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Abstract

Structural identification of existing structures is a subject of increasing interest

in the civil-engineering community because of its potential to use measurement

data to enhance asset-management decision making. An important structural-

identification application is residual-capacity assessment of earthquake-damaged

structures. Known to be potentially slow and subjective, current assessment prac-

tices rely mostly on expert-conducted visual inspection. Structural-identification

techniques can help overcome these shortcomings through improving estimates of

residual capacity. Physics-based models are needed to predict structural behavior

under future loading. For earthquake-engineering simulations, a large variety

of prediction models and techniques exists. While engineers often prefer sim-

plified behavior models for assessment, data-interpretation applications usually

involve detailed model classes. Neither choice is appropriate for all situations.

To improve upon current practice, this paper contains a proposal for a more

rational a-priori model-class selection, based on availability of several sources of

information. While, knowledge of the earthquake signal is identified as a main

criterion to select model classes and analysis tools, the number of measured

frequencies that could be inferred from measurements and the amount of building

and material information are other criteria that help select an appropriate model

∗Corresponding author
Email address: yves.reuland@epfl.ch (Yves Reuland)

Preprint submitted to Engineering Structures April 30, 2019

reuland
Text Box
Post-Print Version of:
Reuland, Y., Lestuzzi, P. and Smith, I.F.C., 2019. An engineering approach to model-class selection for measurement-supported post-earthquake assessment. Engineering Structures, 197, 109408
doi.org/10.1016/j.engstruct.2019.109408
 



class prior to behavior simulations. Model-class selection criteria are described

and illustrated using two cases. Displacement-demand predictions are reduced

by up to 91% using structural identification techniques and are validated for all

tested model classes by observed behavior under aftershocks. Applicability of

this model-class selection is most attractive for post-earthquake assessment of

residual capacity (not damage detection) where there is a reduced availability of

measurement data, such as when there are no continuous monitoring data. This

strategy provides useful and fast support to engineers for key decisions related

to asset management and structural resilience.

Keywords: Model-class selection, Post-seismic capacity assessment, Model

fidelity, Seismic vulnerability of existing buildings, Model-based measurement

interpretation, Error-domain model falsification

1. Introduction

Earthquakes present rare loading events with levels of shaking that threaten

structural integrity of buildings. Especially in regions with low-to-moderate seis-

mic hazard, the shortcomings of early design codes and slow building-replacement

rates result in many vulnerable buildings. As modern design practices focus5

on life safety (rather than on unsustainable design targets for structural in-

tegrity during earthquake events that are characterized by high return periods),

earthquakes will continue to deteriorate structures and thus, post-earthquake

assessments will continue to be important tasks. Also, design approaches rarely

include deterioration due to multiple earthquake occurrences [1], which further in-10

creases the need for good model-based predictions of the behavior of deteriorated

buildings. Current practice for post-earthquake assessments heavily relies on

visual inspection [2, 3]. In addition to being subjective [4, 5] and inappropriate

for predictions [6], the slowness of visual inspection [7, 8] is incompatible with the

need for rapid decision-making that is due to the immediate threat of subsequent15

earthquake events and delayed collapses. Structural-identification techniques

have the potential to reduce the subjectivity of post-earthquake assessment and
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to reduce the time between an earthquake and a decision regarding safety for

occupancy of deteriorated buildings [9]. Hence, structural resilience with respect

to seismic hazard can be improved.20

Jalayer et al. [10] proposed including the probability of aftershocks (based on

a non-homogenous Poisson model) to support post-earthquake decision making

in L’Aquila (Italy). Goulet et al. [11] proposed a Bayesian probability-updating

scheme for vulnerability curves in order to reduce the number of buildings to

be inspected without losing information related to the damage on a city scale.25

Hernandez and May [12] used energy-based interpretation of measurements

taken during earthquakes to estimate structural damage. Naeim et al. [13, 14]

proposed a methodology to estimate the extent of damage in each building floor

in the immediate aftermath of an earthquake based on fragility functions and

a dense network of sensors that permanently measure during the earthquake.30

Sensor-based building monitoring that meets building owners’ need for rapid

decision making after earthquakes has been proposed [15]. However, model-based

measurement-interpretation strategies for behavior prediction during subsequent

earthquakes are scarce.

Equipping strategic buildings with sensors could be a first step to reducing35

uncertainty in a post-earthquake environment [16]. In addition, updated vulner-

ability assessments for buildings characterized by a given damage state after a

main-shock have been proposed [17, 18, 19]. However, few studies incorporate

measurement interpretation to update vulnerability curves after the main shock.

In addition, uncertainties are generally limited to ground-motion parameters,40

not behavior-modelling uncertainties.

Structural engineers reason using approximate and safe behavior models to

simulate complex physical phenomena in order to design and evaluate structures.

Vulnerability assessment often involves analyzing large building populations

and thus, pre-seismic-assessment tasks commonly involve simplified behavior45

models (such as proposed by Risk-UE in Europe [20, 21]). However, data-

interpretation applications often involve refined three-dimensional finite-element

models [22, 23, 24, 25, 26]. Nonlinear hysteretic models, which are needed to
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perform behavior prognosis under future earthquake loading, add a substantial

number of parameters to identify. Also, depending on the purpose of data50

interpretation (such as residual-capacity assessment, damage localization and

design of repair measures) even more detailed models may be required. Both

modeling and final-use aspects need to be taken into account when selecting an

appropriate model class. In this paper, model classes are defined with respect

to the scale of details of the model, also referred to as model fidelity (i.e. the55

extent to which a physics-based model reproduces physical phenomena that

define structural behavior). Simplified models should not be excluded from the

start [27]. Therefore, in this paper, criteria for a-priori (before any simulation is

performed) model-class selections are proposed. It is impossible to formulate

model-class-selection criteria that have universal validity. A-priori model-class-60

selection criteria are formulated for the scope of model-based measurement

interpretation for post-seismic residual-capacity assessment of buildings not

equipped with permanent monitoring.

In this paper, structural identification of damaged buildings after a main-

shock is performed using error-domain model falsification (EDMF). EDMF65

is based upon the principle of scientific discovery [28]: measurements are

most useful when they are used to falsify models. EDMF uses thresholds to

discard model-parameter instances that are incompatible with observed behavior,

rather than optimizing single models [29]. Relying on thresholds to falsify

model instances is equivalent to using uniform probability distributions between70

bounds. This makes EDMF more robust with respect to unknown and changing

uncertainty correlations between measured quantities as no correlation values

are needed [30]. EDMF has been shown in previous work to be accurate when

predictions are extrapolations [31, 32, 33]. Extrapolation is necessary to predict

structural behavior under earthquake loading with model instances that are75

updated using post-earthquake data, as loading conditions differ notably from

measurement conditions. Well-known model-identification techniques, such as

residual minimization and traditional applications of Bayesian model updating

(when uncorrelated zero-mean Gaussian likelihood functions are assumed), are

4



more likely to have inaccurate identification in the presence of high and correlated80

uncertainties [34], and this undermines accuracy of extrapolation predictions

[31, 32]. Recently, compatibility has been established between EDMF and

Bayesian updating techniques when they adopt uniform likelihood functions

[35, 33].

In the past, several model-class selection criteria have been formulated. A85

cornerstone of typical selection criteria was the principle of parsimony that favours

explanations with minimal assumptions for observed behavior. Translated to

structural identification, applications of the principle of parsimony resulted in

selecting model classes with a low number of parameters [36]. In this way,

the risk of over-fitting a model to noisy data was reduced. In applications of90

Bayesian model updating, model-class selection through calculating posterior

evidence was proposed to identify optimal model classes [37, 38]. Also, posterior

model averaging (based on various model classes) was proposed to increase

prediction robustness [39, 40]. Pasquier and Smith [31] showed that despite

posterior model averaging in Bayesian model-updating applications, erroneous95

prediction distributions have been obtained, when un-correlated zero-mean

Gaussian likelihood functions are used. Most model-class selection approaches

were based on a-posteriori selection of model classes (after running simulations

for all the model classes and performing model updating). A-priori selection of

model classes that were compatible with engineering reasoning and that could100

be applied with observations following an earthquake were not proposed. In

addition, many proposed model-selection criteria were based on feature selection,

which means selecting an optimal number and combination of parameters to

identify. Van Buren et al. [41] compared model classes using robustness and

fidelity criteria taking into account modelling uncertainty. Few other proposals105

proposed model-class selection in terms of model fidelity.

In this paper, criteria for a-priori selection of an appropriate model class

are presented. These selection criteria allow engineers to choose, prior to any

simulation, the most promising model class and type of analysis in order to

assess, through model-based data interpretation, the residual load-bearing be-110
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havior of a building after an earthquake. The assumed context of this work is

post-earthquake assessment of buildings with natural frequencies (derived from

post-seismic ambient vibration measurements) and visual damage inspection.

Continuous monitoring is assumed to be unavailable and thus, information is

limited to visual inspection and natural frequencies obtained from measurements115

after the mainshock. The paper starts with a description of the theoretical

background (EDMF, existing model classes and seismic prediction methods) in

section 2; then model-class selection based on existing information is presented

(section 3) and subsequently applied to two case studies (section 4).

2. Background120

Details of the data-interpretation methodology, existing simulation models

and types of analyses for seismic-behavior predictions are discussed in this section

in order to provide supporting information for the proposed model-selection

criteria (see section 3).

2.1. Model-based measurement interpretation using error-domain model-falsification125

(EDMF)

In this paper, EDMF is used to compare model predictions with measured be-

havior. Goulet et al. [42] have formalized the principle of model falsification into

a probabilistic strategy by introducing falsification thresholds that are derived

from estimated (modelling and measurement) uncertainty sources. Given the130

complexity and uniqueness of engineering structures and changes in uncertainty

sources (such as boundary conditions) with atmospheric conditions, uncertainties

from multiple sources are estimated and combined. Modelling uncertainties, Ug,

and measurement uncertainties, Uŷ are combined in order to obtain a combined

joint probability density function, fUc(Uc) ∼ Uŷ − Ug. In application to engi-135

neering structures, modelling uncertainties have been shown to have a higher

variance than measurement uncertainties [43] and to be systematically biased

[29].
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Based on the combined uncertainty distribution, fUc(Uc), lower and upper

thresholds, Tlow,i and Thigh,i, are calculated. The threshold values delimit the140

shortest interval of fUc
(Uc) that corresponds to a target probability φd as shown

in Eq. 1. To account for the simultaneous comparisons of nm residuals (between

measured quantities and the corresponding model predictions) with threshold

values, the Šidák correction for multiple-hypotheses testing [44] is usedin Eq.

1. Thus, a total probability that equals the selected target probability (φd) is145

achieved.

∀i ∈ {1, 2, ..., nm} : φ
1/nm

d =

∫ Thigh,i

Tlow,i

fUc,i
(Uc,i)dUc (1)

Residuals between measurements and model predictions are compared to

the threshold values and discarded if for any measured quantity i (out of nm

measured values) the residual, gi(θ)− ŷi, does not match equation 2. Parameter-

combination instances that are not falsified using equation 2 are retained as150

candidate models and are assumed to be equally likely.

∀i ∈ {1, 2, ..., nm} : Tlow,i ≤ gi(θ)− ŷi ≤ Thigh,i (2)

Rectangular regions of acceptance of residuals between model predictions

and measurements provide candidate models that are robust with respect to un-

known and changing correlations between residuals related to multiple measured

quantities [45, 31].155

2.2. Model-class types for seismic analysis

Earthquake-engineering applications provide a large range of model classes

that are characterized by a changing fidelity to real structural behavior. Nonlinear

hysteretic single-degree-of-freedom (SDOF) representations are simplified models

that predict dynamic behavior based on the modal mass and the generalized160

stiffness related to the first mode. Hysteretic nonlinear behavior is introduced in

SDOF models by defining a yield point and, depending on the sophistication of

the chosen hysteretic model, post-yield stiffness as well as parameters governing
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unloading and reloading. A refinement of SDOF representations is obtained

by representing each floor with a separate degree of freedom in a multiple-165

degree-of-freedom (MDOF) representation. In such models, plasticity (hysteretic

nonlinearity) is often lumped into nonlinear springs, governed by the same

parameters than SDOF models.

Equivalent-frame models represent all structural elements (walls, columns)

as frame elements. Equivalent frame models have shown satisfactory results170

when pushover curves are simulated [46, 47, 48]. However, natural-frequency

predictions are often biased. Depending on the implementation of equivalent-

frame models, plasticity can be lumped into characteristic nodes or smeared

throughout frame elements.

Although computationally burdensome, complex three-dimensional models175

are also available. While finite-element models often fail to produce accurate

predictions involving highly nonlinear displacements (such as encountered when

estimating ultimate displacement values), the applied element method (AEM)

captures the building behavior from the elastic range to failure, including large

material and geometric nonlinearities. AEM models are used in this paper as180

examples of high-fidelity model classes. AEM involves dividing structural com-

ponents into elements that are connected with springs at element contact points.

Pairs of normal and shear springs localize stresses, strains and deformations [49].

Nonlinear behavior is assumed to be similar to concrete-type behavior models

[50]. Nonlinear springs are able to capture joint de-bonding, shear sliding, direct185

tension and partial connectivity between elements. However, shear-compression

failure due to high axial loads is not taken into consideration. AEM has been

shown to predict post-yield structural behavior of reinforced-concrete and ma-

sonry structures that are defined by a large range of potential failure modes

[51, 52, 53, 54, 55].190

In order to perform post-earthquake identification, structural models need to

capture the drop in natural frequencies that results from damage. For models

that rely on smeared plasticity, predicting a link between maximum displacement

and a reduction of natural frequencies is complex. If plasticity is lumped into
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nodes (using nonlinear springs), stiffness updating after deterioration is more195

straightforward.

In this paper, a simplified approach towards stiffness reductions is applied

for SDOF models and nonlinear springs. The secant stiffness to the maximum

displacement is used, as shown in Figure 1. As structures recover stiffness at

lower amplitude vibrations after earthquakes(as is the case for frequencies derived200

from measurements under ambient conditions), the secant stiffness, ksec, results

in a lower limit to the real damaged stiffness, kpeq. Michel et al. [56] quantified

the frequency drop between ambient vibrations and large-cycle vibrations to be

33% for un-reinforced masonry structures. Although this value involves large

uncertainties (a scatter of ±9% has been found for calcium-silicate and ±6%205

for clay bricks in the case of low-rise brick masonry buildings), this approach

will be followed to derive the stiffness under ambient vibrations from the secant

stiffness (see Eq. 3).

kpeq =
1

0.662
· ksec ≈ 2.3 · ksec (3)

Figure 1: Methodology for stiffness updating of hysteretic behavior models (such as lumped-

plasticity hysteretic spring models or SDOF hysteretic models). The secant stiffness to the

maximum (absolute) displacement is a lower bound for damaged stiffness.
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2.3. Seismic-analysis approaches: static and dynamic nonlinear predictions

Among the multiple tools for seismic-vulnerability predictions [57] nonlinear210

dynamic (or time-history) analyses are most powerful . However, such analyses

are computationally expensive, especially in multiple-model approaches such as

EDMF (see Section 2.1). Also, setting appropriate loading steps and controlling

convergence are challenges related to dynamic nonlinear simulations that are

not within the scope of this paper.215

Static nonlinear approaches are computationally less demanding than dynamic

nonlinear analyses [58, 59]. Such nonlinear static analyses have also been applied

to mixed masonry and reinforced-concrete structures [60]. Examples of methods

to predict the displacement demand resulting from given response spectra using

static nonlinear simulations are: equivalent linearization [61] and the N2 method220

[62, 63], which includes the equal-displacement rule [64, 58]. Although limitations

of the N2 method have been shown in the past [65, 66], it is used in this

paper. Pushover-based vulnerability predictions involve the assumption of in-

plane-collapse mechanisms. By enforcing a certain load distribution (often

a distribution that is similar to the mode shape of the fundamental mode),225

the collapse mechanism is often limited to in-plane load-bearing, which is not

realistic for some building types. Recently, adaptive pushover techniques have

been proposed to overcome some of these limitations [67, 68]. In this paper,

classic pushover curves are used and the resulting extra uncertainty is taken into

account.230

2.4. Model-based data interpretation in post-earthquake applications

As structural identification in a post-earthquake scenario is proposed, initial

(pre-earthquake) modal properties are likely to be unavailable. To overcome

this limitation, the outcome of visual inspection - taking the form of a damage

grade (DG), defined by the European Macroseismic Scale (EMS98) [69] - is235

used as an additional measurement source. Based on existing work [70, 71],

observed DGs can be transformed to displacement values through the use of

limit-state mechanical properties of the structure: yield displacement dy and
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ultimate displacement dult. The quantification of an observed DG results in

intervals for the maximum displacement. These intervals can be used to falsify240

model instances that are not compatible with observations, as described in [72].

When static nonlinear predictions are used an approximate model falsification

scheme can be employed. Based on the measured post-earthquake frequency

and the combined uncertainty distribution, ranges of compatible structural

displacements (such as top displacement or first-story drift) are obtained. In a245

similar way, an interval of displacement-demand values that are compatible with

visually observed DGs can be derived. Candidate parameter combinations verify

the condition of a non-null intersection subset between the displacement demand

intervals defined by measured post-earthquake frequency and those defined by

observed DGs [73]. Candidate models obtained using this approximate, static250

nonlinear approach require no information regarding earthquake ground motion

or initial building states.

To underline the importance of knowledge of the earthquake accelerogram,

the parameters of a theoretical SDOF model are updated using the post-seismic

fundamental frequency and the DG for three identification scenarios (dynamic255

simulations with and without knowledge of the earthquake signal as well as static

simulations). An initial model population is built based on four parameters:

initial fundamental frequency, post-yield hardening, yield displacement and

ultimate displacement. The true parameter values leading to the simulated

measurements are selected randomly within the initial parameter intervals.260

Artificial model uncertainties arises from changing damping, stiffness updating

(see Eq. 1) and the hysteretic rule (modified Takeda rule [74] for simulated

measurements and elastic-plastic rule for model predictions). In addition, a

random instance of measurement uncertainty is added.

If the accelerogram of the earthquake is known, identification involving dy-265

namic simulations (88.4% of the initial model population is falsified) outperforms

static simulations (76.4%). However, in absence of knowledge regarding the

earthquake signal (15 historic accelerograms with peak ground acceleration

(PGA) between 3 m s−2 and 8 m s−2 are randomly selected, while the true earth-
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quake signal has a PGA of 5 m s−2), the performance of model identification270

using dynamic simulations drops (59.4% falsified model instances). Figure 2

shows the identification results for two parameters, initial frequency and yield

displacement, resulting from the three identification scenarios. Static simulations

provide intermediate results between dynamic simulations with and without

signal knowledge. Therefore, in absence of signal knowledge and when only275

post-earthquake measurements are available, static simulations are used for

structural identification.
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Figure 2: Comparison between structural identification results (using simulated measurements)

that are obtained using dynamic simulations with earthquake signal knowledge (a) and without

earthquake signal knowledge (b) as well as with static nonlinear simulations (c). For static

nonlinear simulations (c) no signal knowledge is required and thus, identification results are

between dynamic simulations with and without signal knowledge in terms of falsification

performance.

12



3. Civil-engineering-compatible criteria for model-class selection in a

post-seismic context

Model-based measurement interpretation often relies on complex three-280

dimensional models. However, in this paper, model classes with changing

sophistication (level of detail at which the model represents material behaviour

and geometrical features of the structure) are compared and an a-priori selection

scheme is proposed. By changing sophistication, from highly simplified to highly

complex behavior models, simulation time, number of parameters, quantity of285

comparisons between model and measurements, as well as level of uncertainties

change, as schematically reported in Figure 3. With increasing sophistication,

the number of degrees of freedom increases as well. High sophistication involves

a high number of degrees of freedom and this results in expensive computation

time (see first graph in Figure 3). In addition to a growing number of degrees of290

freedom, models with higher fidelity also involve more parameters (of potentially

unknown value), as a more precise description of building geometry and material

properties is necessary. For instance, global behavior simulations using a SDOF

model involves four to seven parameters, while a detailed three-dimensional

model with material non-linearity can reach more than 50 parameters in case of295

mixed buildings. This schematic trend of a growing number of parameters with

higher model sophistication is reported in the second graph of Figure 3.

A positive outcome of a better geometrical representation of the structure,

with more degrees of freedom, is related to multiple comparisons between mea-

surements and model predictions (for instance higher natural frequencies and300

their respective mode shapes are simulated and can be compared with measure-

ments, if available). Simplified model classes are generally defined by a very

limited number of degrees of freedom and allow a maximum of three compar-

isons: initial fundamental frequency, post-earthquake fundamental frequency

and observed DG. Although the Sidak correction (see Section 2.1 and Equation305

1) in EDMF helps account for the effect of small numbers of measurements, three

measured quantities may be insufficient for efficient structural identification,
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especially since in most applications (in regions with low-to-moderate seismicity)

the initial fundamental frequency is likely to be unavailable. Although too many

measurements may lead to over-fitting the data, the amount of measurements in310

a post-seismic context remains small and thus, the risk of over-fitting is low.

A more sophisticated model is intended to increase fidelity of the model

to reality and thus, reduces the modelling uncertainty. However, an increase

of parameters (resulting from increasing sophistication) increases the risk of

un-identifiability of unknown parameter values (see fifth graph in Figure 3). Two315

reasons can lead to un-identifiability: either large amounts of parameters may

lead to compensations of effects on structural behavior or treating less important

parameters as secondary parameters (not intended to be identified) increases

uncertainty. Thus, when the number of parameters grows above a certain value,

uncertainty increases despite higher model fidelity, as indicated in the forth320

graph of Figure 3.Ultimately too sophisticated models can hinder successful

application of model-based data interpretation.

Ideally, model-class selection should optimize the parameter identifiability.

However, based on the measurement data that is available and the information

regarding the earthquake signal and the building geometry and material, the325

actual position of the curves and the ’X’ in figure 3 changes. Therefore, the

influence of these factors (amount of measurement data, precision of main-

shock-signal information, level of detail of building and material information) on

model-class selection needs to be taken into account.

Even for physics-based models that involve a high number of parameters,330

sensitivity analyses (or more elaborated feature-selection techniques) are usually

employed to keep a low number of parameters that are to be identified. In

addition, traditional applications of EDMF involve grid sampling and thus, the

number of model simulations that need to be performed grows exponentially

with the number of parameters. In such a scenario, identifying more than five335

parameters is computationally expensive. As a result, increasing numbers of

parameters lead to a growing number of secondary parameters, which are not

identified and add to the combined uncertainty. Therefore, the reduction in
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Figure 3: Schematic representation of the influence of model sophistication (here as function

of the number of degrees of freedom) on computation time, number of parameters, number of

predictions that can be compared with measurements and parameter identifiability. Determi-

nation of the position of ’x’ is not obvious and it varies with the amount of information in

measured data. Schematic trends are confirmed by the firstfisrt case study, as shown in Figure

10.

.

uncertainty that can be obtained by increasing model fidelity is often counter-

balanced by increasing parameter uncertainty (see fourth graph in Figure 3).340

In applications that involve predictions, two competing sources of uncertainty

can be related to increasing model fidelity. While higher model fidelity may

reduce modelling uncertainty (less simplifications are made and predictions may

be more precise) the need for more parameters to adequately describe nonlinear

behavior increases parametric uncertainty (nonlinearity is governed by mostly345

non-identifiable parameters and each material, such as bricks, mortar, concrete,

reinforcement steel, is represented individually) that can only be partially reduced

with structural identification.

Predictions that are made to estimate residual capacity involve either simu-

lating multiple time-series with changing intensities or rely on static nonlinear350

pushover curves to predict displacement demands (as discussed in Section 2.3).

While simple models such as SDOF or MDOF representations allow multiple

dynamic nonlinear simulation runs, complex models with a high number of

degrees of freedom are usually restricted to pushover-curve predictions.

A drawback of simplified models is the fact that they capture a limited number355
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of failure mechanisms. For instance out-of-plane mechanisms and instabilities

are not captured by lumped-mass models. In a similar way, the domain of

applicability of pushover curves is limited to cases where out-of-plane mechanisms

are excluded and where there are rigid floors. Thus, observations from visual

inspection should be included in the process of model-class-fidelity selection.360

Model-based post-earthquake assessment thereby complements visual inspection,

replacing expert-conducted visual inspection is not intended. Another limitation

of simplified lumped-mass models is related to the unidirectional analysis. Usually,

for simplified models the analyses is split into the two main building directions.

Hence, torsional effects are neglected along with increased vulnerability due to365

interactions between building directions. However, even with complex models,

earthquake actions are usually applied to the main directions of the building as

combining several possible two-dimensional earthquake signals is computationally

burdensome.

A summary of model classes that are characterized by increasing model fidelity370

- from SDOF representations to three-dimensional representations - is provided

in Figure 4. Although the number of comparisons between model predictions

and measurements increases, calculation time varies in an exponential manner

from simplified to high-fidelity models.

The considerations that guide a-priori selection of a model class depends375

on engineering judgment rather than on a simple application of the principle

of parsimony. A guide to decision making regarding an appropriate model

class is provided in Figure 5. The information sources that are identified to

influence the selection of model-class fidelity are: the number of modes that

are measured; ground-motion knowledge (such as amplitude and frequency380

content); and building information that is available (such as material types and

construction drawings).

The number of modes that can be derived from ambient-vibration measure-

ments is governed by the number of sensors used and the structural system.

Also, in case multiple sensors are used, mode-shapes can be used for structural385

identification. If only the fundamental frequency is known and the signal knowl-
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Figure 4: Summary of typical model classes that are available for earthquake engineering with

inherent properties related to model-measurement comparisons, damage modelling, number of

parameters, and model predictions and simulations.

edge is good (due to a dense seismic network for instance), SDOF or MDOF

models are preferred as they allow time-history analysis in a reasonable amount

of time. If only the fundamental frequency is known and the signal knowledge

is scarce, a model with higher model fidelity is needed to compensate the lack390

of information. For high-fidelity models, a good knowledge of the geometry is

needed in order to limit the the uncertainty arising from parameters linked to

geometry and material. If the building knowledge is scarce, two options are

available to the engineer: iterate and increase the building information by on-site

inspection or use simplified bi-linear behavior curves for static nonlinear predic-395

tions based on approximate building types. Such simplified and approximate

analyses may be preferred for a rapid post-earthquake assessment at city-scale
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(such assessments fall outside the scope of this paper). When several modes

are measured, as well as mode-shapes, behavior models with more degrees of

freedom and higher fidelity are preferred as they allow the engineer to perform400

additional comparisons between model predictions and measurements.
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Figure 5: A-priori model-fidelity-class selection for post-earthquake assessment of buildings.

In case of thorough post-earthquake analysis, building information can be gathered on site

and should not be a limiting factor. For rapid post-earthquake assessment, low-fidelity models

can be used as a first approach. Examples of potential model-fidelity classes are provided for

each suggestion (see Figure 4). In the figure, THA refers to time-history analysis and SNA

refers to static nonlinear analysis.

As can be observed from the proposed flowchart (Figure 5), the knowledge of

ground motions mainly influences the type of analyses (either static or dynamic)

rather than the model class. However, several combinations are excluded from

the start, as in complete absence of building information and signal knowledge,405

uncertainties become excessive and hinder successful structural identification. In
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a similar way, time-history analyses involving high-fidelity models are generally

too expensive from computational point of view. Due to excessive simulation time

(in the order of several hours for time-history analysis of one model instance),

AEM predictions are limited to pushover curves (static nonlinear predictions),410

and may only be applied in cases of good building-information knowledge.

The proposed model-class-selection approach can also be used in an iterative

way. If either a first analysis with simplified models does not lead to clear results,

or if building owners require in-depth analyses, additional information can be

gathered to increase model fidelity and parameter identifiability. Therefore in415

cases with insufficient building information, several strategies can help to increase

the knowledge regarding building information: site investigations; analyses based

on SDOF models to explore the parameter space; taking additional measurement

to determine the behavior type from modal properties (shear-type behavior

or flexural behavior based on the mode shapes [75]). If a limited number of420

measurements hinders efficient data interpretation, supplementary measurements

with multiple sensors can be performed, sometimes even laboratory tests on

building material are performed (particularly in case multiple buildings of similar

type exist within a residential district). Finally, all these criteria influence the

global general behavior of the structure. If local failure modes need to be assessed,425

simplified SDOF models are not useful; more sophisticated models are needed.

4. Case studies

In order to apply the criteria for model-fidelity selection on earthquake-

damaged buildings, two case studies are analyzed: a half-scale mixed masonry-

concrete building tested on a shake-table and a masonry building measured in430

L’Aquila (Italy) after the damaging central-Italian earthquake in 2009. While

shake-table tests allow comparison of identification results with observed be-

havior during subsequent tests (extrapolation), the L’Aquila building allows an

evaluation of the model-fidelity selection and preliminary feature selection in

real post-earthquake conditions.435
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4.1. Shake-table tests

Although shake-table tests involve reduced levels of uncertainty (controlled

uni-directional shaking, no environmental influences and few non-structural

elements), measurements from shake-table tests performed by Beyer et al. [76]

are used in a first case study to evaluate the influence of model-class selection.440

A half-scale mixed un-reinforced-masonry reinforced-concrete building with four

floors has been tested under an earthquake sequence with increasing shaking

amplitudes. Schematic building drawings of the tested specimen are provided

in Figure 6. To comply with similarity laws for stresses, additional masses

(un-reinforced-concrete blocks) have been added to the slabs. The east-west445

component measured at the ground station of the Ulcinj-Hotel Albatros station

during the April 15th, 1979 Montenegro earthquake [77] has been applied through

the shake-table. This earthquake signal has a good fit with a slightly modified

version of the Eurocode 8 spectrum for soil class D (see [76] for further details).

The identification is performed for the building state following the fifth450

shaking event. The maximum peak ground acceleration (PGA) that the structure

has undergone prior to this building state is of 4 m s−2. The four subsequent

shaking events are used to compare predictions (extrapolation) with observed

behavior (that is not used for identification) and are characterized by PGA

values of 7.5 m s−2, 3.5 m s−2, 6.3 m s−2 and 14.7 m s−2. Natural frequencies of455

6.3 Hz and 23.9 Hz are measured in the longitudinal direction during white-noise

excitation following the fifth shaking event and are used for identification. A

DG 2 is derived from visual inspection after the fifth shaking event [76].

4.1.1. A-priori model-class selection

To demonstrate a-priori selection of model classes, three scenarios involving460

changing data availability are compared (see Table 1). The first scenario, S1,

involves scarce building information, good signal knowledge and the fundamental

frequency together with the observed DG as measurement data. Therefore,

based on the proposed a-priori model-fidelity selection (see Figure 5) a SDOF

model is identified using dynamic simulations (as shown in Figure 7). For465

20



1545 1545 1000

3870 1690

1550

6200

3200

100

Elevation Top view

5560

95150

Additional massesReinforced concreteUnreinforced masonry

Figure 6: Schematic drawings of the building structure tested on a shake table by [76].

Dimensions are given in millimeters and correspond to a half-scale specimen. Additional

masses have been added to comply with similarity laws for stresses. Shake-table tests have

been uni-directional in the longitudinal direction.

the second scenario, S2 in Table 1, the same data is available to the engineer

than in the first scenario, however two frequencies are measured (either from

the start or in a second iteration). Thus, dynamic simulations of a MDOF

model are performed to identify model instances. Finally, the third scenario

involves detailed building information, absence of reliable signal knowledge and470

availability of the fundamental frequency only. Thus, an AEM model is selected.

The scenarios and the respective data and model class are summarized in Table

1 and Figure 7.

The SDOF model is based on an elastic-plastic hysteretic model with no

post-yield stiffness. As a result, only three parameters influence the dynamic475

behavior: initial (undamaged) frequency of the building, yield displacement and

damping. Based on engineering judgment and experience from similar structures,
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Table 1: Three scenarios are tested for the shake-table case study based on availability of

information for identification.

Scenario Building inform. Modes Signal knowl. Model Analysis

S1 Scarce 1 Good SDOF Dynamic

S2 Scarce 2 Good MDOF Dynamic

S3 Detailed 1 Scarce AEM Static

Number of
measuresd modes

1

Ground-motion
knowledge

good

Building
information

scarce

Low 
fidelity

THA

Number of
measuresd modes

2

Ground-motion
knowledge

good

Building
information

scarce

Low 
fidelity

THA

Number of
measuresd modes

1

Ground-motion
knowledge

scarce

Building
information

good

High 
fidelity

SNA

(a) Scenario S1 (b) Scenario S2 (c) Scenario S3

Figure 7: Model-class selection based on the proposed selection criteria (see 5) for the three

analysed scenarios (see Table 1) of the shake-table case study.

initial intervals are selected for the parameters: From 4 Hz to 10 Hz for the

undamaged frequency (13 divisions for grid sampling); from 1 mm to 31 mm for

yield displacement (11 divisions); and from 2% to 8% for damping (5 divisions).480

The parameters and the related intervals and divisions are provided in Table 2

and result in an initial model population of 715 model instances.

The MDOF model involves a linear elastic lumped-mass model with a non-

linear hysteretic rotational spring at the base which lumps plasticity. The

parameters that govern dynamic behavior of the MDOF model are: Bending485
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stiffness (16 divisions from 1 · 1010 N m2 to 6 · 1010 N m2); story masses that are

lumped at the slab level (5 divisions from 14 tons to 21 tons); viscous damping

(3 divisions from 2% to 8%); the stiffness of the rotational spring at the base of

the cantilever beam (7 divisions from 109.5 N m rad−1 to 1011 N m rad−1); and

the yield rotation of the elastic perfectly-plastic rotational spring (7 divisions490

from 0.15 km−1 to 3 km−1. In total, 11760 initial model instances are simulated

(see Table 2).

As the building is composed of several materials (un-reinforced masonry,

reinforced concrete, reinforcement steel) and each material involves parameters

that define nonlinear behavior (such as strength in tension and compression,495

ultimate strain, friction), the AEM model is defined by more than 30 param-

eters. Therefore, an initial sensitivity analysis is carried out to identify the

parameters that have a influence exceeding five percent on average on initial

frequency (linear prediction), yield displacement and frequency value related to

2 mm of top displacement (both nonlinear predictions). Retained parameters500

and their respective intervals are: Young’s modulus of un-reinforced masonry (4

divisions from 2 kN mm−2 to 8 kN mm−2; tensile strength of un-reinforced ma-

sonry (4 divisions from 0.05 N mm−2 to 0.15 N mm−2); compression strength of

un-reinforced masonry (2 divisions from 4 N mm−2 to 12 N mm−2; Young’s mod-

ulus of reinforced concrete (3 divisions from 20 kN mm−2 to 40 kN mm−2); and505

tensile strength of reinforced concrete (2 divisions from 1 N mm−2 to 3 N mm−2).

Thus, a total of 144 nonlinear static simulations are performed using AEM. An

overview of the primary parameters (to identify) governing the three model

classes and the selected parameter intervals are shown in Table 2.

The combined uncertainties of estimated systematic model uncertainties and510

simulated secondary parameter uncertainties are: [-50%,20%] on natural frequen-

cies and [-50%,80%] on displacements for the SDOF model (S1); [-35%,10%] on

natural frequencies and [-30%,50%] on displacements for the MDOF model (S2);

and [-25%,10%] on natural frequencies and [-20%,45%] on displacements for the

AEM model (S3).515
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Table 2: Parameters chosen for identification related to the three selected model-fidelity classes

and the respective ranges and number of divisions. Uniform distribution of parameters is

assumed and no assumption regarding correlations between parameters is needed.

Model type Parameter Units Interval Divisions

SDOF Initial freq. Hz [4,10] 13

Yield disp. mm [1,21] 11

Damping % [2,8] 5

MDOF Bending stiff. Nm2 [1,6]·1010 16

Story mass tons [14,21] 5

Damping % [2,8] 3

Spring stiff. log10(Nmrad−1) [9.5,11] 7

Yield rotation 10−3 rad [0.15,3] 7

AEM Young’s mod. Mas. kNmm-2 [2,8] 4

Tens. Strength Mas. Nmm-2 [0.05,1.5] 3

Compr. Strength Mas. Nmm-2 [4,12] 2

Young’s mod. Concr. kNmm-2 [20,40] 3

Tens. Strength Concr. Nmm-2 [1,3] 2

4.1.2. Structural-identification results

First, identification results involving scenario S1 (see Table 1) are analyzed.

Using available data (DG and fundamental frequency), 74% of the initial model

population are falsified. However, a more important criterion than the model

instance falsification is the reduction in uncertainty of displacement-demand520

predictions during the subsequent earthquake events that have been tested on

the shake table (see section 4.1). The displacement-prediction range for the

initial model population and the candidate model set are shown in Figure 8. For

the four earthquake events, the uncertainty of the prediction range is reduced

between 63% and 84%.525

As discussed in sections 2.3 and 3, knowledge of the earthquake signal has an

important role in selecting the model-class fidelity and analysis type. Therefore,

the same identification using SDOF model is performed without signal knowledge:
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15 historic earthquakes are randomly selected and scaled to 25% to 200% (7

divisions) of the true PGA of the damaging earthquake. While the falsification530

rate is similar (75% of the initial model population is falsified), the prediction

uncertainty is comparable to the uncertainty of the initial model population that

involves signal knowledge (see Figure 8). Thus, when time-history analyses are

performed, the absence of precise knowledge of the earthquake signal hinders

successful application of structural identification.535
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Figure 8: Displacement-demand prediction for subsequent aftershocks (not used for identi-

fication) based on SDOF models (Scenario S1 in Table 1 and Figure 7). Absence of signal

knowledge undermines the advantage of structural identification. Predictions are made using

the true signal of tested aftershocks.

As stated previously, 74% of the initial model population are falsified for

scenario S1. For scenario S2 97% of the initial model instances are falsified

while 67% are falsified for scenario S3. Thus, static and dynamic approaches to

post-earthquake model-based data interpretation provide significant reduction of

the parametric uncertainty. In Figure 9, the displacement prediction uncertainty540

of the candidate models sets resulting from scenarios S1, S2 and S3 are compared.
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The vertical axis contains a much lower interval of values than Figure 8, which

underlines efficient reduction in parametric uncertainty for all three scenarios. In

addition, the observed displacement is included in the prediction ranges for all

scenarios and all subsequent earthquake events, which underlines the accuracy545

of the proposed post-earthquake structural-identification methodology as well

as the applicability of proposed model-class selection criteria. The values of

prediction precision changes with increasing levels of shaking, as can be seen in

Figure 9. While SDOF and MDOF are more precise for low amplitudes, MDOF

and AEM are more precise for higher amplitudes.550
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Figure 9: Displacement-demand prediction for subsequent aftershocks (information not used

for identification) based on identification scenarios S1 to S3 (see Table 1 and Figure 7). All

identification scenarios yield accurate prediction ranges. Simplified models (S1 and S2) provide

precise results in case of good signal knowledge while detailed models (S3) compensate the

absence of signal knowledge with enhanced building and material information.

When comparing the three model classes used in this examples, the com-

putation times per model instance on a Intel(R) Xeon(R) CPU E5-2670 v3

@2.30GHz processor are: 1.6 s for the SDOF model (earthquake defined by 9000
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data points); 104 s for the MDOF model (earthquake defined by 36000 data

points); and 5300 s for the AEM model (pushover curve based on 200 points).555

Computation time for dynamic analyses of the AEM model exceed 24 hours and

thus, are considered non-practicable. These computation times are represented

in Figure 10-a and are compatible with the schematic trend shown in the first

graph of Figure 3.

For the model classes corresponding to the three scenarios introduced in560

Table 1, simulation time, number of parameters as well as identification and

prediction performances are summarized in Figure 10. Although the trends are

based on only three points, they are in line with the tendencies shown in Figure

3. In this evaluation, the number of degrees of freedom is used as a proxy of

model sophistication. Although it may not always be a representative value of565

model fidelity, it is deemed acceptable for the purpose of comparison between

the three model classes. Given the significant growth in degrees of freedom

from the SDOF model to the AEM model, log-scale representation is used.

Prediction precision is taken as the probability related to the uniform prediction

interval (inverse of the length of the prediction interval shown in Figure 9) for570

the four subsequent shaking events (named AS1, AS2, AS3 and AS4 in Figure

10-d). Secondary parameters (not identified) of the AEM model (see Figure

10-b) increase uncertainty bounds (in line with the schematic trend shown in the

fourth graph of Figure 3) and thus, reduce identification performance. In this

application, the predictions based on the MDOF model provide highest precision575

(see 10 (c) and (d)). As schematically indicated in the fifth graph of Figure 3,

the most complex model class may not provide the best identification results

(see Figure 10-c) and thus, not the most precise prediction of future behavior

(see Figure 10-d). While this observation may not be universal and intermediate

model classes between MDOF and AEM may provide even higher prediction, it580

underlines that simplified models should not be excluded from the start as they

can provide useful information in post-earthquake assessment applications.
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Figure 10: Comparison of the three model classes with respect to simulation time (a), num-

ber of parameters (b), falsification performance (c) and prediction precision (d). In graph

(d), AS stands for aftershock. Precision is calculated for the 4 aftershocks that follow the

investigated main shock, see Figure 9. Simulation time for the AEM model is related to

static predictions, while simulation time of SDOF and MDOF model is related to dynamic

predictions. Prediction precision is taken as the probability related to the uniform prediction

interval. Limitations inherent to highly complex three-dimensional models (static predictions,

no earthquake information) results in lower identification and prediction performances.

4.2. Post-earthquake assessment of a building in L’Aquila, Italy

The SS80-building in L’Aquila is a two-story masonry building with mixed

masonry-concrete slabs. Ambient vibrations have been measured on the building585

during post-earthquake assessment following the 2009 central-Italy earthquake

[78]. Using a single three-axes velocimeter, the fundamental frequencies have

been derived: 8.6 Hz for the fundamental bending mode in the longitudinal

direction, 10.5 Hz for transversal bending and 12.6 Hz for torsion. Also, a DG 2

has been estimated for the building.590

The lower story is built in plain-concrete bricks and the second story in

hollow-clay bricks. Approximate building plans with rough building dimensions

have been made available by the building owner: the building is 13.8 m × 12.2 m

in plan with storey heights of approximately 3 m. Neither data related to the

initial building state nor information regarding the ground motion and building595

behavior during the earthquake are available. Therefore, according to the model-

class selection proposed in Section 3 (see Figure 5), pushover curves derived

using AEM are used to define the residual capacity of the SS80 building in
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L’Aquila.

4.2.1. Structural model600

In a similar way to Scenario S3 in Figure 7 model-class selection criteria

lead to the selection of a high-fidelity model based on the AEM method. By

counting the two masonry types, concrete elements (slabs), reinforcement steel

and the roof structure, the number of parameters exceeds 50. The number of

simulation runs that is required to establish the sensitivity of predicted values605

with respect to all material parameters would be prohibitive (for instance, 4901

model instances would be required for a sensitivity analysis based on a Box-

Behnken design of experiments). Therefore, engineering reasoning is used to

obtain an initial reduction in the number of parameters. Same mortar quality

for all types of bricks is assumed. Also, assuming separation strain and friction610

coefficient are governed by mortar properties, identical values are taken for both

masonry types. An equivalent slab is used instead of a precise representation of

the slab element. As pushover curves are simulated, a rigid-diaphragm behavior

of the slab is assumed. In addition, failure is estimated to occur in the masonry

parts, thus non-linearity of other elements are not taken into account. Fixed615

boundary conditions are assumed (no information on the soil and the type of

foundation is available). Finally, non-structural elements that contribute to the

mass are modelled as unknown distributed mass.

As a result, ten parameters are kept for an initial sensitivity analysis: (i)

additional mass on the first floor (0 kg m−2 to 200 kg m−2; (ii) Young’s modulus620

of the bricks of the lower story (6 kN mm−2 to 14 kN mm−2); (iii) compression

strength of the bricks of the lower story (10 N mm−2 to 25 N mm−2); (iv) ten-

sile strength of the bricks of the lower floor (0.5 N mm−2 to 2.5 N mm−2); (v)

Young’s modulus of the bricks of the upper story (3 N mm−2 to 10 N mm−2); (vi)

compression strength of the bricks of the upper story (5 N mm−2 to 18 N mm−2);625

(vii) tensile strength of the bricks of the upper story (0.25 N mm−2 to 2 N mm−2);

(viii) separation strain of all masonry elements (0.05 to 0.20); (ix) friction value

of all masonry values (0.6 to 0.9); and (x) wall thickness (24 cm to 45 cm).
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Lack of detailed information in the building plans is reflected by large

uncertainty in wall thickness. As it is not clear from the drawings whether630

the thickness includes cladding, the range of values is taken in a conservative

way from 24 cm, which is the depth of the bricks that have been used for the

building, up to 45 cm, which is the dimension indicated in the drawings. Initial

modal simulations indicate that a wall thickness of 45 cm is incompatible with

measured post-earthquake frequencies. Therefore, the wall thickness is set to635

24 cm. A Box-Behnken scheme is used to sample the parameter space defined by

the remaining nine parameters.

The sensitivity of the model predictions with respect to these nine param-

eters is calculated using linear regression and is reported in Table 3. Relative

importance of Young’s moduli is higher than relative importance of all the other640

parameters on the mostly linear predictions (frequencies and yield displacement).

The relative importance of compressive and tensile strength of the masonry

of the lower story (referred to as masonry 1) is higher than for the masonry

parameters of the second story. Ultimate displacement capacity shows highest

sensitivity to the separation strain of masonry.645

4.2.2. Structural identification with little measurement information

The AEM model is used to predict pushover curves and the frequency drop

that is due to top displacements, based on three chosen primary parameters

(Young’s moduli of the two masonry types and separation strain). The following

uncertainties affect displacement and frequency intervals for identification:650

• Stiff boundary conditions without soil-structure interaction are assumed,

thus an uncertainty range of [-10%,0] is estimated for frequency predictions

and an uncertainty range of [0,15%] for displacement predictions.

• As unloading is not simulated by the means of a pushover analysis, the

fundamental frequency that is related to a given top displacement may be655

underestimated by a maximum of 15%.

• Measurement uncertainty that arises for natural frequencies derived from
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Table 3: Sensitivity of linear (initial frequency) and nonlinear (frequency related to a top

displacement of 4mm, yield displacement and ultimate displacement) model predictions with

respect to the chosen material properties. The three parameters that are chosen for identification

are the two Young’s moduli and the separation strain of mortar.

Parameter Relative importance

Init. freq. Freq. 4mm Yield disp. Ult. disp.

Young’s mod. mas. 1 0.42 0.23 -0.65 -0.04

Young’s mod. mas. 2 0.54 0.39 -0.02 -0.10

Compr. strength mas. 1 0.00 0.08 0.11 -0.05

Compr. strength mas. 2 0.01 0.06 0.01 -0.04

Tensile strength mas. 1 0.00 0.09 0.15 0.10

Tensile strength mas. 2 0.00 0.10 -0.03 0.10

Friction coefficient 0.00 -0.02 -0.02 -0.05

Separation strain 0.00 0.03 -0.01 0.49

Additional mass -0.02 -0.01 0.00 0.04

ambient-vibration measurements is considered to follow a zero-mean Gaus-

sian distribution having a standard deviation of 0.5 Hz.

• As for the previous case study, the threshold bounds that are delimiting660

the displacement values that are compatible with a DG of 2 are considered

to be [0.5 ·Dy,2.0 ·Dy].

Model predictions for frequency drops related to top displacements as well

as pushover curves are shown in Figure 11. The displacement ranges that are

compatible with the measured frequency and the observed DG 2 are highlighted.665

Candidate models have an overlapping of the displacement intervals related to

both conditions (see equation ?? in Section 2.4).

Using only post-earthquake frequency and the observed DG, 31% of the pa-

rameter combinations of the initial model population are falsified. The candidate

parameter combinations are reported in a parallel axes plot in Figure 12. Param-670

eter combinations with high values of Young’s moduli for both masonry types
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Figure 11: Predictions of frequency drops (top figure) and shear forces at the base of the

building (bottom figure) that correspond to increasing top displacements. Candidate models,

which verify Eq. ??, are highlighted. It is recalled that no earthquake-signal knowledge is

required for Eq. ??.

are falsified. However, no reduction in parameter ranges is obtained. In addition,

as structural identification is based on pushover curves, a subsequent iteration is

mandatory, as experienced engineers verify that out-of-plane and brittle failure

mechanisms can be excluded. In case of this slightly cracked building with only675

two storeys and with stiff floors, such out-of-plane mechanisms can generally be

excluded.

In order to simplify nonlinear static predictions, a response spectrum from

the Italian building code (Italian annex to the Eurocode) is used. Using the

spectrum for L’Aquila that is defined to have a probability of exceedance of680
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Figure 12: Identified parameter combinations for the SS80 building in L’Aquila based on

post-earthquake information only. 31% of the model population are falsified.

10% in 50 years, high DGs are predicted (≥ 3): 23% probability of a DG3, 35%

probability of a DG4 and 45% probability of a DG5.

In absence of information regarding the ground-motion signals and without

data related to the initial state of the building, combining post-earthquake

frequency and observed DGs can be an efficient starting point. Using high-685

fidelity three-dimensional models, the number of parameter combinations that

are compatible with post-earthquake frequencies and observed DGs can be

reduced. In addition, it should be noted that due to the excessive computation

time and high number of parameters engineering experience is required to perform

an initial reduction in the number of to reduce the number of parameters to be690

identified.

5. Discussion

An a-priori selection of model fidelity for measurement-supported post-

earthquake assessment is proposed and applied to two case studies. Several

analyses types are proposed and compared. However, several limitations are695

notable with respect to SDOF simulations as well as static nonlinear simulations.

Such analyses types and models are usually limited to specific failure modes
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(i.e. gradual in-plane failure mechanisms). Therefore, the engineer needs to

verify the validity of such assumptions (for instance presence of stiff floors in

masonry buildings to ensure load distributions between vertical elements and700

reduce likelihood of out-of-plane failure modes).

The approach to model-class selection described in this paper is limited to

criteria that help engineers select an appropriate model fidelity.. Selection of

appropriate model classes with similar model fidelity (i.e. feature selection or

selection of model classes with similar fidelity, such as flexural, shear or combined705

MDOF models) falls outside the scope of this paper and is part of future work.

In addition, measurements used in this paper are limited to post-earthquake

measurements. Implementation of time-history measurements are not included

as well as extrapolation of assessment to city-scale levels, although there is much

potential for city-scale studies.710

6. Conclusions

Multiple model classes and analysis types are available in earthquake engineer-

ing. Competing factors, such as computation time, parameter identifiability and

level of uncertainties, undermine development of universal selection criteria that

would favor a given model class for all post-earthquake-assessment applications.715

Therefore, this paper contains a proposal for a-priori model-class selection for

post-earthquake assessment using model-based data interpretation. Natural

frequencies (derived from ambient-vibration measurements after the mainshock)

and visual damage inspection are assumed to be available; continuously mon-

itored buildings are not covered in this paper. The following conclusions are720

drawn:

• Factors that are identified to have the most influence on the choice of

optimal model class and analysis type are: knowledge of the accelerogram

of the damaging earthquake, information regarding building geometry and

material types as well as the amount of reliable modal properties that can725
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be deduced from measurement data. This has led to a flowchart for a-priori

model-class selection based on these parameters.

• Taking vibration measurements and interpreting them using a population

of physics-based models is useful for structural assessment in all cases.

For all tested cases of data availability, the model class that is selected730

using the criteria developed in this paper leads to a reduction of uncer-

tainty (by 63% to 97%) regarding displacement-demand predictions using

error-domain model falsification when compared with predictions without

structural identification. Comparisons with displacements measured during

subsequent shocks (not used for identification) indicate accuracy of all735

model classes when uncertainties are explicitly taken into account.

• In most countries with high seismic hazard, approximate knowledge of the

accelerogram of the damaging earthquake is rapidly available. With such

knowledge and in the absence of precise knowledge regarding geometry and

material properties, simplified models (such as equivalent SDOF models)740

outperform complex three-dimensional models, due to fewer parameters

and faster computation time. On the other hand, high-fidelity model classes

alleviate the need for information regarding the earthquake accelerogram,

which can be useful in regions with either low-to-moderate seismic hazard

or less developed seismic strong-motion networks.745

• Reliable knowledge of the accelerogram of the earthquake influences the

choice between dynamic and static nonlinear analysis. In the absence

of signal knowledge, structural identification with dynamic simulations is

imprecise and thus, an approximate static nonlinear procedure is more

appropriate.750
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[44] Z. Šidák, Rectangular confidence regions for the means of multivariate nor-

mal distributions, Journal of the American Statistical Association 62 (318)

(1967) 626–633.

[45] R. Pasquier, Performance assessment and prognosis for civil infrastructure

based on model falsification reasoning EPFL thesis number 6756 (184 pages).895

[46] Y. Belmouden, P. Lestuzzi, An equivalent frame model for seismic analysis

of masonry and reinforced concrete buildings, Construction and Building

Materials 23 (1) (2009) 40–53.

[47] P. Roca, M. Cervera, G. Gariup, L. Pela, Structural analysis of masonry

historical constructions. classical and advanced approaches, Archives of900

Computational Methods in Engineering 17 (3) (2010) 299–325.

[48] S. Lagomarsino, A. Penna, A. Galasco, S. Cattari, Tremuri program: an

equivalent frame model for the nonlinear seismic analysis of masonry build-

ings, Engineering Structures 56 (2013) 1787–1799.

[49] K. Meguro, H. S. Tagel-Din, Applied element method used for large dis-905

placement structural analysis, Journal of Natural Disaster Science 24 (1)

(2002) 25–34.

[50] H. Okamura, K. Maekawa, Nonlinear analysis and constitutive models of

reinforced concrete, Gihodo, Tokyo 10.

[51] R. Guragain, A. Dixit, K. Meguro, Development of fragility functions for910

low strength masonry buildings in Nepal using applied element methods, in:

15th world conference of earthquake engineering, Lisbon, Portugal, 2012.

41



[52] A. Karbassi, M.-J. Nollet, Performance-Based Seismic Vulnerability Evalua-

tion of Masonry Buildings Using Applied Element Method in a Nonlinear

Dynamic-Based Analytical Procedure, Earthquake Spectra 29 (2) (2013)915

399–426.

[53] A. Garofano, P. Lestuzzi, Seismic Assessment of a Historical Masonry

Building in Switzerland: The Ancien Hôpital De Sion, International Journal
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