting CLS from the falsification process on the first captured footstep event (see Section 5.1). As 
explained in Section 5, when a departure point contains at least one CL within a radius of twice the distance between two footsteps, all 
possible trajectories corresponding to this candidate departure are taken into account. Hence, CLs of the first detected event provides 
all possible paths that occupants can take. 

Additional detected events provide further information on paths taken from the candidate departures. CLSs related to possible 
departures of each new detected event are subjected to the sequential analysis as explained in Section 5.2. Resulting CLSs are then 
investigated to determine the possible trajectories of occupants. 

In Fig. 8, a graphical representation of the trajectory-determination operation is presented. In Fig. 8, crosses represent possible 
departure/arrival points. CLs resulting from a sequential analysis are represented with squares, whereas the circle is the CL that is 
rejected using the trajectory determination. Simple dots are falsified locations. 

In Fig. 8, a CL that corresponds to a possible departure (D) is rejected when its distance with at all possible arrival points (Aa) is not 
reduced. This operation can also be expressed mathematically by the following equation. 

{
‖CLd,s − Aa‖2 − ‖D − Aa‖2

}
a∈{1,..,na} ≥ 0, ∀d ∈ {1, .., nd} (5) 

In Eq. (5), a CL that corresponds to a possible departure (D) is denoted as CLd,s.na denotes the number of possible arrival points. This 
analysis is performed sequentially, as each CLS needs to contain locations for which the distance to at least one arrival point is reduced 
with respect to CLS of the previous footstep event. When CLs that correspond to a candidate departure are falsified, related trajectories 
are rejected. Once CLSs of all detected event signals are investigated, paths connecting remaining candidate departures with possible 

Fig. 7. Sequential analysis is applied for each CLS of each footstep event resulting from EDMF. Based on information from the previously detected 
footstep event, sequential analysis reduces the population of the resulting CLs. 
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arrivals that define CLs are taken to be candidate trajectories. This also ensures path continuity. 

6. Case-Study 1 

6.1. Description 

The full-scale case study to evaluate the occupant detection and tracking framework is a floor slab of a seminar room in a multi- 
story building. The slab is a part of an office environment at university laboratory. The floor slab covers a surface of approximately 

Fig. 8. A CL that corresponds to a possible departure (D) is falsified when its distances with all possible arrivals (Aa) do not reduce the distance of 
the corresponding departure with all possible arrivals. 

Fig. 9. Bi-directional trajectories of single occupants walking along five trajectories are used for testing. The same trajectories are used for two, 
three, four and five occupants walking simultaneously. 
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100 m2. 
The floor is composed of a reinforced concrete slab supported by steel beams, as shown in Fig. 9. The reinforced concrete slab is 

20 cm thick covered by a linoleum finishing. The steel frame includes five H-beams (HEA 400 and HEB 400) and 12 I-beams (IPE 330). 
The floor is supported by six steel columns. The east end and upper half of the west end of the slab are connected to the remaining part 
of the structure (continuity of the floor slab). A non-structural wall made of plasterboard is above the structure on the east end. The 
lower half of the west end and the south end of the slab are connected to prefabricated reinforced concrete structural walls. The 
remaining parts (upper half of the west end and the north end) of the slab are joined to structural masonry walls. 

The floor slab of Case Study 1 was instrumented with eight uni-directional velocity sensors (SM-24) and an acquisition unit (NI 
USB-6003), which is used to capture vibrations at a sampling rate of 1000 Hz. Sensor locations are chosen to cover approximatively the 
entire space of the floor slab (a sensor per ~ 12 m2). Sensors S1, S4 and S6, in Fig. 9, are placed close to separation walls to increase the 
understanding of the support conditions. The remaining sensor positions (S2, S3, S5, S7 and S8 in Fig. 9) are placed where the dynamic 
responses of the first few vertical bending modes of the structure are dominant. 

Walking tests are carried out for five people (O1 to O5 in Table 1) walking individually along a Trajectory #1 (see Fig. 9) to test the 
event detection and classification strategies, as described in Section 4. These measurements are taken for occupants walking along the 
trajectory without fixing the precise impact locations, without fixing the number of steps and without fixing the walking speed. All 
measurements are repeated several times and recorded by sensors S2, S5 and S8. Information related to occupant weights are listed in 
Table 1. Details of the number of walking tests for each occupant (O1 to O5 in Table 1) are given in Table 2. Using the same sensor 
configuration (S2, S5 and S8), vibrations are recorded for other activities, such as book-dropping, chair-dragging, hand and mug 
impacts on a table as well as opening and closing of doors. 

Additional walking tests are recorded for occupants O1 and O5 to O8 (see Table 1) walking individually on the floor slab and 
following trajectories #2 to #6 (both directions; back and forth) as illustrated in Fig. 9. These new measurements are recorded on 
another day compared with the previous ones. All measurements are repeated several times and recorded by all sensors (see Fig. 9). 
Details of the number of walking tests for each occupant (O1 and O5 to O8 in Table 1) are presented in Table 2. All occupants walk 
while wearing various types of shoes (with either hard, intermediate or soft soles). 

Measurements are recorded for two, three, four and five occupants walking simultaneously following five trajectory configurations 
(both directions; back and forth), as explained in Table 2. These trajectories are repeated ten times. During these walks, the occupant 
moves with self-selected step lengths and speeds. The walking speed (in terms of steps per second) is estimated using measurements to 
be between 1.5 Hz and 1.8 Hz. 

Tests of single and multiple occupants following all trajectory configurations (both directions, as shown in Table 2) recorded by 
Sensor S2, S5 and S8 are used to test the event classification strategy described in Section 4.2. In addition, vibrations recorded by all 
sensors are used to test the occupant-counting strategy described in Section 4.3. 

Tests that are conducted by Occupant O1 walking individually along trajectory configurations #6 to #10 in Table 2) are used for 
the application of model-based occupant tracking strategy described in Section 5. During these walks, Occupant O1 wears hard-soled 
shoes and walks at a moderate speed of approximately 1.6 Hz. 

Prior modal analysis using ambient vibration measurements have revealed that the modes of the floor slab with most energy 
contribution to vertical bending have frequencies between 15 and 40 Hz [55]. Estimates of the fundamental bending modes of the 
structure are at frequencies 15.5 Hz and 24 Hz. 

6.2. Event detection 

For event detection, low-frequency components of measurements are incorporated to determine the occurrence time of possible 
events as explained in Section 4.1. The frequency band, 15–40 Hz, that contains the modes with most energy contribution to vertical 
bending of the floor slab (see Section 6.1) is divided into equivalent frequency ranges of 10 Hz with an overlap of 5 Hz. Thus, vibration 
measurements from the floor of the seminar room are decomposed into frequency ranges of 15–25 Hz, 20–30 Hz, 25–35 Hz and 
30–40 Hz. These decompositions help focus on the frequency components that are influenced by impact events. 

Event detection is successfully tested for its ability to detect more than 24,000 footstep and non-footstep events on the floor of the 
seminar room. For example, undetected events and incorrectly detected events are less than 1 % of the number of footstep events (1854 
footstep impacts), as presented in Table 3. Footstep-event signals are extracted from the uncontrolled measurement following tra-
jectory configurations #1 to #5 (see Fig. 9). 

Table 1 
Occupant weights for measurements.  

Occupant Weight (Kg) 

O1 92 
O2 70 
O3 87 
O4 67 
O5 58 
O6 75 
O7 70 
O8 72  
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Incorrect detection is due either to the presence of additional local maxima in STDmax,f values or incorrect signal extraction. These 
additional local maxima in STDmax,f values result in extra vibrations in the dynamic response of event signals. Extra vibrations from 
external sources result in incorrect determination of the ending time of detected event signal (see Section 4.1). Since each trajectory is 
composed of several footsteps, this detection accuracy of 99% is sufficient. By combining information from decomposed signals at 
several frequency ranges, the event detection strategy successfully reduces false negatives (undetected events) compared with using 
one frequency range, leading to accurate event detection. 

6.3. Event classification 

Following event detection, the next step involves differentiating between footstep and non-footstep events using the extracted 
signals (see Fig. 4). A binary-SVM (see Section 4.2) learning approach is used to differentiate footstep events from spurious (non- 
footstep) events. Binary-SVM classifier performance is compared with k-nearest neighbors (KNN) [46,78,79] and boosted tree (BT) 
[80,81] classifiers. 

Good feature selection is important in order to ensure high classification performance. The use of appropriate features from event 
signals allows the learning algorithm to capture important patterns in the input data and to construct an efficient prediction model (see 
Section 4.2). Apart from frequency-domain metrics (FSVmax and CCPSD), time-domain metrics are calculated for sensors S2, S5 and S8 
(see Fig. 9) at various frequency ranges. All event signals are decomposed using CWT and reconstructed using IWT at equivalent 
frequency intervals of 20 Hz with an overlap of 10 Hz (see Section 4.2). This covers the frequency band, 10–240 Hz, of vibration sensors 
used to instrument the floor slab (see Section 6.1). 

Time-domain metrics at specific frequency ranges that maximize the discrepancy between footstep and non-footstep event classes 
are selected as features for classification using null-hypothesis tests, as explained in Section 4.2. Based on independent footstep and 
non-footstep event signals, the features that are found to be useful in separating footsteps from other events are presented in Table 4. 

The data set is composed of 2957 footstep events from single and multiple occupants walking simultaneously and 430 non-footstep 
events. Non-footstep events include book-dropping, chair-dragging, hand and mug impacts on a table, opening and closing of doors as 
well as jumps. The data set is randomly split into 75 % for training and 25 % for validation. This defines a supplementary validation 
regarding the event classification for the same case study presented by Drira et al [47]. 

The performance scores including accuracy, precision, recall and F1 of the SVM classifier, which is compared with KNN and BT 
classifiers are presented in Table 5. A Gaussian kernel is used to train the binary-SVM classifier since it provides better performance 
compared with other kernels. Classification performance of each model that is trained using raw and decomposed signals at selected 

Table 2 
Trajectory combinations for one (grey fields) and multiple occupants walking simultaneously on the floor of the seminar room. O is occupant, T is 
trajectory and X is arrival and departure points (see Fig. 9).  

Configuration Occupant/Trajectory Number of tests 

1 O1: T1 from X2 to X2 19 
2 O2: T1 from X2 to X2 13 
3 O3: T1 from X2 to X2 16 
4 O4: T1 from X2 to X2 9 
5 O5: T1 from X2 to X2 9 
6 O1: T2 from X1 to X7 6 
7 O1: T3 from X3 to X4 6 
8 O1: T4 from X6 to X1 6 
9 O1: T5 from X2 to X5 6 
10 O1: T6 from X7 to X2 6 
11 O7: T5 from X2 to X5 10 
12 O8: T5 from X2 to X5 10 
13 O8: T5 from X2 to X5 10 
14 O5: T5 from X2 to X5 10 
15 O6: T2 from X1 – O7: T5 from X2 10 
16 O6: T3 from X3 – O1: T6 from X7 10 
17 O6: T2 from X1 – O5: T3 from X3 – O1: T4 from X6 10 
18 O6: T2 from X1 – O5: T3 from X3 – O1: T4 from X6 – O7: T5 from X2 10 
19 O6: T2 from X1 – O5: T3 from X3 – O1: T4 from X6 – O7: T5 from X2 – O8: T6 from X7 10  

Table 3 
Number of undetected and incorrectly detected events for the tested trajectory of single occupants walking on the floor of the seminar room along 
Trajectory #1 (see Fig. 9).  

Occupant Average number of events per test Total number of events Undetected events Incorrect detection 

O1 28 526 0 0 
O2 28 379 1 1 
O3 28 449 0 2 
O4 28 242 0 1 
O5 28 258 1 6  
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frequency ranges using the null-hypothesis tests is also included for comparison. 
The accuracy is defined as the number of correct predictions divided by the total number of predictions. The accuracy score is 

calculated using Eq. (6) where TP is number of true positives (the truth is positive, and the test predicts a positive), TN is the number of 
true negatives (the truth is negative, and the test predicts a negative), FP is the number of false positives (the truth is positive, while the 
test predicts a negative) and FN is the number of false negatives (the truth is negative, while the test predicts a positive). 

The precision is the proportion of the correct classifications (TP) from all predicted positive cases (TP + FP). The precision score is 
calculated using Eq. (7). Recall is the proportion of the correct classifications (TP) from the number of positive cases (TP + FN). The 
recall score is calculated using Eq. (8). The F1score is the overall performance metric that reflects the classifier model’s ability to 
distinguish between classes. The F1 score is calculated using Eq. (9). 

Accuracy =
TN + TP

TP + TN + FP + FN
(6)  

Precision =
TP

TP + FP
(7)  

Recall =
TP

TP + FN
(8)  

F1 = 2
Precision*Recall

Precision + Recall
(9) 

Type I and II errors are used for further comparison of classification approaches. Type I error is the rate of footstep events that are 
identified as non-footstep events. Type II error is the rate of non-footstep events that are identified as footstep events. 

In Table 5, the binary-SVM classifier, trained using raw footstep-event signals from single and multiple occupants walking 
simultaneously, provides similar overall performances compared with KNN and BT classifiers. For example, the overall performance as 
defined by F1 score (see Eq. (9)) exceeds 97 % in most cases. However, all classifiers have type II errors (more than 19 %). Thus, using 
raw signals for training leads to non-reliable classifiers that are unable to distinguish spurious events from footstep events. 

Binary-SVM, KNN and BT classifiers, trained using decomposed event signals (from single and multiple occupants walking 

Table 4 
Metrics that maximize the discrepancy between footstep 
and non-footstep event classes are selected as features for 
classification. Null-hypothesis tests of each time-domain 
metric (assessed at various frequency ranges) have been 
conducted to select the frequency ranges that best differ-
entiates footsteps from other events.  

Feature Frequency range 

σ(mean)  10–30 Hz 
σ(mean)  70–90 Hz 
Kr(maximum)  50–70 Hz 
Kr(mean)  90–110 Hz 
CCPSD  All frequencies 
FSVmax  All frequencies  

Table 5 
Classification performance, based on validation test (25 % of data set), to distinguish between footstep events (single and two to five occupants 
walking simultaneously) and non-footstep events. Performance of classifiers that are trained using raw and decomposed signals at selected frequency 
ranges using the null-hypothesis tests is included for comparison.    

SVM KNN BT 

Raw signals Accuracy (%)  95.2 95.7 96.9 
Precision (%)  95.5 96.2 97.2 
Recall (%)  99.1 99.1 99.3 
F1(%)   97.3 97.6 98.3 
Error I (%)  1.0 1.0 0.7 
Error II (%)  30.9 26.4 19.1 

Decomposed signals (CWT) Accuracy (%)  98.8 98.2 98.2 
Precision (%)  99.1 98.5 99.1 
Recall (%)  99.6 99.5 98.9 
F1(%)   99.3 99 99 
Error I (%)  0.4 0.5 1.1 
Error II (%)  6.4 10.1 6.4  
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simultaneously) using CWT and IWT at selected frequency ranges, provide a marginal improvement of prediction performances 
compared with those assessed with raw signals. All performance scores, including accuracy precision, recall and F1 score (see Eq. (6) 
to (9)), exceed 98 %. 

Moreover, as shown in Table 5, feature selection using null-hypothesis tests at various frequency ranges have led to significant 
reduction of type II error. Therefore, event-classification performance is enhanced by selecting appropriate frequency components of 
vibration measurements. Event classification using binary-SVM is less sensitive to type I and type II errors compared with KNN and BT 
classifiers. Thus, the binary-SVM classifier provides better event classification than KNN and BT classifiers. 

6.4. Occupant counting 

Differentiating between the number of occupants walking on the floor of the seminar room is achieved using a SVM classifier, as 
explained in Section 4.3. Cross-correlation coefficients between signals measured at various sensor locations from a same footstep 
event are used as features to train the SVM classifier. Apart from cross-correlation coefficients, standard deviation (σ) values of event 
signals recorded at each sensor location and maximum CPSD of all sensors are used as features to enhance the performance of the 
occupant-counting strategy [47]. 

Occupant counting has been tested with footstep-event signals from five participants (O1 and O5 to O8 in Table 1) that have been 
walking individually and together including two, three, four and five occupants and following multiple trajectories (see Table 2). 
Occupant-counting classification is performed using three classification strategies to differentiate between: 1) one and more than one 
occupant, 2) one and two occupants and 3) one, two, three, four and five occupants. When the first and the second classification 
strategies are used to count the number of occupants, they are developed using a binary-SVM classifier on raw footstep-event signals. 
This study provides a supplementary validation for results from another case study presented previously by Drira et al [47]. The third 
classification strategy is developed using a multi-class SVM classifier. SVM classifiers to determine the number of occupants are trained 
based on several kernels, including linear kernel, Gaussian kernel, third-and-fourth degree polynomial kernels. The third-degree 
polynomial kernel provides best classification performance compared with other kernels. 

Binary-SVM classifier performance is compared with KNN and BT classifiers, in Table 6. The data set for the first model includes 
1129 footstep events from single occupants and 695 events from more than one occupant (two to five occupants) walking together. The 
data set for the second model includes 1129 footstep events from single occupants and 256 events from two occupants walking 
together. The data set for each classifier is randomly split into 75 % for training and 25 % for validation. 

Accuracy, precision, recall and F1 scores, calculated using Eq. (6) to Eq. (9) are presented in Table 6. These metrics help to assess 
the performance scores for each classifier using raw footstep-event signals. Also, type I error that defines the rate of one occupant 
classified as more than one occupant and type II error that defines the rate of more than one occupant classified as one occupant are 
used for further comparison between classification approaches. 

Based on validation test (25 % of data set), the binary-SVM classifiers are able to differentiate between the presence of either one, 
more than one occupant or two occupants with performance scores exceeding 93 % as shown in Table 6. Binary-SVM classifiers provide 
better performance scores (average increase of 5%) than KNN and BT classifiers. For example, the overall prediction performances 
defined by F1 score of the first and the second models are equal approximately to 95 % and 97 % for SVM, 87 % and 93 % for KNN and 
89 % and 94 % for BT classifier (see Table 6). 

Significantly fewer type II errors (two occupants or more than one occupant are classified as one occupant) are produced using SVM 
(13 % and 17 %) compared with KNN (33% and 42%) and BT classifiers (29% and 36%). Type I error is also lower when using SVM 
classifier compared with KNN and BT. Using cross-correlations between footstep signals, standard deviation (σ) values of event signals 
recorded at various sensors and maximum CPSD of all sensors as features provide important classification performance to distinguish 
between the presence of either one or more than one occupant, also either one or two occupants. 

Performance of the multi-class SVM classifier (classification strategy 3) to determine the number of occupants (up to five) are also 
compared with KNN and BT classifiers as illustrated in Table 7. The data set for the third model includes 1129 footstep events from 
single occupants, 256 events from two occupants, 143 events from three occupants, 153 events from four occupants and 143 events 

Table 6 
Classification performance, based on validation test (25 % of data set), to distinguish between two classification strategies: 1) one and more than one 
occupant and 2) one and two occupants on the floor of the seminar room (see Fig. 9).    

SVM KNN BT 

1) One or more than one occupant Accuracy (%) 93 82  84.9 
Precision (%) 93.1 83.6  85.4 
Recall (%) 96.3 89.9  92.6 
F1 (%) 94.7 86.6  88.8 
Error I (%) 3.7 10.1  7.4 
Error II (%) 13.1 32.5  29.4 

2) One or two occupants Accuracy (%) 94.2 87.6  90.2 
Precision (%) 96.1 90.8  92.2 
Recall (%) 96.8 94.3  96.1 
F1 (%) 96.5 92.5  94.1 
Error I (%) 3.2 5.7  3.9 
Error II (%) 17.2 42.2  35.9  
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from five occupants walking together. The data set for each classifier is randomly split into 75 % for training and 25 % for validation. 
Using validation testing (25 % of data set), the multi-class SVM classifier is able to differentiate between the number of occupants 

(up to five occupants) with an average accuracy of approximately 84 % as shown in Table 7. The multi-class SVM classifier provides 
better average performance scores (average increase between 12 % and 39 %) than KNN and BT classifiers. 

The normalized confusion matrix of five-occupant counting resulting from the multi-class SVM classifier is shown in Table 8. The 
normalized values define the proportion of correct classifications of the number of occupants from all participants (i.e. recall score in 
Eq. (8)). 

It can be observed in Table 8, that the multi-class SVM classifier is able to differentiate between one and more than one occupant 
with a high recall score of 96.5 %. Similar results are found for the binary-SVM classier as shown in Table 6. The multi-class SVM 
classifier is also able to determine the number of five occupants walking on the floor with a significant recall score of 80.6 %. However, 
the counting classifier results in low-performance scores for two, three and four occupants. For example, the determination of two 
occupants walking together on the floor is confused with one occupant ~ 23 % of the time. The number of three occupants on the floor 
is confused with one and two occupants, ~20 % and ~ 23 % of the times, whereas, the number of four occupants is confused with five 
occupants ~ 26 % of the time. 

To conclude, using cross-correlation coefficients between event signals at all sensor locations, standard deviation (σ) values of event 
signals at each sensor location and maximum CPSD of all sensors as features improves the performance of the classifier for dis-
tinguishing between the presence of either one or up to five occupants on the floor. The occupant-counting strategy is successfully 
validated for two full-scale floor slabs. 

6.5. Occupant tracking 

Tracking of a single occupant is achieved using the model-based approach that is described in Section 5. Eight departure/arrival 
points are fixed for this case study, denoted by crosses (X1 to X8) in Fig. 9. These points lead to 56 possible trajectories. Vibration 
measurements are conducted by Occupant O1 walking along trajectories #2 to #6 (both directions; back and forth) as presented in 
Table 2 (Configurations #6 to #10). Walks along these trajectories are repeated six times. Footstep-impact simulations are generated 
using a finite element model of the floor slab, as described in Section 6.5.1. The simulation results are used in the application of model- 
based occupant localization using EDMF (see Section 5.1). 

6.5.1. Model predictions 
For the application of occupant localization using a model-based approach, as explained in Sections 5, physics-based models are 

incorporated in the interpretation of vibration measurements to identify occupant locations. Footstep-impacts are simulated using a 
finite element of the floor slab of the case study. Linear modal superposition is used to calculate the dynamic response caused by 
footstep impacts using ANSYS [82]. 

The finite element model of the floor slab is modeled using shell elements (SHELL181) and beams are modeled as beam elements 
(BEAM188). Beam elements are assumed to be fully connected to the shell elements. Also, columns are modeled as simple supports (see 
Fig. 9). The elastic moduli for the steel and the concrete slab are taken to be 210 and 35 GPa. 

Due to incomplete knowledge of boundary conditions of the floor slab, the separation walls (see Fig. 9) are modeled using 
translational zeros-length springs in the vertical direction (COMBIN14). Four spring elements are used in the finite element model to 
describe the upper half of the west end of the slab (masonry wall), the lower half of the west end and the south end of the slab 
(reinforced concrete walls), the east end of the slab (plasterboard walls), and the north end the slab (masonry wall that is connected to 
a concrete staircase), see Fig. 9. 

Stiffness values of these springs are estimated based on a prior sensitivity analysis. The Latin-hypercube sampling approach [83] is 
used to generate 500 spring-stiffness values from sufficiently small to sufficiently large. Values of each spring element are varied at a 
time using modal analysis simulations. This analysis results in an s-shaped function of the fundamental frequency as a function of each 
spring stiffness. The stiffness values between freely supported and completely fixed of all spring elements are 316 N/mm, 631 N/mm, 
1259 N/mm and 200 N/mm respectively. 

A load model, in the time domain as illustrated in Fig. 10, that approximates a typical vertical ground-reaction force (VGRF) due to 
a footstep is applied to the finite element model at possible locations [55,70,75]. After excluding the occupied space by the small 
library in the room (see Fig. 9), 90 % of the floor slab is divided into a grid of possible locations. The distance between two possible 
locations is assumed to be 37.5 cm (half of the assumed step length), leading to 612 possible footstep locations. 

The load model, in Fig. 10, defines the three phases of the VGRF: 1) the heel phase, 2) the heel-to-toe phase and 3) the toe-off phase 

Table 7 
Average classification performance of the third classification strategy, based on validation test (25 % of data 
set), to determine the number of occupants (up to five occupants) on the floor of the seminar room (see Fig. 9).   

SVM KNN BT 

Accuracy (%)  83.8  74.8  72.6 
Precision (%)  72.3  62.5  57.8 
Recall (%)  70.2  56.1  50.6 
F1 (%)  71.0  58.4  51.8  
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as explained in detail by Racic et al. [68] and Drira et al [55,70,75]. From Fig. 10, the heel phase starts with an initial heel-contact 
(IHC) phase that is characterized by a brief duration, denoted as T1. During this phase, an abrupt transfer of the part of the body-
weight, denoted as F1, to the ground is achieved. The heel phase ends with a full heel-contact (FHC) phase during which the foot is in 
full contact with the ground until the VGRF reaches a maximum, denoted as F3. F2 refers to the attenuation in magnitudes within the 
heel phase. T2 refers to the duration of this phase. 

The heel phase is followed by the heel-to-toe phase, during which the opposite foot leaves the ground for the next footstep impact 
whereas the heel of the stance foot starts to rise from the floor surface. This explains the descending trend that defines a minimum 
magnitude denoted as F4. T3 refers to the duration of the heel-to-toe phase. Once achieved, the foot contact is completely transferred to 
toes, and the opposite foot heel is in contact with the floor surface. This explains an ascending trend to a maximum magnitude denoted 
as F5. Finally, the toe-off phase refers to the rising of the stance foot during which VGRF presents a decreasing trend to zero. T4 refers to 
the duration of the toe-off phase. 

The footstep-load function (fload) that is proposed by Drira et al [55,70,75] is defined by Eq. (10). This function is constructed using 
four sine functions and a cosine function to represent the VGRF presented in Fig. 10. In Eq. (10), forces F1 to F4 and durations T1 to T3 
define the load function parameters. T presents the total duration of the VGRF. 

f load=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(10) 

Average parameter values defining forces F1 to F5 and durations T and T1 to T3 that are used to apply the load model (see Eq. (10)) 
for simulations are presented in Table 9. These values are determined based on prior analysis of measured VGRFs from multiple 

Table 8 
Normalized confusion matrices of five-occupant counting. Recall results are based on validation test (25 % of data set). Occupant-counting classi-
fication has been performed using a multi-class SVM classifier.   

Recall (%) 

True label 1 96.5 1.4 1.4 0.7 0 
2 23.4 60.9 14.1 0 1.6 
3 20 22.9 51.4 2.9 2.9 
4 2.6 5.1 5.1 61.5 25.6 
5 0 0 0 19.4 80.6  

1 2 3 4 5  
Predicted label  

Fig. 10. Vertical footstep-impact load model.  
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occupants [55,70,75]. 

6.5.2. Uncertainty estimation 
Model simulations are prone to uncertainties from sources such as model imperfections (idealized boundary conditions and 

omissions), unknown model parameters and idealized footstep-impact load functions. The finite element model of the floor-slab (see 
Section 6.5.1) involves many simplifications, including the use of shell elements for the concrete slab and one-dimensional bar el-
ements for the supporting beams. Also, model simplification includes the use of translational springs (rotation free) to model the 
plasterboard, masonry and reinforced concrete walls (see Fig. 9). The finite element model does not include elements such as the room 
furniture, linoleum floor finishing and connections (in the horizontal direction) between the floor slab and the reinforced concrete 
walls (see Section 6.5.1). 

In addition, the footstep-impact load function [70,75] is applied independently to a single node in simulations at each predefined 
location. This excludes the possible contribution of the other foot during the pre-swing phase of the gait pattern (when two feet are in 
contact with the ground) [70,75]. This further increases the uncertainty associated with the simulation model. Based on engineering 
judgement and previous work [36,84,85], the uncertainty related to model simplifications and omissions is estimated to be uniformly 
distributed between − 15% to + 25% of simulated velocity amplitudes. 

According to a sensitivity analysis of the applied footstep-load function [70,75], the heel phase is the most important stage. The 
frequency of the heel phase (1/duration) induces low-frequency response components [36]. The simulation is performed for responses 
near the natural frequencies of the structure. Underestimation of friction effects results in over-estimated simulated velocity ampli-
tudes, thereby leading to additional model uncertainties of − 30 % to 0 %. 

Measurements are affected by uncertainties originating from sensor resolution, precision and variations in floor vibrations due to 
natural variability in walking gaits (see Section 2). Sensor resolution and precision provided by the sensor manufacturer are not 
significant (approximately 2 %). Inherent variability in walking gait, resulting from several individuals defining various anatomies and 
walking styles, walking at various speeds and wearing various type of shoes are determined prior to model-based occupant localization 
[55,70]. For this case study variability in walking gait is approximately bounded between − 72 % and + 54 % [55,70] which defines 
the 99th percentile of the uncertainty distribution. 

Subsequently, model and measurement uncertainties related to each detected footstep event are combined using Monte-Carlo 
sampling with one million samples (see Section 5.1). Using a target reliability of localization of 95%, localization thresholds for 
each detected footstep event are derived from the combined uncertainty distribution according to Eq. (3). 

6.5.3. Occupant trajectories 
Prior to the application of model-based occupant-localization, the measured and simulated footstep-impact signals are decomposed 

using CWT and reconstructed using IWT at a frequency range of 15–40 Hz (see Section 6.1). This range contains the modes of the floor 
slab with most energy contribution to vertical bending. The standard deviations (σ) of the filtered signals are used as a metric for the 
model-based occupant localization strategies. 

For each detected footstep-event, occupant localization is carried out through explicitly including systematic errors and model bias 
using EDMF to identify a population of possible locations denoted as CLS as explained in Section 5.1. Taking into account information 
from previously detected footstep events, sequential analysis is carried out to enhance the precision of CLS of each footstep event as 
described in Section 5.2. Sequential analysis reduces the ambiguity of CLS of each footstep event by verifying that the distance be-
tween two successive footstep events does not exceed a predefined distance (pre-defined step length). CLSs resulting from the model- 
falsification approach and a sequential analysis for each detected footstep are then used to identify occupant trajectories. A trajectory 
determination is performed as described in Section 5.3. 

An example of CLSs of a few events (first, intermediate and last events) resulting from Occupant O1 walking along each trajectory 
(see Fig. 9) are shown in Fig. 11. In Fig. 11, squares represent the CLSs, and dots represent the falsified location sets. Dashed lines 
represent the separation walls, and h-shapes represent the steel columns. Diamonds represent sensor locations, and real footstep lo-
cations of each occupant are represented with crosses. 

Regarding real footstep locations in Fig. 11, incorporating physics-based models in the interpretation of event signals from a single 
occupant using EDMF has led to accurate localization results for all events. Moreover, a sequential analysis that accounts for 

Table 9 
Average parameter values for footstep-impact load function.  

Load-model parameter Parameter value 

F1 Initial heel-contact force (Kg) 30 

F2 Initial-to-full heel-contact force (Kg) 22.5 
F3 Full heel-contact force (Kg) 93.7 
F4 Heel-to-toe contact force (Kg) 70.3 
F5 Toe contact force (Kg) 86.3 
T1 Initial heel-contact duration (s) 0.025 
T2 Full heel-contact duration (s) 0.12 
T3 Heel-to-toe contact duration (s) 0.45 
T Footstep-contact duration (s) 0.8  
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information from previous events, and trajectory determination have proved to increase localization precision. In Fig. 11, the CLSs of 
the last few events are smaller compared with the first few events and this is achieved without compromising accuracy. The average 
localization accuracy of all measurements (30 walking tests), resulting from the model-based occupant tracking approach (see Section 
5) is approximately 94 %. The average localization precision is approximately 71 %. 

Fig. 11. CLSs that are obtained using EDMF, sequential analysis and trajectory determination on the floor of Case Study 1. For each footstep event, 
represented CLS corresponds to all remaining trajectories. Trajectory is denoted as T. 
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In comparison with the localization results obtained using a two-sensor configuration, as shown by Drira et al [75], increasing the 
number of sensors for the model-based localization enhances precision. Using an eight-sensor configuration to cover the entire floor 
space provides more information than a two sensor configuration for the falsification process using EDMF. The rate of the rejected 
location instances is more important than those obtained using only two sensors. For this application, the average increase of the 
localization precision is approximately 51 % compared with localization results (using EDMF and sequential analysis) found by Drira et 
al [75] for two sensors. 

In Fig. 11, model-based occupant tracking has led to accurate determination of correct arrival points for all tested trajectories. For 
Trajectory #2 (Fig. 9), the occupant requires 10 footstep events to attain the arrival point X7 or X1, while for trajectories #2 and #5, 
the occupant requires 11 footstep events to attain the arrival points X2, X3, X4 or X7. For trajectories #3 and #4, the occupant requires 
14 footstep events to attain the arrival points X1, X2, X5 or X6. 

Assuming that all departure/arrival points (X1 to X8 in Fig. 9) are predefined, the model-based occupant-tracking operation 
provides accurate and precise candidate trajectories for an occupant, as presented in Table 10. Table 10 summarizes the number of 
candidate trajectories at the last detected footstep event of tested trajectories #2 to #6 (Fig. 9) repeated three-times, back and forth. 

From Table 10, the average tracking accuracy is 90 % in which the correct paths for three among thirty walking tests are not 
determined once all detected events are investigated. An average tracking precision of 97 % is observed for all tested measurements. 
Tracking precision refers to the percentage of falsified trajectories from all possible paths (56 possible trajectories). For example, when 
only one possible trajectory remains unfalsified, then occupant tracking is taken to be 100 % precise. 

Therefore, combining the knowledge of structural behavior with measurements and explicitly taking into account sources of un-
certainties, model-based occupant tracking has the potential to provide accurate and precise candidate trajectories of an occupant 
walking on a full-scale floor slab. 

7. Case-Study 2 

7.1. Description 

The objective of this case study is to evaluate the model-based tracking strategy described in Section 5. This evaluation involves 
tracking single and two occupants walking simultaneously along more realistic scenarios. 

The full-scale floor slab is an open-space hall in a multi-story building, as shown in Fig. 12. The floor is a continuous reinforced- 
concrete slab that covers an area of approximately 950 m2. The effective tested area is approximately 600 m2, as shown in Fig. 12. Ten 
concrete columns, as well as several reinforced-concrete walls, support the floor slab. The concrete slab is 25 cm thick and is covered by 
a linoleum finishing. Uni-directional reinforced-concrete beams connect the slab with the concrete columns (see section A-A in 

Table 10 
Model-based occupant-trajectory results.  

Trajectory Path Walking test (#) Detected events (#) Candidate trajectories at the last event Correct trajectory Average precision (%) 

T2 X1 to X7 1 10 3 out of 56  98.2 
2 10 1 – 
3 10 3  

X7 to X1 1 10 1  
2 10 2  
3 10 2  

T3 X3 to X4 1 11 3  96.4 
2 11 3  
3 11 3  

X4 to X3 1 11 4  
2 11 3  
3 11 2  

T4 X6 to X1 1 14 2  96.7 
2 14 4  
3 14 2  

X1 to X6 1 14 3  
2 14 3  
3 14 3  

T5 X2 to X5 1 14 3  97 
2 13 3  
3 14 1  

X5 to X2 1 14 3 – 
2 14 3  
3 14 3  

T6 X7 to X2 1 11 4  97 
2 11 2  
3 11 1 – 

X2 to X7 1 11 4  
2 11 2  
3 11 3   
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Fig. 12). Several masonry and plasterboard walls are used to separate the hall into functional spaces. 
The floor is instrumented with the same vibration sensors (uni-directional Geophones SM-24 by I/O Sensor Nederland) and 

acquisition unit (NI USB-6003) as the previous case study (Section 6) to measure vertical velocity-response of the slab with a sampling 
rate of 1000 Hz. Eight sensors (one sensor per ~ 75 m2) are placed at locations where dynamic responses of the first few vertical 
bending modes of the structure are dominant. 

Measurements are recorded for three occupants walking on the floor slab individually along six trajectories (both directions; back 
and forth) as illustrated in Fig. 12, where crosses (X1 to X12) represent possible departure/arrival points. All occupants walk while 
wearing various types of shoes (with hard, intermediate or soft soles). The three occupants (O1 to O3) weigh 93 Kg for O1, 87 Kg for O2 
and 75 Kg for O3. A priori knowledge of occupant characteristics (weigh, type of shoes and walking speed) during testing has not been 
required. Moreover, measurements are recorded for two occupants walking simultaneously following six trajectory configurations 
(both directions; back and forth). See configurations 7 to 12 in Table 11 for details regarding the trajectories involved in two occupants 
walking simultaneously on the floor. 

Single occupants walking along six trajectories, as well as six trajectory configurations of two occupants walking together (see 
Table 11) are used for testing the strategies described in Section 5. Walks along these trajectories are repeated several times, as shown 
in Table 11. During these walks, the occupant moves with self-selected step length and speed in order to provide realistic walking 
scenarios. The walking speed (in terms of steps per second) for individual occupants is estimated to be between 1.5 Hz and 1.8 Hz using 
measurements. For all measurement tests involving two occupants, the walking speed is approximately 1.6 Hz. 

Based on ambient vibration measurements, the modes of the structure with most energy contribution to vertical bending have 
frequencies between 5 and 30 Hz. The fundamental bending mode of the structure is contained within the frequency range of 9–11 Hz. 

7.2. Occupant tracking 

The model-based tracking strategy is intended to identify possible locations of occupants walking on the floor slab using error- 
domain model falsification (EDMF), as explained in Section 5.1. These locations are then used to determine possible trajectories of 
occupants. Using EDMF, location instances that do not contradict measured vibrations at all sensors define the candidate-location set 
(CLS). This operation is repeated separately for each detected event signal induced by occupant footsteps. 

Simulated and measured vibrations are filtered using CWT at frequency range of 5–30 Hz in (see Section 7.1) to increase their SNR. 
Maximum difference in amplitudes (Δamp) and standard deviation (s) of processed event signals are used as metrics for the model-based 
occupant localization since they are well-suited to evaluate the localization process [38]. 

For this application, floor-vibration measurements from a single and two occupants walking simultaneously as presented in 
Table 11 are investigated. In the context of the model-based tracking strategy, twelve departure/arrival points are fixed in this case 

Fig. 12. Model-based occupant tracking is tested on a full-scale concrete slab (~950 m2). Bi-directional trajectories of single occupants walking 
along six trajectories are used for testing. The same trajectories are used for two occupants walking simultaneously. 
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study, as shown by crosses (X1 to X12) in Fig. 12. These points lead to 132 possible trajectories. 
CLSs of detected event signals are used to determine candidate trajectories of occupants as shown in Section 5.1. Candidate lo-

cations (CLs) resulting from the first detected event help determine candidate departures. CLs associated with each candidate de-
parture point are then used to investigate possible paths based on information from succeeding detected footstep events. 

The CLS related to each succeeding detected event is then subjected to a sequential analysis to reduce ambiguities in localization 
results. The sequential analysis, as explained in Section 5.2, involves the assumption that the distance between two successive impact 
events cannot exceed a predefined distance. As impact locations during walking tests are not defined, this distance is assumed to be 
twice the pre-defined step length. For each newly detected event signal, the sequential analysis is applied separately for each CLs 
associated with each candidate departure. Finally, CLSs of each detected event, resulting from the sequential analysis, are investigated 
to determine possible trajectories. 

The trajectory-determination operation, as explained in Section 5.3, involves the assumption that occupants walk until reaching 
their destinations without backtracking. Hence, a CL that corresponds to a possible departure is rejected when its distance to at least 
one possible arrival point is not reduced. Once CLSs of all detected event signals are investigated, paths connecting remaining 
candidate departures with possible arrivals that define CLs are taken as candidate trajectories. 

7.2.1. Model predictions for a single- and two-occupant localization 
Prior modal analysis based on ambient vibration measurements has revealed that the first bending mode of the floor slab lies within 

the frequency range of 9–11 Hz. This allows classification of the full-scale slab as a low-frequency floor according to refs [86–88]. For 
low-frequency floors, a deterministic vertical load model for a single footstep impact is expressed in the time domain by the summation 
of harmonic components [89] (Fourier series) as defined by Blanchard et al. [90] and described in the following equation: 

F(t) = G+
∑n

i=1
Gαisin(2πifpt − φi) (11) 

where F(t) is presented by a static part expressed as G which is the person’s static weight and a fluctuating part expressed by the 
harmonics. fp is the walking frequency, which is approximately between 1.4 Hz and 2.5 Hz [68,91]. t is time. φi is the phase shift of the 
ith harmonic. αi is the Fourier coefficient, also known as the dynamic load factor (DLF) of the ith harmonic. n is the number of 
contributing harmonics. 

For this application, the walking frequency is fixed at 1.6 Hz (i.e. duration of 0.625 s), and the phase shift of the ith harmonic is 
assumed equal to zero. Also, the occupant weight is assumed equal to 85 Kg, which corresponds approximately to the average weight of 
the participants (see Section 7.1). The DLFs that are involved in the footstep-impact simulations are proposed by Young [92], as 
defined by Eq. (12). In Eq. (12), the resulting DLFs are for the first four harmonics, which are ascertained as regression equations as a 
function of walking frequency (fp). The walking frequency was assumed to vary between 1 and 2.8 Hz [92]. 

α1 = 0.41
(
fp − 0.95

)
≤ 0.56 fp = 1 − 2.8Hz

α2 = 0.069 + 0.056fp fp = 2 − 5.6Hz
α3 = 0.033 + 0.0064fp fp = 3 − 8.4Hz
α4 = 0.013 + 0.0065fp fp = 4 − 11.2Hz

(12) 

Table 11 
Trajectory configurations for one (grey fields) and two occupants walking simultaneously on the floor of the open-space hall in 
Singapore. For each configuration, walking tests are repeated for both directions (back and forth). O is occupant, T is trajectory 
and X is arrival and departure points (see Fig. 12).  

Configuration Occupant/Trajectory Number of tests 

1 O1: T1 from X1 to X3 
O2: T1 from X1 to X3 
O3: T1 from X1 to X3 

8 
6 
6 

2 O1: T2 from X2 to X4 10 
3 O1: T3 from X1 to X4 

O2: T3 from X1 to X4 
8 
4 

4 O1: T4 from X5 to X7 
O3: T4 from X5 to X7 

12 
4 

5 O1: T5 from X2 to X5 
O2: T5 from X2 to X5 

6 
4 

6 O1: T6 from X1 to X6 
O2: T6 from X1 to X6 

8 
4 

7 O1: T6 from X6 - O3: T3 from X1 6 
8 O1: T2 from X2 - O3: T1 from X1 6 
9 O1: T3 from X4 - O3: T3 from X1 6 
10 O1: T5 from X5 (After ~ 4 FSs) - O3: T5 from X5 

O1: T5 from X5 (After ~ 6 FSs) - O3: T5 from X5 
O2: T5 from X5 (After ~ 4 FSs) - O3: T5 from X5 

3 
4 
2 

11 O1: T3 from X1 (After ~ 4 FSs) - O2: T1 from X3 6 
12 O2: T3 from X1 (After ~ 4 FSs) - O1: T3 from X1 6  
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Footstep-impact simulations are generated using a finite-element model of the slab. The footstep-impact force is applied to a single 
node as a function of time. The dynamic responses of the slab are generated based on the linear-modal-superposition analysis in ANSYS 
[82]. The floor slab is modeled using solid elements (SOLID185). The elastic modulus for the concrete slab is taken to be 35 GPa. The 
viscous damping ratio is taken conservatively to be 5%. Columns and reinforced-concrete walls are modeled as simple supports (see 

Fig. 13. CLSs that result from occupants walking individually along trajectories #1 to #6 (see Fig. 12) are obtained using EDMF, sequential analysis 
and trajectory determination. 
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Fig. 12). 
Two-thirds of the floor slab is divided into a grid of possible locations (see the accessible area in Fig. 12). The distance between two 

possible locations is assumed to be 75 cm (see Section 5), leading to 796 possible footstep locations. These simulations are used for the 
model falsification to localize single occupants. 

Also, these footstep-impact simulations are used to generate possible model predictions associated with two occupants walking 
simultaneously on the floor slab, as explained in Section 5.1. Contributions from each occupant at each possible location are 
superimposed based on two time-offsets (0.2 s and 0.4 s, as explained in Section 5.1.2). The generation of model predictions involves 
the assumption that two occupants cannot be at the same location at a time. Including contributions from a single occupant, simulated 
responses for two occupants result in 1,266,436 model instances (796x795x2 + 796). 

7.2.2. Uncertainty estimation 
Similar to the previous case study (see Section 6.5), the finite element model does not include elements, such as separation walls, 

room furniture, and connections between the floor slab and the reinforced concrete walls. Also, unknown model parameters and an 
idealized footstep-impact load function increase the modeling uncertainty. Based on engineering judgment and previous work, the 
uncertainty from model simplifications and omissions are estimated to be uniformly distributed between − 20 % to + 30 %. 

Regarding measurement uncertainties, recorded vibrations are subject to the inherent variability in walking gaits of the same 
person and between individuals [55]. Based on prior measurements, variability in walking gaits has been evaluated for an occupant 
walking on the same footstep impact locations multiple times and wearing hard- and soft-soled shoes (not included in the evaluation of 
occupant-tracking strategy). This evaluation results in a measurement uncertainty bounded by the interval of ±45 %, which defines the 
99th percentile of the resulting distribution. Based on combined uncertainties, using Monte-Carlo sampling, and target reliability of 
localization of 95 %, thresholds for each captured footstep event are estimated for occupant localization. 

7.2.3. Single-occupant trajectories 
Tracking of multiple occupants, walking individually on a full-scale floor slab, is achieved using a model-based approach, as 

explained in Section 5. Examples of CLSs of a few events (intermediate and last events) resulting from occupants walking along 
trajectory configurations #1 to #6 (see Table 11) are shown in Fig. 13. 

In Fig. 13, CLSs are obtained using EDMF and processed using sequential analysis and trajectory-determination operation. CLSs 
associated with trajectories #2, #3 #5 and #6 in Fig. 13, are from Occupant O1 walking at a moderate speed level (~1.6 Hz) and wears 
hard-soled shoes during measurement. In Fig. 13, CLSs associated with Trajectory #1 are from Occupant O3 walking with a fast speed 
level (~1.8 Hz) and wears intermediate-soled shoes while CLSs associated with Trajectory #4 are from Occupant O3 walking with a 
moderate speed level. 

In Fig. 13, small green squares represent the CLSs, and dots represent the falsified location sets. Dashed lines represent the sep-
aration walls, and large black squares represent the concrete columns. Diamonds represent sensor locations, and real footstep locations 
of occupants are represented with crosses. 

In Fig. 13, CLSs provided by EDMF always contain the true impact locations, as represented by crosses. Incorporating physics-based 
models and systematic errors in the interpretation of event signals from single occupants using EDMF, thus provides accurate local-
ization results (accuracy of 100 %) for all footstep events associated with all trajectories. 

Moreover, a sequential analysis that accounts for information from previous events, and trajectory determination that is con-
strained by the condition that occupants walk without backtracking resulted in precise localization. Falsified locations associated with 
all footstep events, in Fig. 13 present more than 80 % of the initial location set (796 possible locations). Also, in Fig. 13 model-based 
occupant tracking has led to accurate and precise determination of correct arrival points for all tests once all detected footstep events 
are investigated. 

Although model-based occupant tracking results in precise localization, ambiguous CLs associated with several detected events (for 
instance, Footstep #27 for Trajectory #1 and Footstep #23 for Trajectory #4 in Fig. 13) remain unfalsified. This is due to the 
implementation of EDMF to incorporate systematic errors for accurate identification while sacrificing precision. A more compre-
hensive finite-element model that accounts for the separation walls may improve precision of localization results. 

The average accuracy and precision of localization results that are obtained from the model-based occupant tracking are presented 
in Table 12. For each trajectory (trajectories #1 to #6 in Table 11), the average accuracy and precision are determined based on CLSs 
resulting from all captured footstep events (see Table 12) repeated multiple times by the three occupants O1, O2 and O3 (see the 
number of tests in Table 12). 

In Table 12, the localization accuracy is determined based on comparing the true footstep locations with the resulting CLSs with a 
tolerance of plus or minus two footstep locations. This tolerance is taken since the impact locations do not necessarily coincide with the 
initial location set (796 possible locations) and occupants walk with a self-selected step-length during measurements. Thus, for each 
footstep event, localization is accurate when at least one candidate location is within 1.5 m radius from the correct location. The radius 
is equal to twice the distance between two footsteps. Localization precision refers to the percentage of falsified locations from all 
possible locations (796 possible locations). 

Regarding all measurement tests following trajectories #1 to #6, the average localization accuracy using the occupant-tracking 
strategy varies approximately between 91 % and 97 % as shown in Table 12. Moreover, the average accuracy for all walking tests 
is approximately 95 %. Thus, the model-based occupant tracking strategy can be applied to multiple occupants walking individually 
while wearing various types of shoes at self-selected step-length and walking speed to identify accurately their locations within a large 
full-scale floor slab. 
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In addition, the average localization precision, regarding all measurement tests following trajectories #1 to #6, varies approxi-
mately between 89 % and 93 %, as shown in Table 12. The average precision for all walking tests is approximately 91 %. Thus, 
incorporating physics-based models in the interpretation of measured footstep events using EDMF and accounting for information from 
previously detected events using sequential analysis and trajectory determination operations has the potential to provide precise 
localization results. 

Assuming that all departure/arrival points (see X1 to X12 in Fig. 12) are predefined, the model-based occupant-tracking operation 
provides accurate and precise candidate trajectories for all tested measurements, as presented in Table 13. A summary of the range of 
the number of candidate trajectories at the last detected footstep event for each tested trajectory (see trajectory configurations #1 to 
#6 in Table 11) is presented in Table 13. In Table 13, each trajectory is repeated multiple times, back and forth by occupants O1, O2 
and O3. 

For all tests along each trajectory, the average tracking accuracy varies between 88 % and 100 % in which the correct paths among 
132 possible trajectories are determined once all detected events are investigated as shown in Table 13. For all tested trajectories (80 
walking tests of single occupants), the model-based tracking strategy has revealed an average accuracy of approximately 93 %. 

From Table 13, tracking precision varies between 99 % and 100 % for all walking tests along each trajectory. Tracking precision 
refers to the percentage of falsified trajectories from all possible paths (132 possible trajectories). when only one possible trajectory 
remains unfalsified, then occupant tracking is taken to be 100 % precise. No more than 4 candidate trajectories are determined from all 
tests. The average tracking precision is approximately 99 %. 

Therefore, combining the knowledge of structural behavior with measurements and taking into account various sources of un-
certainties, model-based occupant tracking provides accurate and precise candidate trajectories of multiple occupants having a range 
of weights and shoe types walking individually with a self-selected step-length and speed level on a large full-scale floor slab (see 
Fig. 12). 

7.2.4. Two-occupant trajectories 
Examples of CLSs of events (intermediate and last events) resulting from two occupants walking along with three trajectory 

configurations (#9, #10 and #11 in Table 11) are shown in Fig. 14. As explained in Table 11, following trajectory configuration #9, 
both occupants walk along with Trajectory #3 (see Fig. 12) in opposite directions. For the trajectory configuration #10, both occu-
pants walk along with the same trajectory (see Trajectory #5 in Fig. 12) with an average spacing of four-footsteps. For the trajectory 
configuration #11, one occupant walks along with Trajectory #1 starting from departure point X3 (see Fig. 12), while the other 
occupant walks along with Trajectory #3 starting from departure point X1 (see Fig. 12). 

For the footstep locations in Fig. 14, occupant localization using EDMF has led to accurate localization results for all detected events 
from two occupants. Moreover, a sequential analysis that accounts for information from previous events, and trajectory determination 
have proved to increase localization precision. It can be observed in Fig. 14 that the falsified location sets of the last few events are 
significant compared with the first few events and this is achieved without compromising accuracy. 

In Fig. 14, model-based occupant tracking is shown to lead to accurate determination of correct arrival points for all tested tra-
jectories. During tests, occupants have remained immobile upon reaching their destinations. For the trajectory configuration #11 (see 
Table 11), the first occupant requires 33 footstep events to attain the arrival point X4 from X1 (see Fig. 12), while the second occupant 
requires 28 footstep events to attain the arrival point X1 from X3 (see Fig. 12). Thus, starting from the 29th event, model instances 
related to the arrival point X1 are entirely falsified, since contributions to floor responses are only from the first occupant, as illustrated 
in Fig. 14. For trajectory configuration #11, the walking path, X1 to X3 is achieved with an average precision of 83 % (25 out of 132 
possible trajectories), while the walking path X4 to X1 is determined precisely after exploring all detected events. 

EDMF, by including structural information and taking into account systematic errors and model bias, accurately localizes two- 
occupant locations in a full-scale structure as shown in Fig. 14. However, several ambiguities in the interpretation of measured 
floor response remain in the resulting CLSs, as shown in Fig. 14. This may be due to the omission of the separation walls in the finite 
element model and due to the employment of an idealized footstep-impact load function. A sensitivity analysis to evaluate the in-
fluence of the separation walls on the simulated responses, is required. 

The model-based occupant-tracking operation provides precise and moderately accurate candidate trajectories for two occupants 
walking simultaneously, as presented in Table 14. Trajectory determination is taken to be accurate when the correct paths among 132 
possible trajectories are determined once all detected events are investigated. Tracking precision refers to the percentage of rejected 
trajectories from all possible paths (132 possible trajectories). If only one possible trajectory per occupant remains unfalsified after 
investigating the required average footstep events to reach the destination, then occupant tracking is taken to be 100 % precise. For 

Table 12 
Accuracy and precision of occupant localization for all walking tests following trajectories #1 to #6 (see Fig. 12 and Table 11).  

Trajectory Number of tests Average accuracy (%) Average precision (%) 

1 20  91.3  91.3 
2 10  97.0  91.3 
3 12  99.0  91.1 
4 16  91.1  93.1 
5 10  94.1  89.2 
6 12  95.3  91.2  

Average (%)  94.6  91.2  
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each trajectory configuration, the average precision is evaluated only for the tests that provide accurate candidate trajectories. 
An average tracking precision of 99.5 % is observed for all measurements that reveal accurate tracking. For trajectory configu-

rations #9, 10# and #12, both occupants have carried out approximately the same number of footstep events to reach their desti-
nations (33, 32 and 40 detected events) while for the remaining trajectory configurations #7, #8 and #11 results in a different number 
of footstep events carried out from each occupant. 

In addition, model-based occupant tracking results in accurate trajectory determination for occupants following trajectory con-
figurations #7, #9 and #12 for which the average accuracy from all measurements varies between 83.3 % and 100 % (see Table 14). 
However, for the remaining trajectory configurations #8, #10 and #11, occupant tracking results in low accuracy rates that vary 
between 33.3 % and 66.6 % (see Table 14). The average tracking accuracy for all trajectory configurations is found to be 69.4 %. 

Occupant tracking using sequential analysis and trajectory determination provided precise tracking of two occupants, as shown in 
Table 14. In addition, model-based occupant tracking has the potential to accurately determine occupant trajectories. As shown in 
Table 14, low tracking accuracy is observed for several walking tests. This is due to the recorded footstep signals from two occupants 
are found to be either off-synchronized or staggered (see Section 5.1), leading to capture of more event signals for a trajectory 
compared with those observed from a single occupant. This induces ambiguities in the resulting CLSs from the localization process that 
make the continuity of a path from a departure point hard to track. Also, trajectory determination may result in incorrect tracking 

Table 13 
Single-occupant tracking results. Tracking accuracy and precision are for all walking tests following trajectories #1 to #6 (see Fig. 12 and Table 11).  

Trajectory configuration Number of tests Number of candidate trajectories at the last event Average accuracy (%) Average precision (%) 
1 20 1–3 90 99.3 
2 10 1–2 90 99.9 
3 12 1–3 100 99.7 
4 16 1–4 87.5 98.9 
5 10 1–2 100 99.8 
6 12 1–3 91.7 99.0   

Average (%) 93.2 99.4  

Fig. 14. CLSs that result from two occupants walking along with trajectory configurations #9, #10 and #11 (see Fig. 12 and Table 11) are obtained 
using EDMF, sequential analysis and trajectory determination. 
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when two occupants starting from distant departures are in close proximity. This may generate confusion in the continuity of each 
trajectory. 

Moreover, the number of model instances increases exponentially when detecting multiple occupants walking simultaneously, 
which may limit the applicability of model-based approaches for crowded spaces. Signal processing techniques to separate emission 
sources may be useful to localize more than two occupants walking together. Such work is further discussed in the next section. 

8. Discussion and limitations 

A comprehensive framework for automatic detection and tracking of building occupants based on recorded footstep-induced floor 
vibrations is successfully evaluated on full-scale varying-rigidity floors (see Case Study 1 in Section 6) that are instrumented with 
sparse sensor configurations (one sensor per ~ 12 to 75 m2). The framework combines model-free approaches for occupancy detection 
and counting, with structural-behavior model falsification for tracking. 

Accurate event detection is achieved through assessment of the maximum standard deviation from all sensors (STDmax,f ) over 
segmented and decomposed vibration measurements at multiple frequency ranges that cover the fundamental vertical modes of the 
structure. An event is detected when a local maximum resulting from STDmax,f values exceeds a fixed detection threshold (DTf ) over at 
least one decomposed signal indicate the occurrence times of a possible event. The number of frequency ranges that cover the 
fundamental vertical modes of the structure is fixed based on prior measurement observations and engineering judgement. A more 
comprehensive modal analysis would better define the informative frequency ranges for event detection. 

In addition, the level of ambient floor vibrations in terms of magnitudes may vary due to external factors, such as outside traffic that 
may generate stationary vibrations. Also, internal factors such as activated devices that may operate at low frequency ranges can affect 
the level of the ambient vibrations. The proposed strategy involves the assumption of a constant level of ambient vibrations, which may 
not reflect reality. Not accounting for such variations in the level of ambient vibrations might lead to inaccurate detection of events. 
Thus, automatic quantification of ambient vibrations to update the detection thresholds in real time would increase the reliability of 
event-detection. 

Classification of events into footstep and non-footstep events is successfully carried out using a binary-SVM. Time-and-frequency 
domain features are used for training. Time-domains features are assessed for event signals decomposed and reconstructed at low-and- 
high frequency ranges. These ranges cover the frequency band that sensors provide. Null-hypothesis tests are used to select the most 
informative frequency ranges of time-domain features in order to improve the efficiency of the event classification methodology. 

However, the event-classification strategy has been tested only on a single case study using limited sources of non-footstep events 
from (chair-dragging, opening/closing-door, book-dropping, and hand and mug impacts on a table). In real applications, several non- 
footstep events from other sources such as electrical devices, falling objects and opening/closing-windows and drawers can occur. Non- 
included spurious events within the training set and which may have similar signatures to footstep events may decrease the classi-
fication performance. More non-footstep-event signals from other sources such as falling objects and opening/closing-windows and 
drawers could be considered in the training set. In addition, a performance-based analysis of the classifier regarding the most 
appropriate ratio of footstep events to spurious events is needed. 

Footstep-induced floor vibrations are affected by the structural behavior of the floor slab. Change in floor characteristics leads to a 
change in magnitudes of the footstep-induced vibrations. Therefore, application of the proposed classification strategy to another floor 
slab requires a commissioning phase to study the structural characteristics to determine the frequency ranges that define the time- 
domain metrics. Also, re-training the learning algorithm with appropriate vibration measurements is required. Thus, further evalu-
ation of event classification using additional cases of full-scale floor slabs would improve performance. 

Event classification could be enhanced through the use of the selected frequency ranges of time-domain features, as explained in 
Section 4.2, to train a one-class SVM. The training data for the one-class SVM classifier is limited to footstep events only (no spurious 
events). This could improve the event classification strategies proposed by Lam et al. [22] and Pan et al. [67]. 

Counting the number of occupants has been achieved using an SVM classifier. However, the counting classifier results in low- 
performance score for two, three, four and five occupants. The determination of two occupants walking together on the floor may 
be confused with one occupant. Three occupants may be confused with one and two occupants, and finally the presence of four oc-
cupants is confused with five occupants. These low performance scores may by due to the low number of events induced by two, three, 
four and five occupants walking together within the training set compared with those induced by single occupants (7 times more). 

Accurate occupant localization is carried out using EDMF on full-scale floor slabs of Case Studies 1 and 2 (see Sections 6 and 7). 

Table 14 
Two-occupant tracking results. Tracking accuracy and precision are for all walking tests following trajectory configurations #7 to #12 (see Fig. 12 
and Table 11).  

Trajectory configuration Number of tests Number of candidate trajectories at the last event Average accuracy (%) Average precision (%) 

7 6 2 – 5 83.3 98.5 
8 6 1 – 2 33.3 100 
9 6 2 – 3 83.3 99.8 
10 9 1 – 2 66.6 99.7 
11 6 2 – 3 50 99.2 
12 6 1 100 100   

Average (%) 69.4 99.5  
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Incorporating the knowledge of structural behavior through physics-based models in the interpretation of vibration measurements to 
identify occupant locations allows the use of significantly more sparse sensor configurations on varying-rigidity floor slabs when 
compared with data-driven techniques [40,44]. 

Major challenges in data interpretation for occupant localization are related to the generation of reliable footstep-impact simu-
lations as well as the estimation of systematic errors from multiple sources. Model predictions are carried out by dividing the finite 
element model of the floor slab into a grid of possible locations. Then, the footstep-impact load model is applied separately at each 
possible location. This excludes the contribution of the other foot during the pre-swing phase of the gait pattern during which the two 
feet are in contact with the ground. This further increases the uncertainty associated with the simulation model. Thus, accounting for 
the spacing between succeeding footsteps when walking could improve footstep-impact simulations. Also, improving simulation 
models, the footstep load model, and the estimation of uncertainties may increase performance in situations where populations of 
locations are large. 

The number of model instances increases exponentially with the number of occupants walking simultaneously, which may limit the 
applicability of model-based approaches. Signal-processing techniques to separate emission sources may be useful to localize more 
than two occupants walking together. Several methods including blind source separation (BSS) [93] and equivariant adaptive sepa-
ration (EAS) [94] methods have the potential to separate overlapping signals. Studying the value of information on the number of 
occupants to be localized while walking simultaneously is also needed in a range of practical contexts. 

Low tracking accuracy is observed for several walking tests (see Section 7.2.4). This is due to the recorded footstep signals from 
two occupants that are found to be either off-synchronized or staggered (see Section 2). it is observed that off-synchronized and 
staggered footstep event may lead to generate higher number of events within the recorded vibrations for a tracking compared with 
those observed from a single occupant. This induces ambiguities in the resulting CLSs from the localization process that make the 
continuity of a path from a departure point hard to track. Also, trajectory determination may result in incorrect tracking when two 
occupants starting from distant departures are in close proximity. This may generate ambiguities in the continuity of each trajectory. 

Careful placement of sensors over the floor slab is necessary to guarantee good performance of classifiers and algorithms for 
occupant detection and tracking. Determining the most informative sensor configuration could be carried out using the joint entropy of 
simulated footstep impacts. Based on multiple sensor locations the joint entropy assesses the information gain of a set of sensor lo-
cations while taking into account the mutual information between their locations [95]. Thus, joint entropy can be used as a metric to 
design efficient measurement systems. 

9. Conclusions 

The results of Case Study 1 validate strategies for detection as well as tracking of single occupants. For Case Study 2, the model- 
based tracking strategy is again validated for single occupants and further validated for two occupants walking together. The following 
conclusions are drawn:  

• A comprehensive framework for detection and tracking of building occupants has been successfully validated using full-scale case 
studies. The framework involves model-free approaches for occupant detection and a model-based approach for occupant tracking.  

• Combining information from multiple frequency components of measurements improves the accuracy of event detection.  
• Selection of appropriate frequency components for training enhances the performance of classifiers that distinguish between 

footstep events (single and multiple occupants walking simultaneously) and non-footstep events.  
• Using cross-correlations between measurements at several sensor locations improves the performance of the classifier to distinguish 

between the presence of either one, two, three, four or five occupants.  
• Model-based identification (using EDMF), that includes structural information and takes into account systematic errors and model 

bias, is able to accurately localize single and two occupants walking simultaneously in full-scale structures. Occupants walk with 
self-selected step lengths, speed levels and shoe types.  

• Occupant tracking using sequential analysis and trajectory determination provides accurate and precise trajectories for up to two 
occupants walking simultaneously. 
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