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ABSTRACT 13 

1.  Abstract14 

A great challenge associated with urban growth is to design for energy efficient and healthy 15 

built environments. Exploiting the potential for natural ventilation in buildings might improve 16 

pedestrian comfort and lower cooling loads, particularly in warm and tropical climates. As a 17 

result, predicting wind behavior around naturally ventilated buildings has become important 18 

and one of the most common prediction approaches is computational fluid dynamics (CFD) 19 

simulation. While accurate wind prediction is essential, simulation is complex and predictions 20 

are often inconsistent with field measurements. Discrepancies are due to the large 21 

uncertainties associated with modeling assumptions, as well as the high spatial and temporal 22 

climatic variability that influences sensor data. This paper proposes metrics to estimate the 23 

expected predictive performance of sensor configurations and assesses their usefulness in 24 

improving simulation predictions. The evaluations are based on the premise that measurement 25 

data are best used for falsifying model instances whose predictions are inconsistent with the 26 

data. The potential of the predictive performance metrics is demonstrated using full-scale 27 

high-rise buildings in Singapore. The metrics are applied to assess previously proposed sensor 28 
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configurations. Results show that the performance metrics successfully evaluate the 1 

robustness of sensor configurations with respect to reducing uncertainty of wind predictions 2 

at other unmeasured locations. 3 

Keywords: Computational fluid dynamics (CFD); System identification; Sensor 4 

configuration; Performance evaluation; Simulation prediction 5 

2.  Introduction 6 

The continuous growth of the global population living in cities has increased interest in 7 

outdoor thermal comfort [1], air quality [2, 3], safety [4], and particularly in warm climates, 8 

building energy consumption and natural ventilation [5]. The wind environment has a primary 9 

role in mitigating these issues and, consequently, improving knowledge of wind behavior 10 

around buildings has been the focus of much recent research work (a detailed review can be 11 

found in [6]). The most common approach for wind prediction is based on computational 12 

models, such as those used in computational fluid dynamics (CFD) simulations. 13 

Today, CFD simulations are used to overcome constraints of laboratory and field 14 

measurements [5], since they provide detailed information on wind flow and allow treatment 15 

of complex geometries with a high degree of repeatability. Although CFD simulations 16 

provide reasonable predictions, the accuracy is not superior to laboratory and field 17 

measurements [6]. Uncertainties are large in both modeling and measurements and should be 18 

taken into account [7]. 19 

Tamura [8] and Schatzmann et al. [9] suggested that measurements, both laboratory and field, 20 

should be used in a complementary manner to ensure that simulation results are sound, even 21 

when using modeling methods of high predictability, such as the large eddy simulation (LES) 22 

[8]. However, the use of simplified arrays of roughness elements in laboratory measurements 23 

results in idealized representations of the parameters affecting wind flow [10], and it is often 24 

unclear how sensitive wind predictions are to these parameter uncertainties [11]. Moreover, 25 

certain physical phenomena, such as buoyancy-driven natural ventilation, cannot be fully 26 

represented in reduced-scale laboratory experiments [5]. 27 

In these situations, field measurements are essential for ensuring that modeling is sound, 28 

especially in studies involving high-rise buildings [10, 11]. Nevertheless, field measurements 29 

have been rare, and sensor placement still remains a challenging task [12]. Most of earlier 30 
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studies have used historically measured data and only a few configured full-scale 1 

measurement campaigns [13-16]. In most cases, sensors locations have been selected based 2 

on educated guesses, although some researchers have investigated optimal sensor 3 

configurations using systematic and data-driven strategies [17-20]. Such strategies require 4 

prior knowledge of data distributions and spatial correlations, obtained from a denser pre-5 

deployment of sensors, a task that is however both costly and time-intensive. A recent study 6 

in Singapore has used the concept of maximum entropy for sensor selection, in a similar way 7 

to [21], yet modeling and measurement data were assumed to be free of errors and sensor 8 

placement was performed iteratively, disregarding the mutual information content between 9 

sensor locations.  10 

All of these studies employed data from sensor locations placed outside the urban canopy, or 11 

on building rooftops, although reports on methods to obtain representative data suggest that, 12 

unless interested in topographic-generated climate patterns, sensor locations subject to local 13 

and mesoscale effects should be avoided and target measurement areas of acceptable 14 

homogeneity at screen-level (~1.5 m) or high-level (about the roughness sub-layer) should be 15 

selected [22]. Wind flow varies considerably over space and time and measurements within 16 

the urban canopy depend on the location of sensors and sampling frequency [23, 24]. In 17 

addition, it has been shown [7] that even under steady ambient conditions, large discrepancies 18 

occur between measured and predicted values that are caused by low frequency variations of 19 

the wind flow.  20 

A recent study done by the authors explored systematic sensor placement strategies that are 21 

applicable to time-dependent wind prediction within the urban canopy, involving buildings of 22 

varying size and use [25]. The study adapted and compared sequential strategies and criteria 23 

used in the field of infrastructure diagnosis, which can achieve high levels of accuracy with 24 

low computational cost compared to global search strategies [26] and genetic algorithms [27]. 25 

The typical information-based criteria found in literature for optimal sensor configuration 26 

were information entropy [26-28], cost and expected identifiability [29], while some studies 27 

incorporated uncertainty correlations and their values [29, 30]. Based on the conclusions of 28 

the authors’ initial study [25], a novel hierarchical sensor placement strategy has been 29 

developed that uses the concept of joint-entropy to account for the mutual information 30 

between sensor locations [31]. The strategy also explicitly incorporated the spatial 31 

distributions of modeling errors and their values, which has been shown to affect optimal 32 

sensor configuration [30-32].   33 
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In conclusion, typical information-based criteria used for optimal sensor configuration 1 

focused primarily on increasing information value, measured either with entropy from 2 

information theory or using identifiability metrics to reduce parameter-value uncertainty. 3 

Nonetheless, earlier studies [33] have suggested that the performance of sensor configurations 4 

in reducing uncertainty of model predictions should be assessed by additional criteria, such as 5 

robustness-to-uncertainty and “prediction-looseness”—equivalent to the range of 6 

predictions—which are often conflicting. 7 

This paper proposes metrics to evaluate the predictive performance of sensor configurations 8 

and assess their usefulness in improving simulation predictions. The performance of the 9 

configurations is assessed for their capability to falsify multiple model instances whose 10 

predictions are inconsistent with the data (Section 3.1). Expected identifiability metrics found 11 

in literature [29] are adapted (Section 3.2) and then new metrics are developed (Section 3.3) 12 

to estimate the sensor configurations robustness-to-uncertainties associated with model 13 

predictions. In the end, a multi-criteria decision-making (MCDM) approach is proposed to 14 

evaluate the influence of the conflicting metrics on the choice of optimal sensor configuration 15 

(Section 3.4). In Section 4, the proposed metrics are applied to evaluate the performance of 16 

several hierarchically-constructed sensor configurations [31], in improving wind predictions 17 

around a full-scale building system in Singapore. A list of the main conclusions and a critical 18 

assessment on the results are provided in the final two sections (section 5 and 6). 19 

3.  Development of predictive performance metrics 20 

Metrics are developed to estimate the expected predictive performance of sensor 21 

configurations and assess their usefulness in improving predictions. The study builds upon 22 

previous work on sensor placement performed by the authors [25, 31], where the premise is 23 

that sensor data are best used for falsifying multiple model instances1 whose predictions are 24 

inconsistent with the data. Therefore the performance of sensor configurations is assessed in 25 

terms of their capability to falsify multiple model instances (§3.1). First, expected 26 

identifiability metrics are adapted from literature to estimate the expected reduction in the 27 

number of candidate models (retained model instances) and in the prediction range associated 28 

with each sensor configuration (§3.2). Several optimal sensor configurations, which have 29 

been constructed using the hierarchical-sensor placement strategy, have been compared in 30 

[31]. Metrics are then developed to estimate the robustness of the sensor configurations to 31 

                                                        
1 A specific combination of values for the input parameters in a CFD simulation and the corresponding 
wind predictions at all potential locations is one model instance. 
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uncertainty associated with model predictions (§3.3). In the end, an MCDM approach is 1 

proposed to evaluate the influence of multiple metrics on the selection of optimal sensor 2 

configurations (§3.4).  3 

3.1.  Falsification based on multiple models  4 

Falsification of multiple model instances is performed at each sensor location of the 5 

hierarchically-constructed sensor configurations using simulated measurements generated 6 

following the procedure described in [25]. As justified in these earlier studies done by the 7 

authors ([31], [25]), the reason for employing simulated measurements is that the evaluations 8 

of sensor locations are done prior to measuring and therefore data at these sensor locations are 9 

not yet available. In addition, the performance of several sensor configurations needs to be 10 

evaluated and compared at the same time instant, which would require a costly pre-11 

deployment of a large number of sensors.   12 

During falsification, multiple model instances are rejected if the difference between their 13 

predicted values and the measurements falls outside defined threshold bounds. These bounds 14 

correspond to confidence intervals that include plausible model instances. The interval width 15 

at each sensor location is equal to the prediction range, obtained from the model instances, 16 

and estimates of modeling and measurement errors.  17 

The term model instance refers to a computational model in which input parameters are 18 

assigned a definite combination of values and the corresponding values of output variables 19 

are predicted using simulation. The core of the methodology is the multiple-model approach 20 

introduced by Raphael and Smith [34].   21 

𝑃 ∩#$%
&' 	
  𝑇*+,,# ≤ 𝑈0,# ≤ 𝑇1#21,#  (1) 22 

where 𝜑 is the confidence level, 𝑈0,# is obtained from by subtracting the modeling 𝑈4+5,# and 23 

measurement 𝑈4678,# uncertainty, 𝑇*+,,# and 𝑇1#21,# are the computed threshold bounds equal 24 

to the minimum and maximum values of the combined modeling and measurement residuals, 25 

with 𝑛4 the number of measurements used.  26 

An illustration of the falsification process is shown in Fig. 1. The remaining model 27 

instances—called candidate models—are used to update the predictions at other, unmeasured, 28 

locations and enhance inference (more information on this process is available in [25, 31]). 29 
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 1 

Fig. 1. Model falsification using the simulated measurements from one sensor location and predictions 2 
from two model instances. One model instance is rejected because its prediction at one time step falls 3 
outside the confidence interval of the measured value. 4 

Since optimal sensor configurations often include more than one sensor locations, model 5 

instances are evaluated multiple times. However, a complication arises when confidence 6 

intervals result from multiple testing, which is known as the inflation of the alpha level [35] 7 

The Šidák correction (Equation (1)) is therefore employed to correct the alpha values, 𝛼 =8 

1 − 𝜑, for the threshold bounds in order to maintain a constant confidence level 𝜑 = 0.95. 9 

The Šidák correction has been successfully applied in the field of infrastructure diagnosis [29] 10 

to counteract the effect of the inflation of the alpha level during multiple hypothesis testing. 11 

This adjustment will affect the number of candidate models estimated after the sensor 12 

addition, since it corrects for the models instances that have been falsely rejected. 13 

𝛼′ = 1 − 1 − 𝛼 %/D (2) 14 

where N is the number of sensors. 
 

15 

The expected number of candidate models obtained during model falsification is a trade-off 16 

between the number of sensor locations, the confidence level (related to	
  𝛼) and the threshold-17 

bound width, which depends on measurement and modeling errors. This trade-off is 18 

quantified with the expected identifiability metrics described below.  19 

3.2.  Expected identifiability 20 

Expected identifiability metrics have been used in literature [29] to predict probabilistically to 21 

what extent a sensor configuration is useful in falsifying model instances. These metrics have 22 

been employed to select optimal sensor locations, whereas in this work they are adapted for 23 
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evaluating the performance of existing sensor configurations in improving simulations 1 

predictions. 2 

The expected identifiability of configurations is calculated with respect to the expected 3 

number of candidate models and their range of predictions at unmeasured locations. 4 

Empirical cumulative distribution functions of the number of candidate models and prediction 5 

range are built for each sensor configuration using a sample set of simulated measurements. 6 

Two quantities are then extracted from the cumulative distributions, the maximum number of 7 

candidate models and the maximum prediction range. These quantities express the expected 8 

identifiability of the current sensor configuration and depend on the confidence level, 𝜑 9 

(often fixed at 95%), the number of sensors 𝑛8, and modeling 𝑒4+5 and measurement errors 10 

𝑒4678, since these define the width of the falsification thresholds. 11 

Fig. 2 shows example cumulative distributions that are used to estimate the maximum number 12 

of candidate models, as a percentage of the initial-model-set size. Fig. 2 (a) represents the 13 

trade-off between the number of sensors, 𝑛8, and the level of confidence. Fig. 2 (b) represents 14 

the effect that variations in modeling error, 𝑒4+5, have on the expected maximum number of 15 

candidate models of a fixed configuration. The same example can be provided by displaying 16 

on the horizontal axis the prediction range as a percentage of the initial possible range. For a 17 

fixed confidence level of 95%, the expected maximum number of candidate models (or 18 

prediction range) decreases with an increase in the number of sensors (𝑛8G > 𝑛8%) and with a 19 

decrease in modeling errors (𝑒4+5G < 𝑒4+5%).  20 

 21 

Fig. 2. Examples of cumulative distribution function used to compute the expected identifiability of the 22 
candidate-model-set size for a target confidence level depending on (a) the number of sensors and (b) 23 
modeling uncertainty (modified from [29]). 24 
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Although expected identifiability metrics are useful for providing information on the 1 

performance of sensor configurations with respect to reducing the number or candidate 2 

models and the prediction ranges, they do not provide information on the success of the 3 

identification. This represents the number of correct predictions that are made at an 4 

unmeasured location using the information obtained from the current configuration. Such a 5 

metric evaluates the robustness of the configuration with respect to the uncertainty associated 6 

with predictions and is discussed in the following section.    7 

3.3.  Robustness to prediction uncertainties 8 

Model falsification is performed using threshold bounds that are equal to modeling and 9 

measurement uncertainties. Therefore, if modeling errors are misevaluated, there is a 10 

probability that a model is falsely rejected, a Type I error. This probability is estimated by 11 

counting the number of simulated measurements that fall outside the predicted range at an 12 

unmeasured location, signifying that a correct model instance has been wrongly rejected. On 13 

the other hand, the probability of falsely accepting a model instance, a Type II error, and is 14 

equal to the size of the candidate model set minus one—the correct model instance.  15 

The probability of a Type I and Type II error is calculated at an unmeasured location for each 16 

sensor configuration, in a similar manner to Section 3.2. The empirical cumulative 17 

distribution functions are used to extract the probability values of Type I and Type II error, as 18 

well as the prediction range (% of initial plausible range), for a 95% certainty. Fig. 3 (a), 19 

illustrates an example of the conflicting relationship between the probability of prediction 20 

error with the number of sensors in a configuration: more sensors decrease the number of 21 

models that are falsified (Type II), yet the chance of making false predictions (Type I errors) 22 

increases. There is however a number of sensors that provide an equal probability of 23 

committing either error. Similarly Fig. 3 (b) illustrates the expected maximum prediction 24 

range (as a percentage of the initial plausible range), with the number of sensors: the larger 25 

the number of sensors in the configuration the lower the range of predictions. However, the 26 

minimum range of predictions depends on the range of measurement data and is restricted by 27 

the range of modeling uncertainty. Overall, such metrics reveal the conflicting relationships 28 

between the probabilities of committing prediction errors and assess the robustness of sensor 29 

configurations to misevaluation of modeling uncertainties. 30 
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 1 

Fig. 3. (a) The relationship between the number of sensors and the probability of a Type I and Type II 2 
error; (b) the expected range of predictions, the measurement range and the uncertainty range, with the 3 
number of sensors; both are displayed for a 95% confidence level. 4 

In comparison with the metrics described in Section 3.2, the above robustness-to-uncertainty 5 

metrics are conflicting criteria to consider in an optimal sensor configuration problem. The 6 

following section proposes a multi-criteria decision making approach (MCDM) that allows 7 

assessment of the influence of these criteria on the selection of optimal sensor configurations. 8 

3.4.  Multi-criteria decision making 9 

MCDM approaches are concerned with solving decision problems that typically involve 10 

multiple conflicting criteria. Therefore an optimal sensor placement problem can be treated 11 

with an MCDM approach to take into account the multiple, conflicting criteria that influence 12 

optimal sensor configuration.  13 

Table 1 lists a set of 5 criteria that influence an optimal sensor placement problem based on 14 

the earlier studies. These criteria are ranked according to a decision maker’s preference on 15 

measurement objectives: minimize cost, reduce the range of predictions and the prediction 16 

errors (Type I and Type II), and maximize joint-entropy of predictions. Among these, cost 17 
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conflicts with joint-entropy and prediction range, and Type I errors conflicts with Type II 1 

errors. 2 

Table 1 Criteria evaluated during MCDM for selecting optimal sensor configurations. 3 

Order Criterion Description 

1 Cost Proportional to the number of sensors in the configuration 

2 Prediction 
range 

Expected range of simulation predictions obtained using the current 
sensor configuration 

3 Type I error Probability of falsely rejecting a model instance ( number of 
measurements that fall outside the prediction range) 

4 Type II error Probability of falsely accepting a model instance ( number of 
candidate models minus one) 

5 1/Joint-
entropy Inverted joint-entropy of predicted values of the sensor configuration 

The RR-Pareto3 algorithm (in improved version of RR-Pareto algorithm [36]) is used to 4 

identify a good compromise solution by first ordering the criteria according to their 5 

importance, normalizing the criteria-values and finally filtering through bisecting the range of 6 

values, one at a time and according to their order, until a unique solution is found. Fig. 4 7 

illustrates an example where the RR-Pareto3 algorithm is applied to assess the 5 criteria of 8 

Table 1 for 10 sensor configurations, in order to obtain a compromise configuration of 4 9 

sensors. 10 

∝

∝
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 1 

Fig. 4. Example of RR-Pareto3 algorithm used to evaluate (a) 5 sensor selection criteria for 10 optimal 2 
sensor configurations and (b) the best compromise sensor configuration of 4 sensors. 3 

Typically in an MCDM problem there is no single optimal solution and a set of best 4 

compromise solutions is provided. This is illustrated with an example in Fig. 5, where the 5 

RR-Pareto3 algorithm recognized a set of 10 compromise optimal configurations, of 7 to 16 6 

sensors, from the initial set of 60 configurations, with respect to the 5 criteria of Table 1. The 7 

decision maker can then decide using additional information on a single optimal configuration 8 

that meets the measurement needs. 9 

Compromise
configuration of

4 sensors

Cost    Prediction         Type I          Type II         1/Joint
         range          error         error   Entropy

Cost    Prediction         Type I          Type II          1/Joint
         range          error         error   Entropy

a) 

b) 
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 1 

Fig. 5. Example of RR-Pareto3 algorithm used to evaluate (a) 5 sensor selection criteria for 60 optimal 2 
sensor configurations and (b) the set of 10 best compromise sensor configurations of 7 to 16 sensors. 3 

Often in wind studies several variables are measured with the same sensor configuration, such 4 

as wind speed and wind direction, which necessitates that a common configuration is found 5 

between these variables. A solution involves calculating criteria values for all possible sensor 6 

configurations and variables, and employing the RR-Pareto3 algorithm to find the best 7 

compromise solution among them. Such calculations however, have high computational costs 8 

that are related to the number of variables and criteria.  9 

In the presence of a decision maker’s preferences, the above MCDM problem can be solved 10 

in a hierarchical manner with low computational cost: first, variables are ranked in order of 11 

importance; then the RR-Pareto3 algorithm is employed to obtain a reduced set of 12 

compromise sensor configurations, from the initial set of optimal configurations, using the 13 

criteria values of the variable of highest importance (i.e. wind speed); this set of compromise 14 

configurations is used to recalculate the criteria values for the second variable in order (i.e. 15 

Cost    Prediction         Type I          Type II         1/Joint
         range          error         error   Entropy
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wind direction); the RR-Pareto3 algorithm is rerun to recognize a reduced set of compromise 1 

configurations that satisfy the measurement objectives for both variables. When applicable, 2 

additional variables or information are used to further reduce the number of compromise 3 

sensor configurations until a single optimal configuration is obtained. 4 

4.  Application to wind prediction around buildings 5 

The predictive performance metrics for sensor configurations were applied to a full-scale 6 

residential estate, called Treelodge, which is located in Punggol, Singapore (Fig. 6 (a)). The 7 

estate consists of seven 16-story building blocks with an average height of 63 m. Treelodge is 8 

Singapore’s first experimental ecofriendly public housing project [37].  9 

 10 

Fig. 6. (a) The buildings of the Treelodge estate at Punggol considered in modeling and (b) their 3D 11 
view in the simulation environment. 12 

4.1.  Multiple-model CFD simulation 13 

The experimental design for multiple CFD simulations is organized in a similar way to [25, 14 

31]: FLUENT 14.5 is used as a solver for the equations of flow behavior and the Design 15 

Exploration tool for sensitivity analysis and parameter selection. 16 

The geometric simplifications and assumptions related to the numerical methods that control 17 

the solver are made as follows: 18 

1.   The geometries of the domain of interest consist of 7 building blocks with average 19 

dimensions 26 x 53 x 63 m (Fig. 6 (b)). The orography of the area is assumed to be 20 

uniform and surface details of buildings are omitted. 21 
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2.   The entire size of the computational domain (or ABL domain) is 955 m x 1598 m x 1 

504 m (Fig. 7 (a)), according to recommendations available in literature [38, 39]. 2 

3.   The CutCell Cartesian meshing is used as a discretization method to generate a 3 

predominantly hexahedral mesh with minimum user input (Fig. 7 (b)). After grid 4 

sensitivity analysis the minimal element size to 0.05 m and the mesh growth rate to 5 

1.175, generating 13.4 x 10e6 elements. 6 

4.   The SIMPLE algorithm is employed to achieve pressure-velocity coupling. 7 

5.   Second-order discretization is used as a pressure interpolation scheme. 8 

6.   A single-precision solver is assumed to be sufficiently accurate for this study. 9 

7.   The convergence criteria of the scaled residuals for all variables are set to 10-4. 10 

 11 

Fig. 7. View of the ABL domain of the Treelodge@Punggol (a) and bottom view of the CutCell 12 
Cartesian meshing with two magnified views (b) in the simulation environment. 13 

The multiple-model CFD simulation approach is applied to predict possible wind behavior 14 

around the Treelodge estate according to the following assumptions: 15 

1.   RANS-equations are used to characterize wind behavior around buildings, the 16 

realizable k-ε equations to represent turbulence and the standard wall-functions to 17 

treat near-wall turbulence, since it is one of the most computationally efficient 18 

approaches to approximate turbulent flows. 19 

2.   The inlet boundary conditions of wind speed are described in Equation (2) and 20 

Equations (3) and (4) are used to calculate the TKE and TDE as functions of the 21 

varying wind speed profile at the inlet. The sand-grain roughness of the ABL domain 22 

and domain of interest are calculated using Equation (5).	
   Finally,	
   the pressure at the 23 

outlet boundary is set to zero Gauge pressure. 24 

𝑈(𝑧) =
L∗ NO

PQPR
PR

S
 (3) 25 

ABL
domain

Domain
of interest

Inlet
boundary

Outlet
boundary

W

E N
S
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where 𝑈 𝑧  is the wind speed at height 𝑧 , 𝑢  is the atmospheric-boundary-layer 1 

friction (or shear) velocity, 𝑧U  the surface roughness and 𝜅  is the von Kármán 2 

constant. 3 

𝑘 = L∗X

YZ
, (4) 4 

where 𝑘 is the turbulence kinetic energy and 𝐶\ a model constant. 5 

𝜀(𝑧) = L∗^

S _`_R
 (5)6 

where 𝜀(𝑧) is the turbulence eddy dissipation at height 𝑧.  7 

𝑘8,abc =
d.edf_R
Yg

 (6) 8 

where 𝐶8 is the roughness constant, set to satisfy the constraint 𝑘8,abc ≤ 𝑧h, and 𝑧h is 9 

the grid resolution (the distance of the centroid of the wall-adjacent cell to the wall). 10 

In total 9 uncertain parameters are found related to the assumptions made in geometric 11 

simplifications, meshing and boundary conditions. Ranges of values for these parameters are 12 

found in the literature and are based on engineering judgment. 13 

The output variables of the simulations are the wind speed, referring to the magnitude of the 14 

horizontal component of the velocity vector, and the horizontal direction. Simulation 15 

predictions of wind speed and horizontal direction are obtained at 290 potential sensor 16 

locations, which are fixed at 3 m height near the pedestrian eco-deck, which is the canyon 17 

separating the building blocks) (Fig. 8). Potential locations are selected remote from the 18 

buildings and distances are set taking into account the eco-deck length, the size of the 19 

measurement equipment and the orography of the domain of interest. 20 

Sensitivity analysis is then carried out in ANSYS Workbench 14.5 with design exploration 21 

tools in order to evaluate the parameter uncertainties on predictions and reduce computational 22 

cost. An Optimal Space-Filling design [40] with CCD sampling [41] is applied and 23 

Spearman’s rho correlation coefficient, 𝜌j, is calculated from Equation (6) for the 9 uncertain 24 

parameters and the output variables, wind speed and horizontal direction, at each potential 25 

sensor location shown in Fig. 8. Computational cost is reduced through selecting three of the 26 

uncertain parameters with the highest 𝜌k and Z-scores, averaged over all locations. These are 27 

the inlet wind speed, the inlet horizontal direction and the surface roughness of buildings, 28 

with coefficients 0.76, 0.4 and 0.1 and Z-scores 2.4, 1.3 and 0.23, respectively. 29 

𝜌j = − lm,nolp qm,noqpm

lm,nolp
X qm,noqp

X
m

 (7) 30 
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where 𝑥s,j, 	
  𝑦s,j	
  are the ranks of the input parameters and output variables respectively at each 1 

location 𝑗 ∈ 1, … ,63 , with 𝑘 = 1, … , 𝑛 the size of the sample and 𝑥k, 𝑦k the mean values. 2 

Multiple simulations are the performed taking discrete values for the three parameters within 3 

plausible ranges shown in Table 2. The reduced number of parameters allows a simple-grid 4 

sampling with values selected uniformly within the ranges, with discretization intervals of 0.1 5 

m/s, 22.5 deg and 0.25 m. A set of 3648 combinations of parameter values is created and used 6 

to carry out CFD simulations. A discrete population of predictions of wind-speed and 7 

horizontal-direction at the 290 potential sensor locations (Fig. 8) is the output of the 8 

simulations that comprises the initial model set. 9 

 10 

Fig. 8. Potential sensor locations L1-L290 near the Treelodge estate shown in the simulation 11 
environment: (a) top view and (b) front, magnified view. 12 

Table 2 The selected parameters and their ranges of values used to generate the initial model set for the 13 
Punggol case study. 14 

Parameter in CFD simulations Lower 
bound 

Upper 
bound Comments 

Boundary conditions 

Wind direction at inlet 
boundary [deg] 1 360 

The wind direction varied from 1 to 
360 degrees in order to account for 
possible direction values. 

Wind speed at inlet boundary 
[m/s] 0 8.7 

The lower and upper bounds were 
set according to meteorological 
data obtained from the weather 
station Changi WMO in Singapore. 

Surface roughness of buildings 
[m] 8E-3 1.12 The lower and upper bounds were 

set according to ([38, 39]). 

Potential sensor locations
 

at 3 m height

spaced ~4 m apart

a) b)
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4.2.  Hierarchically-constructed sensor configurations 1 

The hierarchical sensor placement strategy using joint entropy [31] is applied to the initial 2 

model set in order to reveal optimal sensor configurations. Modeling and measurement errors 3 

are explicitly incorporated in the strategy, with measurement errors set to ±0.05 m/s for wind 4 

speed and ±1 deg for wind direction, while Equations (7) and (8) are used to define modeling 5 

errors with non-uniform spatial distribution for wind speed, 𝑒4+5,8h665 and wind 6 

direction,	
  𝑒4+5,5#z. These equations are based on recent findings of the studies conducted by 7 

the Simulation-Platform research group at the Future Cities Laboratory. Simplifications are 8 

made similar to [42]:  9 

𝑒4+5,8h665 =
−0.33𝑈 𝑧 − 0.62 , 0.34𝑈 𝑧 + 0.86 , Ln(_)

�(_)
< 1

−0.18𝑈 𝑧 − 0.62 , 0.12𝑈 𝑧 + 0.84 , Ln(_)
�(_)

≥ 1
 (8) 10 

𝑒4+5,5#z = 1.18𝑈 𝑧 − 65.06 , 2.09𝑈 𝑧 + 30.44 ∶ Ln _
� _

≥ 0.33  (9)11 

where 𝑢j(𝑧)  is the local wind speed at height 𝑧 at possible sensor locations 𝑗 ∈ 1, … ,290  12 

and 𝑈 𝑧  is the wind speed that would occur without the presence of buildings. Wind-13 

direction predictions with amplification factor 𝑢j(𝑧)/𝑈 𝑧 < 0.33 are not considered since 14 

modeling errors are high (around ± 180 deg). 15 

Fig. 9 shows a comparison of the calculated (a) joint-entropy in predictions and (b) maximum 16 

number of candidate models, of wind speed and horizontal direction during hierarchical 17 

sensor placement. Only the first 15 optimal locations are displayed in the graph, yet 18 

calculations over all 290 possible sensor locations are considered. An effect similar to [31]  is 19 

observed, since joint entropy of wind-speed predictions is higher than that of wind-direction 20 

predictions, which have relatively low values. Fig. 10 illustrates the maximum number of 21 

candidate models of wind speed and horizontal direction that is estimated during hierarchical 22 

sensor placement. The incremental reduction in the maximum number of candidate models 23 

flattens after selecting the 5th sensor for wind speed and the 3rd sensor for wind direction. This 24 

is equivalent to an incremental change in the number of models of less than 1%. At maximum 25 

1/5 of the initial-model-set size of both wind speed and direction is retained using a 26 

configuration of five sensors. 27 
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 1 

Fig. 9. A comparison of the joint entropy of wind-speed and wind-direction predictions calculated for 2 
various sensor configurations near Treelodge@Punggol, using the hierarchical algorithm with joint-3 
entropy criterion; spatial variation of predictions errors is considered (only the first 15 optimum 4 
locations are displayed in the graph). 5 

 6 

Fig. 10. A comparison of the maximum number of candidate models of wind-speed and wind-direction 7 
that is expected for various sensor configurations near Treelodge@Punggol, using the hierarchical 8 
algorithm; spatial variation of predictions errors is considered (only the first 15 optimum locations are 9 
displayed in the graph). 10 

Fig. 11 illustrates the optimal sensor configurations of the first 5 sensors for predicting (a) 11 

wind-speed and (b) wind-direction. As observed in earlier studies done in Singapore ([25, 12 

31]), the optimal locations for the two variables differ: wind-speed locations are selected 13 

uniformly within the canopy of buildings, while wind-direction locations are selected near the 14 

center and northeast part of the canopy.  15 
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 1 

Fig. 11. Optimal configurations of first five sensors for predicting (a) wind speed and (b) wind 2 
direction (right) near Treelodge@Punggol, using the hierarchical algorithm with joint-entropy 3 
criterion; the circled markers represent the selected locations. 4 

4.3.  Evaluation of predictive performance 5 

A measurement campaign was carried out by Shanshan Pan near Treelodge at Punggol [43], 6 

as part of research conducted by Nanyang Technological University and the Singapore-MIT 7 

Alliance for Research and Technology (SMART) Center for Environmental Sensing and 8 

Modeling (CENSAM), with support from the National Research Foundation and the Ministry 9 

of Education. Measurement data were recorded between February 24 to March 23, 2012, and 10 

August 28 to September 9, 2012 with nine sets of Vaisala WXT520 Weather transmitters and 11 

data loggers employed at ground level. 12 

 Measurements at Punggol are used here to evaluate and compare the predictive performance 13 

of various sensor configurations. Out of the nine weather transmitters, six were used, since 14 

one was not in operation and two were in locations not modeled in CFD. One of the highest 15 

records of wind speed was observed on February 28, 2012 and the measured data (24 hours) 16 

were selected for evaluation in order to capture short-term variations in atmospheric boundary 17 

conditions and support the premise of negligible convective effects and isothermal conditions 18 

during modeling (Section 4.1). Sample distributions of simulated measurements were 19 

generated at all potential sensor locations shown in Fig. 8 based on field measurements, 20 

following the procedure described in [25, 31]. 21 
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 1 

Fig. 12. Selected sensor locations during field measurement near Punggol@Treelodge displayed in the 2 
simulation environment (center) and actual sensor installations (bottom left and top right, modified 3 
from [43]). 4 

The sensor configurations constructed with the hierarchical strategy (Section 4.2) are 5 

evaluated for their predictive performance at a random unmeasured location near the 6 

northwest part of the canopy. The evaluation of each sensor configuration is done using the 7 

metrics described in Sections 3.2-3.3. The aim is to support a model-falsification approach to 8 

data interpretation (Section 3.1) and demonstrate the usefulness of the optimal configurations 9 

in improving simulation predictions. 10 

Fig. 13 shows the relationship between the number of sensors and the probability of (a) the 11 

Type I and Type II prediction errors and (b) the expected prediction range of wind speed, for 12 

a 95% certainty. The probabilities of committing either error are equal when a configuration 13 

of twelve sensors is deployed. Type II errors are increased using fewer sensors, while with 14 

more sensors Type I errors are increased. When more than 12 sensors are deployed, a 55% 15 

refinement from the initial plausible range is expected and the predicted range is nearly 10% 16 

higher than the range of the measurements. Around 20% of this range is owed to modeling 17 

uncertainty and the remaining to parameter uncertainties. During sensor placement, a large 18 

reduction in prediction range occurs when the 5th, 8th, 9th and 13th sensors are deployed, yet 19 

none exceeds 10%. After the 13th sensor, the reduction rate drops steadily with the addition of 20 

sensors and converges towards the measurement range.  21 
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 1 

Fig. 13. The relationship between the number of sensors and (a) the probability of a prediction error 2 
and (b) the expected range predictions for wind speed, for a 95% confidence level using the 3 
hierarchical algorithm; all possible optimal configurations are displayed on the left side and only the 4 
first fifteen configurations on the right side. 5 

Fig. 14 (a) shows the relationship between the number of sensors and the probability of Type 6 

I and Type II errors in predictions of wind direction, for 95% certainty. In contrast to wind 7 

speed predictions, the expected prediction range is not displayed since the range of 8 

measurements is almost 360 deg due to the long duration of the measurement campaign (24 9 

hours). Here, the probabilities of committing either error are diverging for all sensor 10 

configurations, signifying no sensor configuration is useful. 11 

Since Type II errors are considerably low and Type I errors large, even from the first sensor 12 

selected, it is evident that a large number of model instances are falsified and retained 13 

candidate models are not able to improve predictions at the unmeasured location. This 14 

location was randomly selected near the northwest part of the canopy, where values of wind 15 

speed predictions are low and modeling errors associated with wind direction are large. From 16 
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Equation (9), corresponding model instances of wind direction are not considered in the 1 

calculations. 2 

To cross-validate this finding, the procedure is repeated by randomly selecting another 3 

(unmeasured) location near the center-east side of the canopy, where values of wind-speed are 4 

high. Fig. 14 (b), shows the relationship between the number of sensors deployed and the 5 

probability of Type I and Type II errors in predictions of wind direction, for 95% certainty. 6 

Compared to the NW location, the predictive performance is better at the center-east location: 7 

the probabilities of committing either error are equal to almost 20% when five sensors are 8 

deployed. Type II errors are increased with fewer sensors, while adding sensors increases 9 

Type I errors. These results show that unlike wind-speed predictions, for the specific model-10 

set, no sensor configuration is able to improve predictions of wind direction at low wind-11 

speed regions where modeling errors are large. 12 

 13 

Fig. 14. The relationship between the number of sensors and the probability of prediction error for 14 
wind direction at (a) a NW and (b) a center-east unmeasured location, for a 95% confidence level using 15 
the hierarchical algorithm; only the first fifteen optimal configurations are displayed. 16 

A comparison of the performance of the configuration of six sensors constructed with the 17 

hierarchical strategy is performed against the historical sensor configuration selected by 18 

Shanshan Pan (Fig. 12). Table 3 shows the results of this comparison with respect to 19 

improving predictions of wind speed, at the randomly selected NW location. The three 20 

metrics used for comparison are Type I errors, Type II errors and prediction range. Both 21 

configurations achieved an equal refinement in the range of predictions, which is well above 22 

the measurement range of 46% (Fig. 13). However, the probabilities of prediction errors are 23 

larger using the historical configuration as compared to the configuration constructed with the 24 
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hierarchical strategy: Type I errors are nearly 8 times larger, while Type II errors are 1 

increased around 30%. 2 

Table 3 Comparison of the predictive performance with respect to wind speed at the randomly selected 3 
NW location: for the configuration of six sensors constructed with the hierarchical strategy and the 4 
initially fixed configuration during the measurement campaign. 5 

Configuration of 6 sensors 
Type I 

Prediction 
Error (%) 

Type II 
Prediction 
Error (%) 

Prediction range (%of 
initial plausible range) 

Sensor configuration using the 
hierarchical strategy 3.1 12.5 85.7 

Sensor configuration based on 
historical measurements 23.5 16.4 85.7 

4.4.  Multi-criteria decision making 6 

A multi-criteria decision-making (MCDM) approach is adopted to evaluate the influence of 7 

complementary and conflicting criteria on the choice of sensor configuration. The MCDM 8 

approach described in Section 3.4 is applied to the optimal sensor configurations constructed 9 

with the hierarchical strategy and the criteria evaluated are listed in Table 3. 10 

Fig. 15 illustrates the evaluation of the five criteria using the RR-Pareto3 algorithm for wind-11 

speed sensor configurations: (a) all sensor configurations and (b) the set of 31 compromise 12 

configurations of 12 to 42 sensors with respect to these criteria. Although no single optimal 13 

solution is found, this set of solutions is refined when the decision maker provides additional 14 

information. Such an example is shown in Fig. 16 (a) where the 31 compromise 15 

configurations are evaluated using only three criteria: range, cost and Type I errors. A 16 

reduced set of 6 compromise configurations, of 15 to 20 sensors is recognized with respect to 17 

these three criteria (Fig. 16 (b)). When the decision maker provides additional information, a 18 

single compromise configuration can be obtained that meets the measurement needs. 19 
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 1 

Fig. 15. Evaluation of 5 sensor selection criteria for predicting wind speed using the RR-Pareto3 2 
algorithm: (top) all possible sensor configurations and (bottom) the set of 31 compromise 3 
configurations of 12 to 42 sensors with respect to all criteria. 4 

In wind studies, however, it is often the case that more than one variable is measured with the 5 

same sensor configuration, such as wind speed and wind direction. As demonstrated in 6 

Section 4.2, the optimal sensor configurations can differ between these variables, which 7 

necessitates that a common configuration is found. In the presence of a decision maker’s 8 

preference, this problem can be solved using an MCDM approach in a hierarchical manner 9 

with less computational cost (Section 3.4). 10 

Firstly, the two variables, wind speed and wind direction are ordered according to their 11 

significance in measurement. Based on the earlier analysis (Section 4.3), it is not possible to 12 

predict wind direction with reasonable reliability and therefore it is assessed as a secondary 13 

variable of lesser significance, while wind speed is considered the variable of highest 14 

importance. The set of 6 compromise configurations for wind-speed predictions (Fig. 16 (b)), 15 

12-42
sensors

Cost    Prediction         Type I          Type II         1/Joint
         range          error         error   Entropy

Cost    Prediction         Type I          Type II          1/Joint
         range          error         error   Entropy

64-48%
7-20%

1.5-7% 1.14-1.3

a) All possible sensor configurations for wind speed prediction 

b) Reduced set of 31 compromise sensor configurations for 
wind speed prediction with respect to 5 criteria



Journal of Advanced Engineering Informatics. Submitted August 25, 2015; In review (2nd round) 

25 

are employed to recalculate criteria values for the second variable, wind direction. The RR-1 

Pareto algorithm is rerun to recognize the single compromise configuration that satisfies the 2 

measurement criteria for both wind speed and direction. Results are displayed in Fig. 17, with 3 

the criteria values (a) for wind-direction predictions and (b) for wind-speed predictions using 4 

the single compromise configuration of 17 sensors. 5 

6 

Fig. 16. Evaluation of three sensor selection criteria using the RR-Pareto3 algorithm: (a) the 7 
compromise configurations of 12 to 42 sensors for wind speed and (b) the reduced set of 6 compromise 8 
sensor configurations with respect to cost, prediction range and Type I prediction error. 9 

10 

15-20 sensors
for range, cost &

Type I error

Cost    Prediction         Type I          Type II         1/Joint
       range         error         error  Entropy

Cost    Prediction         Type I          Type II          1/Joint
       range         error         error  Entropy

a) Set of 31 compromise sensor configurations for
wind speed prediction with respect to 5 criteria

b) Reduced set of 6 compromise sensor configurations  for
wind speed prediction with respect to 3 criteria 



Journal of Advanced Engineering Informatics. Submitted August 25, 2015; In review (2nd round) 

 26 

 1 

Fig. 17. The best compromise configuration provided by the RR-Pareto3 algorithm (a) for wind 2 
direction predictions with respect to cost, range and Type I prediction error and (b) the criteria values 3 
for wind speed for the same configuration. 4 

5.  Discussion 5 

Metrics have been developed to provide information on the expected predictive performance 6 

of sensor configurations, in terms of reducing the number or candidate models and the ranges 7 

of predictions at unmeasured locations. Moreover, an MCDM approach has been proposed for 8 

assessing the multiple conflicting criteria and variables that are involved in an optimal sensor 9 

configuration problem. Specifically: 10 

1)   Expected identifiability metrics are adapted from literature to evaluate the 11 

performance of sensor configurations in improving simulations predictions, whereas 12 

previously they have been employed to iteratively select optimal sensor locations. 13 

criteria values
for wind speed

using 17 sensors

Cost    Prediction         Type I          Type II          1/Joint
         range          error         error   Entropy

Criteria values
for wind speed

using 17 sensors

Cost    Prediction         Type I          Type II          1/Joint
         range          error         error   Entropy

Cost          Type I          Type II         1/Joint    Prediction
       error         error  Entropy     range

17 sensors for
cost & prediction errors

for wind direction

a) Best compromise sensor configuration for 
wind direction prediction with respect to 3 criteria

b) Criteria values for wind speed for the best compromise con-
figuration for wind direction (see (a)) 
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2) Metrics are developed to assess the robustness of sensor configurations to prediction 1 

uncertainties. These include metrics to calculate the probability of committing Type I 2 

prediction error— reflected by the number of candidate models—and Type II 3 

prediction error—represented by the number of measurements that fall outside the 4 

predicted range. 5 

3) An MCDM approach is proposed to evaluate the conflicting relationships between6 

the performance metrics as well as to include additional criteria during optimal sensor 7 

configuration. A set of compromise sensor configurations is then identified that is 8 

subject to the preferences of the decision maker. When measuring several variables 9 

with the same configuration, the MCDM problem is solved in a hierarchical manner 10 

to identify common optimal configurations, while reducing computational cost. 11 

Although this paper has proposed metrics to evaluate the predictive performance of sensor 12 

configurations in wind studies, there are a number of limitations that can be addressed for 13 

further development and application. Multiple CFD simulations were performed based on 14 

steady-RANS analysis and the realizable k-ε equations, since it is one of the most 15 

computationally efficient approaches to approximate turbulent flows. In addition, to manage 16 

computational cost no thermal affects were considered and were assumed not to significantly 17 

influence the results. Field measurements were therefore taken during the monsoon seasons 18 

and following rainy conditions. Approximate estimates of modeling errors associated with 19 

these premises are available in literature and were explicitly incorporated in the sensor 20 

placement methodology. 21 

Another limitation is that potential measurement locations were subject to orographic 22 

constraints and sensor coverage was restricted by the size of mounting arrangement. Potential 23 

sensor locations on roofs were particularly avoided to minimize the impact of convection on 24 

flow when wind speed is low. In addition, resources were limited in this research. Only a few 25 

measurement points were available and used during the experiments to study short-term wind 26 

variation around buildings while seasonal variations were not considered. 27 

In this work, the performance of selected sensor configurations has been evaluated for their 28 

ability to reduce prediction uncertainty at single point locations. Additional metrics can be 29 

developed to assess the robustness of the configurations in updating predictions at multiple 30 

locations and with varying area coverage. This is a particularly important procedure when the 31 

objective of measurement is to use limited measurement data to update model predictions at 32 

multiple locations that have not been measured. In addition, in wind studies, the number of 33 

available sensors and their locations are usually fixed, yet optimal sensor configurations for 34 



Journal of Advanced Engineering Informatics. Submitted August 25, 2015; In review (2nd round) 

 28 

wind speed and wind direction differ in both sensor locations and in their number. This work 1 

proposed an approach to identify a good compromise configuration between optimal 2 

configurations for several variables. However, accounting for multiple variables has not been 3 

explicitly incorporated in the sensor placement strategies. Further research may contribute to 4 

adapt sensor placement strategies, including the hierarchical strategy, in order to account for 5 

multiple variables during sensor placement.  6 

Finally, the application of these metrics needs to be further investigated in real-time 7 

monitoring and prediction. The integration in monitoring and prediction of outdoor wind 8 

conditions can involve several building systems taking into account information gained from 9 

neighboring studies. Such studies may contribute additional information to understanding 10 

wind behavior and support decision making for the design of new buildings. 11 

6.  Conclusions  12 

The main results of this study point to the following conclusions: 13 

1.   Sensor locations configured using a hierarchical sensor placement strategy enhance 14 

wind predictions compared to a situation with no measurement. 15 

2.   Predictive performance metrics evaluate the usefulness of sensor configurations prior 16 

to field measurements through calculating the expected accuracy and range of 17 

predictions at unmeasured locations. 18 

3.   The usefulness of sensor configurations in improving predictions is influenced by 19 

modeling errors and depends on the variable and location of interest to predict. 20 

4.   An MCDM approach to sensor placement identifies set of compromise sensor 21 

configurations that accounts for multiple and conflicting criteria, as well as the 22 

decision maker’s preferences. 23 

5.   Solving an MCDM sensor-placement problem in a hierarchical manner identifies 24 

common optimal configurations between several variables of different significance. 25 
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