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Abstract
After a damaging earthquake, assessment of the residual seismic capacity is required
for large parts of the building stock. Increased vulnerability of structures together
with the threat of immediate aftershocks call for rapid and objective decision making.
Structural identification has the potential to reduce parameter-value uncertainties of
physics-based models through interpreting measurement data. Significant amounts
of uncertainty are associated with the non-linear behaviour of structures during ex-
treme events such as earthquakes. Therefore, a structural identification methodology
that accommodates multiple sources of systematic modelling uncertainties is used.
Error-domain model falsification (EDMF) enables structural identification through
combining damage grades observed by visual inspection with fundamental frequen-
cies that are derived from ambient vibrations. Parametric uncertainties of a hys-
teretic model are reduced with the two information sources in order to extrapolate
the vulnerability of the building regarding future earthquakes. The applicability of
the methodology is shown using measurements made on a mixed reinforced-concrete
unreinforced-masonry building tested on a shaking table. Based on nonlinear time-
history analyses involving single-degree-of-freedom models, EDMF leads to more
precise, yet robust, vulnerability predictions of earthquake-damaged buildings when
compared with prediction ranges that are obtained without data interpretation.

KEYWORDS
Post-earthquake assessment; residual seismic capacity; model-based data
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measurements

1. Introduction

The assessment of deteriorated structures after a damaging earthquake is a challenging
task that is further complicated by the need for rapid decision making resulting from the
threat of aftershocks. Current practice involves visual inspections that are performed
by certified experts. The goal of such inspections is to tag buildings as either safe or
unsafe for occupancy (Yeo & Cornell, 2009). Due to the relative slowness of building
inspections, important societal and financial losses may result from the unavailability
of structures to either harbour the affected population or to generate economic activity.
Also, despite being thoroughly standardized (through codes such as ATC20 in America
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and AeDES in Italy (Baggio et al., 2007)), visual inspection outcomes are prone to
much subjectivity (Galloway et al., 2014; Goretti & Di Pasquale, 2002; Goretti, Hutt,
& Hedelund, 2017). In addition, slightly damaged buildings may have significantly
increased vulnerability during aftershocks (Esteva, Dı́az-López, Vásquez, & León,
2016; Ghosh, Padgett, & Sánchez-Silva, 2015; Jalayer, Asprone, Prota, & Manfredi,
2011; Jalayer & Ebrahimian, 2017; Raghunandan, Liel, & Luco, 2015). Such increased
vulnerability is not easily captured by visual inspections that mainly provide estimations
of structural performance during the main shock (Marshall et al., 2013). In addition,
difficulties in establishing residual capacity of earthquake-damaged buildings have
contributed to the decision of demolishing buildings (Elwood et al., 2016), which is
ecologically unsustainable. Recently, use of unmanned aerial vehicles to perform rapid
post-earthquake surveys has been proposed (Vona, Cascini, Mastroberti, Murgante, &
Nolè, 2017) to enhance visual inspection. However, determining residual capacities of
deteriorated buildings remains challenging (Marquis, Kim, Elwood, & Chang, 2017).

By combining physics-based models and measurements, structural identification
techniques can help to overcome the shortcomings of relying mainly on visual inspection.
Structural identification in a post-seismic context is defined as the task of improving
knowledge related to the structural state (by the means of a physical model) through
interpreting measurement data. Physics-based models allow the engineer to predict the
behaviour of a structure under actions or conditions that differ from the measurement
context. Such extrapolations are essential for predicting the structural response during
future earthquakes from measurement data that is gathered under different conditions.
Thus, the objective of structural identification is to reduce parametric uncertainty of
physics-based models. In addition, relying on values taken from codes has been shown
to produce over-conservative results (D’Ayala & Paganoni, 2010).

The use of measurement data to assess earthquake-damaged buildings has been
proposed in the past (Dunand et al., 2004). The aim of taking measurements is to
reduce the time that is needed for assessment and to provide quantifiable support for
decision-making. Ambient-vibration measurements provide non-destructive testing data
that can be obtained quickly at a reasonable expense. Although subject to much debate
(Behmanesh & Moaveni, 2015; Gentile & Messina, 2003; Moaveni, Conte, & Hemez,
2009), modal parameters derived from ambient vibrations, and more particularly
fundamental frequencies, have been shown to be indicators of structural damage
(Astorga, Guéguen, & Kashima, 2018; Calvi, Pinho, & Crowley, 2006; Clinton, Bradford,
Heaton, & Favela, 2006; Katsanos, Sextos, & Elnashai, 2014; Michel, Zapico, Lestuzzi,
Molina, & Weber, 2011; Mucciarelli et al., 2004; Vidal, Navarro, Aranda, & Enomoto,
2013).

In the past, many applications of model updating for damage detection and quantifica-
tion based on ambient vibration measurements have been proposed (Chellini, De Roeck,
Nardini, & Salvatore, 2010; Moaveni, He, Conte, & Restrepo, 2010; Shiradhonkar
& Shrikhande, 2011). Also, non-parametric models, such as neural networks(Huang,
Hung, Wen, & Tu, 2003; Maity & Saha, 2004; Zapico & Gonzalez, 2006) or continuous
wavelet transform (Balafas & Kiremidjian, 2015), were used to determine the occur-
rence of structural damage from earthquakes . Goulet, Michel, and Kiureghian (2015)
proposed a city-scale non-parametric rapid assessment methodology based on natural
frequencies derived from ambient vibrations. Bensi, Kiureghian, and Straub (2014)
have integrated Bayesian network and influence diagram into a framework that allows
decision-making for transportation networks. This framework involves probabilistic
updating using incomplete information from sensors (on structures and in a seismic
network) and inspection. Özer and Soyöz (2013) assessed the residual capacity of
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earthquake-damaged reinforced-concrete bridge columns through updated fragility
curves and pointed out the importance of structural identification for residual-capacity
estimation. Trevlopoulos and Guéguen (2016) proposed an operational forecasting of
vulnerability through a sequence of aftershocks based on measured period elongation.
Beside these contributions, few research applications on structural identification of
damaged buildings to predict future behaviour have been reported.

Increased vulnerability of main-shock damaged buildings with respect to aftershocks
was assessed by Iervolino, Giorgio, and Chioccarelli (2014). Jeon, DesRoches, Lowes, and
Brilakis (2015) proposed aftershock vulnerability curves. In addition, Raghunandan et
al. (2015) estimated the residual capacity of a frame structure after undergoing a main
shock without using any data-interpretation technique. Polese, Di Ludovico, Marcolini,
Prota, and Manfredi (2015) proposed a simplified tool to estimate the performance loss
of buildings due to earthquakes, considering lateral-load-resisting parameters as random
variable that is not updated using measurements. Few measurement-based structural
identification studies were performed to reduce the uncertainty of building states.
In addition, most applications treated reinforced concrete or steel moment frames;
very few applications have focused on mixed reinforced-concrete unreinforced-masonry
structures. Yazgan and Dazio (2012) assessed the peak displacement experienced by
a damaged structure during the earthquakes based on a Bayesian updating scheme
for visual inspection (subjective data source) and residual displacement measurements
(objective data source). Aside from this work, few proposals combine subjective and
objective data sources in structural identification of earthquake-damaged buildings.
Jalayer et al. (2011) suggested to use a Bayesian updating framework to update the
short-term increase in seismic hazard following a main shock using data from seismic
network to calculate structural reliability of main-shock damaged buildings without
updating parameters of the structure. Mitrani-Resier, Wu, and Beck (2016) introduced
a “virtual inspector” to help experts in tagging buildings after an earthquake based on
precise knowledge of the earthquake and detailed modelling of the structure. Use of
discrete measurements after an earthquake to update post-seismic residual capacity
was not investigated.

In this paper, a methodology for assessing earthquake-damaged buildings is presented.
The methodology, based on the error-domain model-falsification (EDMF) framework,
allows engineers to combine data from visual inspection with ambient-vibration mea-
surements in order to improve the knowledge of earthquake-damaged structures quickly
and at low cost. Identified model instances are used to predict the vulnerability of the
building with regard to aftershocks or future earthquake actions. In a case study, the
proposed methodology is applied to a mixed reinforced-concrete unreinforced-masonry
structure. The structure has been tested on a shaking table and the predicted behaviour
is compared to the building response observed during multiple shake-table tests.

The paper starts with a description of a measurement-based structural-identification
methodology for earthquake-damaged buildings (diagnosis task, Section 2.2) based on
EDMF (Section 2.1). In the following, a methodology to extrapolate structural predic-
tions for vulnerability prognosis tasks is introduced (Section 2.3). The methodology is
then applied to a mixed reinforced-concrete unreinforced-masonry specimen tested on
a shake table (Section 3). Finally, limitations of the reported case study are discussed
(Section 4) and conclusions are presented (Section 5).
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2. Model-based data interpretation of earthquake-damaged buildings

2.1. Data interpretation based on error-domain model falsification

In the context of the presented post-earthquake-assessment methodology, the aim of
implementing model-based data interpretation is to provide estimates of parameter
values, which define the structural behaviour under seismic actions. Thereby, the
uncertainty related to the residual capacity of earthquake-damaged structures can be
reduced. The framework relies on linear elastic measurements (ambient vibrations)
and damage grades observed by visual inspection to predict seismic behaviour. Such
predictions involve model extrapolation from observed linear behaviour to predicted
nonlinear behaviour.

In the past, data-interpretation techniques using residual minimization have been
extensively used to estimate optimal parameter values. Such optimal parameter values
are then used to perform predictions. More recently, probabilistic approaches for
model-based data interpretation that rely on Bayesian conditional probabilites have
led to parameter-value estimates that take the form of probability density functions
(Beck & Yuen, 2004; Enright & Frangopol, 1999). Often, these density functions point
towards a maximum likelihood estimate for each parameter. Large and changing
model uncertainties that are related to post-earthquake assessment and nonlinear
predictions as well as the unknown and changing correlation between error values of
coupled predictions undermine the robustness of data-interpretation techniques. This is
especially true for techniques that build upon the hypothesis of uncorrelated zero-mean
uncertainty distributions for all measured quantities (Reuland, Lestuzzi, & Smith,
2017).

In order to achieve robust vulnerability seismic-capacity predictions for earthquake-
damaged structures, error-domain model falsification (EDMF) is used in this paper.
EDMF combines multi-sourced biased uncertainties and is not sensitive to estimates
of error correlation that undermines traditional applications of model-based data
interpretation (Pasquier & Smith, 2015a). Correlations between errors related to
multiple predictions cannot be known precisely and assuming no correlation between
errors is unsafe. By avoiding assumptions regarding correlations between predictions,
EDMF sacrifices precision (defined as the range of uncertainty in predictions) in order
to improve accuracy (defined as the probability of including the true, or accurate,
prediction in the predicted range). Thus, using the EDMF methodology no most likely
(or optimal) parameter value and consequently no most-likely prediction is provided.
Also, EDMF results in uniform probabilities of candidate physical models, rather
than informed probability distributions (such as Gaussian distributions) that point to
most likely estimates of parameter values. Through tens of full-scale applications in
several countries, EDMF has been observed to be more easily understandable than
Bayesian updating by the practicing engineers who must combine measurement data
with observations (Smith, 2016).

The model falsification approach builds upon the strategy that measurement data
should ideally be used to falsify inappropriate model instances instead of validating
or optimising single models (Robert-Nicoud, Raphael, & Smith, 2005). This concept,
intuitively understood by engineers, is based on the principles of scientific discovery
(Popper, 1959). Parametric uncertainty of physics-based models is accommodated
through discrete populations of models, which represent a sample of parameter com-
binations and are used to simulate structural behaviour (Raphael & Smith, 1998).
Goulet and Smith (2013) have formalised the concept of model falsification into a data-
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interpretation technique, EDMF, that accommodates systematic and biased modelling
uncertainties in addition to (generally white-noise) measurement uncertainties. EDMF
has been shown to be more accurate than traditional applications of Bayesian model
updating for prognosis tasks that involve extrapolation of linear elastic models (Pai,
Nussbaumer, & Smith, 2018; Pasquier & Smith, 2015a) as well as nonlinear models
(Reuland et al., 2017). Important decisions in the field of asset management (such as
remaining-life calculation, repair, extension and improvement through retrofit) require
extrapolation of behaviour models beyond the scope of measurements.

The cornerstone of EDMF is the comparison of model predictions with measured
behaviour. An initial population of model instances is obtained from sampling the
parameter space. The parameter space is defined using engineering heuristics to define
bounds to the nθ-dimensional parameter space θ = {θ1, ..., θnθ}. A physics-based model
g (·) predicts the structural response gi (θ) corresponding to the nm measured quantities
yi. However, due to inevitable simplifications, omissions and idealisations characterising
any physical model g (·), the prediction of a model instance, gi (θ), is complicated by
model errors ug. Similarly, the measurement, y, is prone to a measurement error uy.
According to Eq. 1, the sum of the model prediction based on the correct, yet unknown,
parameter values θ∗ and the model error equals the sum of the measurement and the
measurement error. Both sides of Eq. 1 equal the true, yet unknown, behaviour of the
system.

∀i ∈ {1, ..., nm} : gi (θ∗) + ui,g = yi + ui,y (1)

In complex open-world applications, such as civil engineering structures, neither
measurement error nor modelling error is known precisely. Nevertheless, heuristic
knowledge is used to estimate ranges of uncertainty. Generally, engineering experience
and knowledge lead to conservative estimates of the uncertainty related to model
and measurement errors. Heuristic estimates of model and measurement uncertainties
usually take the form of bounds. In a few cases when more information is available,
probability distributions that are more elaborate than the uniform distribution are
estimated. Modelling and measurement error are thus described by the random variables
Ug and Uy. Estimating uncertainties contains subjective assessment and may differ
between engineers. However, EDMF has been shown in the past to be robust with
respect to uncertainty misevaluations Reuland et al. (2017). In addition, sensitivity
analyses with respect to estimated uncertainty bounds should be performed.

By combining modelling and measurement uncertainties, the joint probability density
function (PDF) of the estimated total error uncertainty fU is obtained according to
Eq. 2. As a result of the high levels of uncertainty that are associated with models of
complex civil-engineering structures, the joint error pdf fU is generally dominated by
modelling uncertainty. The joint uncertainty PDF fU is subsequently used to define
thresholds, T . Based on these thresholds, model instances are falsified.

fU ∼ Uy − Ug (2)

The threshold values Tlow,i and Thigh,i delimit the shortest interval that assures a
cumulated probability corresponding to a target reliability φd (see Eq. 3). The target
reliability φd is pre-defined and is related to the probability (1 − φd) that the right
parameter combination is falsely discarded. Fixing such a target is a common starting
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point for engineers; many code provisions, from safety factors to fatigue strength curves,
are fixed using pre-defined target reliabilities. When the uncertainty distribution fU
exactly defines the true error distribution, the probability of including the correct
parameter combination in the model set is given by the value of φd. The number of
measurements nm is included in Eq. 3 because in most applications, more than one
measured quantity from one sensor location is available. To account for the simultaneous
comparisons of nm measured quantities with model predictions, the Šidák correction
is employed for multiple hypothesis testing (Šidák, 1967) when calculating threshold
bounds.

∀i ∈ {1, 2, ..., nm} : φ
1/nm
d =

∫ Thigh,i

Tlow,i

fUi(ui)dui (3)

Models that predict residuals between model predictions and measured values that fall
inside the falsification thresholds bounds for all nm measured quantities are candidate
models, θ′′, according to Eq. 4. The combined uncertainty distribution includes heuristic
estimations. Forms of the uncertainty distributions as well as correlations between the
nm quantities are unknown. In such contexts, all candidate models are considered to
be equally likely. The finite number of uncertainty sources undermines the applicability
of the central limit theorem in such cases (Pasquier & Smith, 2015b). A graphical
summary of error-domain model falsification for one measured quantity i is provided
in Fig. 1.

∀i ∈ {1, 2, ..., nm} : Tlow,i ≤ gi(θ′′)− ŷi ≤ Thigh,i (4)
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Figure 1. Illustration of the error-domain model-falsification methodology. Falsification thresholds are derived

from combined uncertainty. Candidate models fall between falsification thresholds for all measured quantities.

Once identified, candidate models are taken to be equally likely because knowledge of informed uncertainty
distributions is poor.

6



2.2. Combining visual inspection and modal measurements to identify
earthquake-damaged structures (diagnosis)

A general framework for structural identification of earthquake-damaged buildings is
proposed, see Fig. 2. Assessing the residual capacity of a building starts with structural
diagnosis. The diagnosis task is an inverse problem that is, by definition, ambiguous;
many causes (model instances) can produce the same effect (measurements) within
a margin of uncertainty. EDMF explicitly accommodates such inherent ambiguity of
inverse problems, and therefore it is well-suited to assess earthquake-damaged buildings.

Initial state Damaged stateEarthquake
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Figure 2. Framework for measurement-based structural-identification methodology for earthquake-damaged

buildings. From a population of models, observations and measurements are used to identify a candidate model
set containing appropriate behaviour models for prediction, see Fig. 4. Data flows A, B and C indicate data
interpretation events.

The proposed assessment of the residual capacity of earthquake-damaged buildings
relies on a non-linear hysteretic model to link the initial building state with the post-
earthquake state. This model simulates the structural response of a building to an
earthquake excitation. In addition, structural quantities, e.g. peak displacements at
the top of the building and forces at the base, experienced by the structure during an
earthquake can be derived from the simulation. Non-linear hysteretic models involve
two type of parameters: linear elastic parameters (such as Young’s modulus) and
non-linear parameters (such as material strength).

In order to reduce the parametric uncertainty of the non-linear hysteretic model,
quantities predicted by the model are compared with measurements of behaviour of
the real structure. This paper proposes two types of measurements to falsify model
instances. These are i) modal properties of the structures representative of the two
building states, before and after the earthquake and ii) the damage grade (DG) observed
by visual inspection, see Fig. 2.

Although modal parameters of the building before and after the earthquake provide
engineers with objective data, such comparisons are not intended to replace visual
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inspection. Instead, these additional data sources are meant to support and complement
visual information from visual inspection. Visual inspection remains valuable and
therefore, it is an essential part of the post-earthquake assessment framework, which
is presented in this paper. In addition, visual inspection is needed to verify collapse
mechanisms that are not covered by structural models, such as out-of-plane mechanisms
as well as damage to non-structural elements that are potentially dangerous (such as
collapse of a chimney).

The DG that is observed through visual inspection is transformed to a physical
quantity in order to enable model falsification. A link between the damage grade and
the maximum displacement, which is sustained by a structure during a seismic event,
has been established in the past (Calvi et al., 2006; Lagomarsino & Giovinazzi, 2006).
The boundaries Sd,i (with i = 1 : 4) between the five DGs that have been defined by
the European Macroseismic Scale (EMS98) are defined through limit-state mechanical
properties of the structure (Grünthal, Musson, Schwarz, & Stucchi, 2001), as recalled in
Equation 5. Dy and Du are respectively yield and ultimate displacement of the structure.
Yield and ultimate displacement depend on parameter values of the structural model
and may be derived either from a push-over curve for sophisticated models or directly
form model parameters for simplified models (such as bilinear single-degree-of-freedom
representations).


Sd,1 = 0.7 ·Dy

Sd,2 = 1.5 ·Dy

Sd,3 = 0.5 · (Dy +Du)
Sd,4 = Du

(5)

By tightly integrating visual-inspection outcomes into the proposed framework,
the observed DGs are used to falsify model instances using EDMF. Two types of
uncertainties arise when DGs are used as data source for falsification. First, the
definitions of boundaries separating the DGs are based on assumptions and empirical
observations. In addition, visual inspection (although it is conducted by experts and
strongly formalized) may lead to observed DGs that differ from the definition in
Equation 5. Uncertainty related to the definition of DG boundaries and the potential
error in an assessed DG form the uncertainty distribution (εDGbound). As stated before,
the bounds of this uncertainty have to be derived from engineering heuristics. In
absence of precise information, a conservative range of ±50% is proposed for the damage
boundary definition value. Observations from past post-seismic building assessments
may help to derive more precise uncertainty ranges in the future. In addition to
DG defintions, various sources of model uncertainty are associated with maximum-
displacement predictions. These uncertainties, εmodel, depend on the selected model
and need to be estimated using engineering judgement. Since exact values of the error
cannot be known, a conservative estimate of the model error should be provided by
the engineer.

The quantification of an observed DG results in intervals for the maximum displace-
ment. Thus, the equation of model falsification (Eq. 4) is adapted to accommodate a
measured interval instead of a single measured value. Yield and ultimate displacement
of the structure are unknown parameters and therefore the boundaries between the
DGs Sd,i (θ) depend on the model instance. Thus, for an observed DG j, Eq. 6 gives
the condition for the predicted maximum displacement dmax (θ) to be retained in the
candidate model set.
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Sd,j−1(θ) + εDGbound ≤ dmax(θ) + εmodel ≤ Sd,j(θ) + εDGbound (6)

Similarly to Eq. 3, threshold values, Tlow,DG and Thigh,DG, on the total error un-
certainty distribution of UDG = εDGbound − εmodel are calculated and subsequently
used to falsify model instances as presented in Eq. 7. A graphical summary of model
falsification based on observed DGs is provided in Fig. 3.

{
dmax(θ)− Sd,j−1(θ) ≥ Tlow,DG
dmax(θ)− Sd,j(θ) ≤ Thigh,DG

(7)

The definition of the boundaries bounding DG1 and DG2 are independent of the
ultimate displacement Du. Thus, no reduction of the parameter uncertainty related to
the ultimate displacement Du can be achieved for observed DGs lower than DG3.
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Figure 3. Illustration of the methodology of model falsification using the observed damage grade (DG). For
an observed DG j the lower threshold depends on the lower bound, (Sd,j−1, of the range attributed to DG j
and the upper threshold depends on the higher bound, Sd,j , of DG j.

2.3. Vulnerability prognosis for earthquake-damaged structures

Although identifying structural properties of a building after an earthquake is an
important step, it is not the final objective of post-earthquake building assessment. The
objective of the proposed methodology is to assess the residual capacity of a building
to withstand future earthquake actions. Thus, the candidate model set that has been
identified through EDMF is used to predict the structural response of a damaged
building under future earthquakes of varying intensities.
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Predicting the response of a damaged building to further seismic excitation is
a forward problem. As ambient-vibration measurements are used and earthquake
actions are simulated, model predictions involve extrapolation (for example, loading
differs from the measurement conditions). Structural behaviour during aftershocks or
future earthquakes differs significantly from measurement configurations (i.e. ambient
vibrations). Thus, inaccurate estimations of total prediction uncertainties can lead to
biased and potentially unsafe extrapolations (Pasquier & Smith, 2015a).

Uncertainties governing seismic displacement predictions largely differ from iden-
tification uncertainties, which are related to modal properties derived from ambient
vibrations. Therefore, prediction uncertainties, Uq, need to be re-evaluated and may dif-
fer from identification uncertainties, Ug (see Eq. 2). The behaviour prediction, referred
to by the random variable q, are obtained by combining the remaining parametric
uncertainty in the candidate model set (see Eq. 4) with the model-prediction uncer-
tainty Uq, as shown in Eq. 8. A Monte-Carlo combination scheme is implemented for
uncertainty combination.

q = g (θ) + Uq (8)

Since prediction is a forward problem, model uncertainties are added to the predicted
values, as opposed to identification uncertainties that are subtracted from the combined
uncertainty (as identification is an inverse problem, see Eq. 2). For instance, a model
that is considered to overestimate displacement (identification uncertainty, ug in Eq.
1, is biased in the negative direction) leads to falsification thresholds that are biased
towards higher displacement values. The prediction uncertainty of such a model, which is
added to the predicted displacement values, presents a bias towards lower displacement
values.

After estimating prediction uncertainties, a bounded prediction interval can be
calculated involving a similar procedure than to derive identification thresholds, see Eq.
3. Therefore, decision makers define a target probability φp that is used to calculate
the prediction interval. The probability that the right model prediction is included in
the prediction range has a lower bound φ = φp · φd. This lower bound holds true if the
uncertainty is correctly estimated (Pasquier & Smith, 2016).

A common approach for estimating the vulnerability of an earthquake-damaged
building involves determination of the probability of the building exceeding EMS98
DGs for a given earthquake level. The prediction uncertainty and the uncertainty
of DG definitions are combined through a Monte-Carlo sampling process with nsp
samples. A sufficient number of samples (nsp) is used to guarantee stable distributions
for the combined prediction uncertainty. Fig. 4 summarizes the process of uncertainty
combination for structural vulnerability prognosis using a candidate model set resulting
from model falsification.

3. Case study - shake-table tests on a mixed concrete masonry building
at half-scale

A mixed reinforced-concrete unreinforced-masonry building (Fig. 5) is analysed to
illustrate the framework, which is proposed in Fig. 2. The four-story building has
been tested at half-scale on a shake table by Beyer, Tondelli, Petry, and Peloso (2015).
Multiple shake-table sequences characterized by increasing amplitudes were tested and
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realisations is stored and the process is repeated over a defined number of Monte-Carlo samples.

between each run, ambient vibrations were simulated. The peak ground acceleration
(PGA) characterizing each test run has been measured. The input motion applied by
the shake table is the east-west component measured at the ground station of the
Ulcinj-Hotel Albatros station during the April 15th, 1979 Montenegro earthquake.
This accelerogram has been scaled to increasing PGAs for the shaking-table tests. The
evolution of natural frequencies and DGs under shaking tests with increasing PGAs is
reported in Table 1. A gradual reduction in the natural frequencies with cumulating
damage can be observed. Stiffness recovery that can be observed after shaking test
5 can be explained by the low amplitude of white-noise (WN) excitation (order of
magnitude lower than for all other WN tests). A detailed description of the shaking
test observations and illustrations of the deteriorated specimen can be found in Beyer
et al. (2015).

As revealed by tests on mixed unreinforced-masonry reinforced-concrete structures,
combining both materials results in a better vertical distribution of damage (Paparo
& Beyer, 2013). In addition, strength of combined units increases until failure of the
unreinforced-masonry walls. Therefore, combined structures have been found to show
no strength degradation (Paparo & Beyer, 2014). Finally, an important aspect of the
tested specimen is the smooth stiffness degradation. This smooth stiffness degradation
is reflected by the gradual reduction in natural frequencies (see Table 1) that results
from multiple tests with increasing amplitudes of shaking.

The use of a laboratory specimen for illustration does not necessarily reflect realistic
conditions for post-earthquake assessment. The idealized boundary conditions and the
absence of secondary elements considerably reduce uncertainty when comparing the
real structure with the physics-based model. In addition, pseudo-ambient vibration
conditions, involving higher acceleration amplitudes and perfect white noise, increase
the quality of measurements. However, no case-studies on real structures that have
been measured before and after an earthquake to enable a comparison of behaviour
prognosis with real behaviour are available for building types that compare to existing
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Table 1. Evolution of natural frequencies due to cumulative damage of the specimen. Smooth stiffness

degradation is observed as natural frequencies are reduced gradually. WN refers to white-noise tests performed
after the shaking test to derive natural frequencies.

Test f1 Reduction f1 f2 WN level DG PGA
[Hz] [%] [Hz] [mm/s2] [m/s2]

3 6.6 -16.5 24.1 176 1 2.1
4 5.8 -26.6 23.8 176 2 3.4
5 6.3 -20.3 23.9 26.2 2 3.9
7 5.3 -33 23.2 175 2 7.5
8 5 -37 21.6 176 3 6.3
9 - - - - 4-5 14.7
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buildings in Europe. Consequently, this study provides an upper-bound performance
feasibility indicator for the proposed methodology.

3.1. Identification scenarios

The building state after the sixth shaking event is evaluated. Progressive deterioration
of the specimen due to multiple previous shaking events are accounted for by simulating
all the six previous shakes. The maximum PGA during the first six shake tests is 7.5
m/s2. The initial fundamental frequency is f0 = 7.8Hz and the fundamental frequency
measured after the sixth shaking is fpe = 5.3Hz. Visual inspection performed after the
test reported a DGV I = 2.

Five scenarios are defined by availability of measurements. The scenarios are chosen
to represent realistic situations of post-earthquake assessment. Scenarios S1 and S2

involve a single measurement source, either fpe (data interpretation event C in Fig.
2) or DGV I (data interpretation event B in Fig. 2). Scenarios S3 and S4 involve
two data sources, either fpe and DGV I or the fundamental frequencies before (data
interpretation event A in Fig. 2) and after the earthquake (f0 and fpe). Finally Scenario
S5 includes the assumption that all three sources of measurements are at disposal. The
five identification scenarios are summarized in Table 2.

Table 2. Summary of scenarios regarding available measurement sources

Scenario Measurement sources for identification

S1 Post-earthquake frequency only
S2 Post-earthquake visual inspection only
S3 Post-earthquake frequency and inspection
S4 Frequencies before and after earthquake
S5 Frequencies before/after earthquake and visual inspection

3.2. Structural model

A single-degree-of-freedom (SDOF) model is used to model the test structure. SDOF
models involve the assumption that the behavior of a structure, as well as the structural
damage, is governed mostly be the fundamental mode. Given the vertical distribution
of damage and the smooth and gradual stiffness reduction this assumption is deemed
acceptable for the tested structure. In addition, the modal mass of the first mode
exceeds 75% of the total mass. Finally, the symmetrical design and the unilateral
shaking strongly reduce influence of torsional effects structural damage.

Nonlinear structural behavior is modelled using a bilinear law, which is characterised
by initial stiffness, k0, yield force, VR, ultimate displacement, Dult, and post-yield
hardening, hardpy (defined as a percentage of the initial stiffness). The hysteretic
behaviour relationship that is used to predict the structural behaviour during an
earthquake is the modified Takeda relationship (Takeda, Sozen, & Nielsen, 1970). Two
parameters govern unloading (α) and reloading (β) behaviour in the Takeda model.
Finally, an overall damping ratio, z, is defined.

The initial fundamental frequency, f0, depends on the initial stiffness, k0, and the
modal mass, mi, of the first mode, as defined in Eq. 9. The post-earthquake fundamental
frequency, fpe, is defined based on the secant stiffness to the reloading point that is
principally governed by the maximum displacement, dmax, that the structure undergoes
during an earthquake sequence and stiffness degradation for reloading, β (Eq. 10).
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f0 =

√
k0/m1

2π
(9)

fpe =

{
1

2π

√
Dy·k0+kpy·k0(dmax−Dy)
Dy+(1−β)·(dmax−Dy) ·

1
m1

, if dmax > Dy

f0 , otherwise
(10)

Relying on a SDOF model involves the assumption that structural behaviour during
an earthquake is mostly governed by the first mode. Thus the SDOF model that is
used to simulate the hysteretic response of the building is defined by the fundamental
mode. A sensitivity analysis is carried out to define the primary parameters, which
have a relative importance superior to five percent for one of the predicted quantities.

The dynamic parameters of the intact building are derived from a lumped-mass
model of the test structure. Young’s moduli of reinforced concrete (20-35 kN/mm2)
and of in-plane-loaded masonry (4-12 kN/mm2) are parameters of the lumped-mass
model as well as well as density of reinforced concrete (2.3-2.5 t/m3) and masonry (1.4
to 1.8 t/m3)). No geometric uncertainty is considered in this application.

A sensitivity analysis is carried out in order to identify the parameters that have a
significant contribution (exceeding 5%) on predicted values (frequency and maximum
displacement). Based on the sensitivity analysis, three parameters are discarded from
the primary parameter set: densities of reinforced concrete and masonry and the α
parameter governing unloading in the Takeda model. The remaining seven primary
parameters are summarized in Table 3 (parameters θ1 - θ7) with the ranges of parameter
values and the number of divisions for grid sampling.

Thus, the initial model population for hysteretic nonlinear time-history analyses
contains 8640 model instances that are obtained from grid-sampling the parameter
space. Ultimate drift capacity of the structure influences the DG predictions, however it
cannot be identified based on an observed DG2 and it does not influence the nonlinear
simulations.

Table 3. Primary parameters for identification with the corresponding initial ranges
and divisions. The initial model population contains 6912 model instances.

Parameter Description Unit Range Divisions

θ1 Young’s modulus Concrete kN/mm2 [20, 35] 4
θ2 Young’s modulus Masonry kN/mm2 [4, 12] 5
θ3 Yield limit (VR) kN [100, 1100] 6
θ4 Damping ratio (z) % [2.5, 7.5] 3
θ5 Post-yield hardening (hardpe) % [0, 15] 6
θ6 Reloading parameter (β) − [0, 0.6] 4
θ7 Ultimate drift (Dult) % [0.4, 1.2] 5
θ8 Earthquake amplitude (PGA) % [50,200] 4
θ9 Earthquake Signal - - 13

3.3. Sources of uncertainties

Uncertainties resulting from multiple error sources are assessed for the shake-table
case study. A measurement uncertainty, associated to measurement precision and to
time-domain to frequency-domain transformation, is estimated to be a native Gaussian
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zero-mean distribution with a standard deviation of 0.2 Hz. This is compatible with
previous analyses (Goulet, Michel, & Smith, 2013).

Several sources of modelling uncertainties are estimated. Due to poor knowledge
of uncertainty distributions, all sources of model uncertainties are assumed to follow
uniform (uninformed) distributions. The error sources affect the predicted fundamental
frequencies as well as the predicted maximum displacements during the earthquake.
However, as uncertainties mainly affect structural stiffness, uncertainties may be higher
for displacement than for frequencies. Relative uncertainties are defined according to
Eq. 11, therefore negative values relate to an overestimation of a physical quantity by
the chosen model.

εg =
Truth−Model

Truth
(11)

Ambient vibrations are used to derive the fundamental frequency. However, such
ambient excitation sources are characterized by very low amplitudes. A bilinear force-
displacement relationship is unable to reproduce the aforementioned higher stiffness at
low amplitudes of excitation. Thus, the model is estimated to underestimate the natural
frequency derived from ambient vibrations by a maximum of 15%. In applications
involving real buildings, this error is considerably higher due to the contribution of
non-structural elements and to the even lower levels of excitation.

A lumped-mass model of the building that is used to predict initial frequencies. Such
a model idealizes boundary conditions and connections between structural elements
to be perfectly fixed. In addition, the slab is assumed to be rigid in the horizontal
direction. Based on the preceding considerations, modelling uncertainties resulting from
the lumped mass model are considered to be biased towards stiffness overestimation.
Given the simplified nature of the model, engineering heuristics lead to an estimate of a
minimum uncertainty bound of 20% on predicted stiffness values. Therefore, modelling
uncertainty is taken to be bounded between −20 and +10 percent for the natural
frequency (depending on the square-root of stiffness) and −20 and +40 percent for
the maximum displacement. Uncertainties on displacement is evaluated to be higher,
as displacement linearly depends on stiffness. The structural response to earthquake
actions is simulated using SDOF models. In addition to the error introduced by relying
to lumped-mass models, an SDOF representation overestimates displacements when
compared to MDOF representations (Lestuzzi, Belmouden, & Trueb, 2007). Therefore,
a displacement uncertainty ranging from −30% to +20% is assumed.

The prediction of the frequency reduction due to post-yield displacements (damage)
involves estimating the damaged stiffness. A simplified (and conservative) approach
consists of using the secant stiffness to the maximum displacement (see Eq. 10). This
simplification may lead to an underestimation of post-earthquake frequencies. Indeed,
under vibrations with low amplitudes, structures may regain higher stiffness values
after the shaking event (Michel et al., 2011). In order to accommodate this error, an
uncertainty range between 0 and 10 percent is estimated. This uncertainty is exclusively
positive because the conservative approach cannot lead to an underestimation of
stiffness.

Finally, the uncertainty related to the DG definition from the maximum displacement
is taken into account through a relative error of ∓50% on the boundary value (Sd,i). This
means for instance that the boundary between DG2 and DG3, defined to be 1.5 times
Dy is described as a uniform distribution bounded by the interval [0.75 ·Dy, 2.25 ·Dy].
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Table 4. Estimates of the ranges of modelling-uncertainty sources.

Source Nature Applies to Error bounds

Ambient vibrations Uniform, Relative Natural frequency [0%, 15%]
Structural model Uniform, Relative Natural frequency [−20%, 10%]

Displacement [−20%,+40%]
Stiffness updating Uniform, Relative Natural frequency [0%,+10%]
SDOF approximation Uniform, Relative Displacement [−30%,+20%]
DG definition Uniform, Relative DG boundaries [−0.5, 0.5] ·Dy

In absence of additional information, such an approach leads to conservative results.
Table 4 summarizes the estimated uncertainty distributions related to the various error
sources.

In addition to the epistemic sources of modelling uncertainty described above, three
parameters add to the combined uncertainty distribution. Such parameters, which have
no significant influence on simulated structural behaviour are considered to be secondary
parameters. The secondary parameters are respectively density of masonry and concrete
as well as the α-parameter governing unloading in the modified Takeda hysteretic law
(see Section 3.2). The numerical influence of the three secondary parameters is simulated
using 2000 Monte-Carlo samples and treated as supplementary source of uncertainty.
The relative importance of the secondary parameters depends on the intensity of the
simulated earthquake, however in all cases the influence remains negligible compared
with the model uncertainties (less than 4% of the combined uncertainty values).

3.3.1. Taking into account ground-motion uncertainty

The uncertainty related to the ground motion is taken into account through adding two
parameters that are related to the signal and intensity of the earthquake. If no direct
measurement of the sustained earthquake is available, multiple earthquake signals are
simulated to reflect accelerogram uncertainty. In the present case study, 12 accelerograms
are randomly selected from the European Strong Motion Database (Ambraseys et al.,
2004) under the constraint to provide a large variety of earthquake characteristics,
such as epicentral distances, soil conditions and magnitudes. The structural response
to these 12 accelerograms is simulated in addition to the true shake-table input signal.
Fig. 6 shows the characteristics of the 12 selected acceleration signals: response spectra
(a) as well as magnitude and epicentral distance (b). All the acceleration spectra (see
Fig. 6,a) are normalized with respect to the peak ground acceleration (PGA). In total,
13 input signals scaled to four PGA values (ranging from 50 to 200 percent of the
true PGA) are simulated (see earthquake-signal-related parameters θ8 and θ9 in Table
3). Thus, in total 52 earthquake signals are simulated for each model instance (13
ground-motion signals and 4 PGA scalings). The simulation of 52 earthquake signals is
performed to account for the uncertainty resulting from absence of precise knowledge
of the actual ground motion. Structural performance may significantly change with
respect to the type of earthquake. Additional seismological knowledge may reduce the
earthquake uncertainty. However, such seismological considerations fall outside the
scope of this paper.

3.4. Results of structural identification

In the following, the results of EDMF for the structural identification of the laboratory
structure after earthquake excitation is presented. Fig. 7 shows EDMF performed
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on the post-earthquake fundamental frequency for the identification scenario S4 (as
defined in Table 2). Combining uncertainty sources results in a biased total uncertainty
distribution. EDMF enables the engineer to define biased error distributions in a
systematic and transparent manner, as described in the previous section.

In addition to the fundamental frequencies, DGs derived from visual inspection are
used to falsify model instances. Fig. 8 provides an example of EDMF based on the ob-
served DG (data interpretation event B in Fig. 2). Visual inspection performed after the
shaking-table test revealed a DG2. Translated to engineering quantities, a DG2 means
a maximum displacement included in the interval [Sd,1 = 0.7 ·Dy;Sd,2 = 1.5 ·Dy]. The
estimated uncertainties related to the displacement prediction and damage grade
definitions (Table 4) define falsification thresholds for Eq. 7. Fig. 8 illustrates the
identification scenario S3, thus additional model instances are falsified based on the
second available data source, the post-earthquake fundamental frequency, and may fall
in between the thresholds for visual inspection. Fig. 7 and Fig. 8 are based on a target
identification probability, φd = 0.95 (see Eq. 3).

The reduction that can be achieved in the number of model instances, and thus
the reduction in parametric uncertainty, is most significant for scenario S5, involving
the most measured information, see Fig. 9. However, the improvement from two
measured quantities to three measured quantities remains low. The Šidák correction
(see Eq. 3) widens the threshold bounds when additional measurements are added.
Also, redundancy in measured information can result in low increases in parametric-
uncertainty reduction. Therefore more information does not always result in more
falsified model instances. As can be seen in Fig. 9, the observed DG is inefficient
compared to frequency measurements in terms of model instance falsification based on
a single measurement source.
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The earthquake uncertainty, related to either the intensity or the signal, is not
significantly reduced through EDMF-based data interpretation, as only very few
earthquake instances can be falsified (identical values of percentage of falsified model
instances in Fig. 9 mean no signal instance is falsified). In addition, the reduction
in parametric uncertainty that is not related to earthquake signals is significantly
reduced when little information regarding the main shock is available. As shown in
Fig. 10 for Scenario S5, earthquakes with weaker PGA (divided by half) than the real
earthquake are falsified for most earthquake signals (see Fig. 10). On the other hand,
for earthquakes with higher PGA, parameter combinations exist that are compatible
with all measured sources. No significant changes in the falsification performance can
be observed with respect to magnitude or epicentral distance (see Fig. 6).
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3.5. Results of vulnerability prediction

The candidate models are used to predict the maximum displacement that the structure
undergoes during the subsequent shake-table tests. Fig. 11 summarizes the displace-
ment predictions of the shake test that follows structural identification for the five
identification scenarios. An average drift of 0.13% has been observed during the subse-
quent shaking test, characterized by a PGA of 3.6m/s2. The average drift is defined
as the displacement of the top of the building (roof) divided by the total height of
the structure. The prediction intervals in Fig. 11 correspond to a target prediction
reliability (φp) of 0.99. It is recalled that the total reliability for prediction has a lower
bound of φd · φp. A target identification reliability, φd, of 0.95 is used in this case, thus
an overall probability of 0.94 is obtained.

The parameter-based prediction uncertainty can be significantly reduced using struc-
tural identification. Indeed, for the chosen target reliability, the predicted displacement
interval is reduced by 59 to 78 percent for the three shaking instances following struc-
tural identification when all measurement sources are used for falsification. The most
significant reduction in the displacement prediction range is obtained for scenario S2,
visual inspection only, with reductions of up to 92%. However, as can be seen in Fig.
11, the prediction range for this scenario does not include the measured average drift
that is used as a true reference value. Thus, relying on no measurement source except
the observed DG may lead to potentially non-conservative predictions.
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Figure 11. Displacement prediction intervals for the shake-table test following structural identification.

Prediction intervals correspond to a target reliability of 0.94.

Although the reduction in model instances resulting from visual inspection is the
least efficient of all identification scenarios, the related prediction interval shows highest
precision (narrow prediction interval). For the initial model population, most model
instances predict low values of displacement and EDMF based on visual inspection
retains most of these model instances as candidate models. Therefore, the observation
that visual inspection alone outperforms any considerations of fundamental frequencies
in terms of displacement prediction precision may be linked to the initial model
population of this specific case study.
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Identification scenarios involving fundamental frequencies of the structure provide
accurate predictions, as the measured drift is included in the predicted interval. In
addition, the comparison between identification scenarios S3 and S5 in Fig. 11 shows
that including the initial fundamental frequency does not provide a significant increase
in the prediction precision. A similar tendency is observed between scenario S1, based
on the post-earthquake frequency, and scenario S4 based on both fundamental fre-
quencies, before and after the earthquake. Knowledge of the earthquake signal and
intensity further improves the displacement-prediction precision and still provides
robust predictions (see Fig. 11). This observation is valid for all the scenarios involving
fundamental frequency measurements. As a conclusion, within the proposed framework,
knowledge of ground-motion characteristics (through a dense seismic sensor network)
is more important than knowledge of initial modal properties. In addition, as can be
derived from scenario S4, the methodology also applies to buildings that are equipped
with devices with permanent monitoring, which measure initial and post-earthquake
frequencies in addition to giving information on the main shock.

Estimating the model error involves engineering judgement and may therefore be
seen as prone to subjectivity. However, the displacement prediction intervals for the
studied structure show that EDMF provides robustness with respect to model-error
estimations (Fig. 12). In Fig. 12, all model errors are varied linearly with respect to the
estimated values presented in Table 4. For a model error that is estimated at 25 percent
of the values derived from engineering heuristics, all model instances are falsified. The
falsification of the entire model population indicates either a wrong model class or a
miss-evaluation of the modelling-error uncertainty distribution. Such a falsification of
entire model populations enhances the robustness of data-interpretation methodologies
with respect to inaccurate uncertainty estimations and cannot be achieved for structural
identification methodologies relying on independent zero-mean normal uncertainty
distributions (Pasquier & Smith, 2015a; Reuland et al., 2017). Unless modelling error
is taken as half of the estimated bounds, the measured average drift lies within the
predicted interval, which is established for a target reliability of 0.94.
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The inflection in the tendency of widening prediction ranges that can be observed
around 75 percent for prediction intervals with signal knowledge and around 150 percent
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in absence of signal knowledge (see Fig. 12) results from the particular initial model
population that predicts low displacement values with higher probability. Therefore,
when the falsification thresholds are widened due to higher model errors, the prediction
distribution shows higher probabilities for lower displacement values. This behaviour
does not occur when prediction ranges are based on a target prediction reliability, φp,
taken equal to 1.

The displacement-demand estimation is an important parameter for vulnerability
predictions of structures and therefore, the reduction in the prediction range that
can be obtained through structural identification is promising. Data interpretation
involving nonlinear time-history analyses based on a hysteretic Takeda SDOF model is
shown to result in more precise, yet robust, structural-behaviour prognosis.

The final objective of structural identification in a post-earthquake context is to
estimate the vulnerability of the building with regard to future earthquakes or seismic
aftershocks. To meet this objective, identified candidate models are used to predict the
probability of the building to reach a given DG for various earthquake amplitudes (see
Fig 4). Since shake table tests are analysed in the case study, the DG for the three
subsequent sequences is predicted instead of complete vulnerability curves.

The predicted DGs for the three subsequent shake-table tests at respectively 3.6,
6.3 and 14.8 m/s2 are presented in Fig. 13. Similarly to the observations that are
made regarding displacement predictions, candidate models that are identified using
observed DGs lead to less conservative predictions than candidate models obtained
from fundamental frequencies and may therefore result in non-conservative decision
making. In addition, predictions based on the initial model population do not provide
conservative estimates and thereby underline the importance of structural identification
for post-earthquake assessment.

P
ro

b
ab

il
it

y

1

PGA = 3.6 m/s2 PGA = 6.3 m/s2 PGA = 14.8 m/s2

Damage Grade (DG) 2 Damage Grade (DG) 3

0 54321 0 54321 0 54321

Scenario Scenario Scenario

Damage Grade (DG) 4 Damage Grade (DG) 5

0

P
ro

b
ab

il
it

y

1

0

P
ro

b
ab

il
it

y

1

0

Figure 13. DG predictions for the three shake tests following identification. The DGs observed on the test
specimen are highlighted with a dark border.

The DG prediction made with the candidate model set resulting from EDMF
involving all three data sources predicts the correct DG with a probability of more
than 50% for all three shaking events. The poorest result is obtained for the lowest
excitation, where the candidate models predict a higher DG. As this prediction is
conservative, this lack of precision is deemed acceptable.

As for displacement predictions, the availability of the undamaged fundamental
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frequency does not influence the predicted vulnerability. The predictions of scenarios
S1 and S4 respectively S3 and S5 do not show any significant deviation. However, this
observation may only apply to reinforced structures that show sufficient post-yield
capacity and therefore loose stiffness gradually. The gradual decrease of the natural
frequency observed during the shaking tests with increasing levels of actuation also
indicates smooth stiffness reduction. Enhanced knowledge of the earthquake signal and
amplitude only slightly improves the predictions, therefore the DG predictions with
signal knowledge are not represented.

4. Discussion and limitations

The structure presented in the case study is a laboratory specimen. Therefore, several
sources of uncertainties that would complicate the identification of full-scale structures
in service are not present in this case study. Soil-structure interaction and uncertain
stiffness contributions from secondary elements are, for example, not present in a
laboratory environment. In addition, in real post-earthquake assessment campaigns,
other factors (for example, debris and leakage) increase the measurement error. However,
it is assumed that measurement errors will remain small in comparison with the
modelling errors. This is also true for the effect of changing temperatures between
two measurements, as long as boundary conditions are not changed by factors such as
frozen soil. In addition, the structure was tested on a shake table and therefore, the
excitation was well controlled and unidirectional, which limits torsional contributions
to damage. The authors recognise that relying on a shake-table specimen (at half scale)
provides an upper-bound estimate to the performance of the proposed methodology.
However, as a first application, a test structure that has no additional uncertainty
coming from non-structural walls is preferred, in order to provide a comprehensive
comparison between model predictions and observed behaviour.

The conclusions drawn from the present work apply to one type of model (SDOF) and
one type of building (mixed reinforced-concrete and unreinforced-masonry building).
A simplified model (such as the SDOF model) presents multiple advantages and also,
simulation time for large model populations remains acceptable. As the structural
response is governed by a single hysteretic law, nonlinearity affects the entire structural
response, while in more complex models, such as equivalent-frame models or multiple-
degree-of-freedom models, nonlinearity is often lumped into specific nodes. Therefore,
damage (defined as a reduction in stiffness) has a global effect on structural responses
(displacements and fundamental frequency) in such a SDOF model. The vertical
distribution of cracks in mixed buildings makes the use of SDOF models an acceptable
choice if uncertainties are taken into account. In addition, equivalent-frame models are
known to have limited reliability in the elastic range and thus, for modal properties. To
date, use of more complex models than SDOF has not been justified by superior results.
Also, the goal of the proposed methodology is to identify residual seismic capacity, which
needs a less refined model as compared to damage-detection applications. Nevertheless,
extension to other models and influences of the choice of higher model complexity on
simulation is the subject of ongoing work.
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5. Conclusions

A structural-identification strategy for earthquake-damaged buildings based on dynamic
measurements and visual inspection is proposed. Parameter values of a simple physics-
based model are identified in order to enhance the estimations on how the building
will behave during future seismic actions. Conclusions are as follows:

• Implementing EDMF reduces the uncertainty related to the state of damaged
buildings by providing extrapolation predictions that are robust with respect to er-
roneous modelling-uncertainty evaluations and unknown uncertainty correlations.
Therefore model-based data interpretation offers more precise estimations of the
vulnerability of damaged buildings regarding future seismic actions compared
with predictions that do not involve measurement-data interpretation.
• The methodology offers the possibility to simultaneously include information

from subjective and objective data sources for the structural-identification task.
The combination of visual inspection and ambient-vibration measurements leads
to a robust identification of earthquake-damaged buildings.
• Visual inspection is a valuable tool to assess damaged structures. However, if it is

the only source of information, erroneous conclusions may be drawn concerning
the residual capacity of the structure because of high uncertainties related to
the translation of visual damage grades to physical quantities, such as maximum
displacements.
• EDMF allows the engineer to use simplified models to represent the structure,

provided that the uncertainties resulting from omissions and idealizations are
explicitly taken into account and combined in a transparent manner when falsifi-
cation thresholds are calculated.

The results obtained for this case study show that the initial fundamental frequency,
derived from measurements performed prior to an earthquake, did not contribute
significantly to the uncertainty reduction. Future work involves investigating whether
this promising finding is generalisable to similar building types and structural models.
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