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Abstract 9 

Optimal performance of civil infrastructure is an important aspect of liveable cities. A judicious 10 

combination of physics-based models with monitoring data in a validated methodology that 11 

accounts for uncertainties is explored in this paper. This methodology must support asset managers 12 

when they need to extrapolate current performance to meet future needs. Three model-based data-13 

interpretation methodologies, residual minimization, Bayesian model updating and error-domain 14 

model falsification (EDMF), are compared according to their ability to provide accurate 15 

interpretations of monitoring data. These comparisons are made using a full-scale case study, a 16 

steel-concrete composite bridge in USA. Validation of data interpretation is carried out using 17 

cross-validation (leave-one-out and hold-out). A joint-entropy metric is used to evaluate the extent 18 

to which the data that is used for validation contains information that is independent of data used 19 

for interpreting structural behaviour. Once accurately updated and validated knowledge of 20 

structural behaviour is available, it is employed to make predictions of remaining fatigue-life of 21 

the bridge. Validated identification of structural behaviour helps ensure accurate predictions of 22 

capacity of bridges beyond their design lives. EDMF and a modified form of Bayesian model 23 

updating are analytically and numerically equivalent, while EDMF has several practical 24 
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advantages. Both methods provide accurate identification and safe estimations of the remaining 25 

fatigue life of the bridge. Such enhanced understanding of structural behaviour leads to appropriate 26 

decisions regarding civil infrastructure assets. 27 

Keywords 28 

Structural identification, Bayesian model updating, Model falsification, Cross-validation, Asset 29 

management 30 

 31 

1. INTRODUCTION 32 

Due to increasing urbanization and growth of mega-cities, management of existing civil 33 

infrastructure is an important challenge of this century (ASCE 2017). Replacement of all existing 34 

infrastructure at the end of their design-service lives is expensive and not sustainable (Drzik 2019; 35 

World Economic Forum 2014). Already, the architecture, engineering and construction (AEC) 36 

industry is the largest consumer of mined raw materials (Amin and Watkins 2018; World 37 

Economic Forum and Boston Consulting Group 2018). Moreover, most existing civil 38 

infrastructure elements are designed and built using conservative practices due to high perceived 39 

risk. This leads to civil infrastructure that is much safer than design requirements, albeit with 40 

unknown additional capacity, which in this paper, is called reserve capacity. Monitoring and 41 

interpreting structural response can help improve understanding of structural behaviour and 42 

quantify this reserve capacity to enhance decision-making and help avoid unnecessary and 43 

expensive actions such as extensive repair and most especially, complete replacement. 44 

Interpreting monitoring data (strain, acceleration, deflections etc.) using physics-based models, 45 

such as finite element (FE) models, is an inverse task called structural identification (Moon et al. 46 
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2013). The task is ill-posed due to the presence of uncertainties from modelling assumptions and 47 

measurement (sensor noise). Accuracy of solutions depends upon good estimations of 48 

uncertainties affecting the task of structural identification (Goulet and Smith 2013; Pasquier and 49 

Smith 2015). Due to the importance of uncertainties to obtain accurate solutions, many researchers 50 

have investigated uncertainty sources (Mottershead and Friswell 1993; Soize 2010, 2012). A 51 

summary of uncertainty sources and their categories was provided by Simoen et al. (2015). 52 

Engineering models that have been used to interpret data are conservative (Goulet et al. 2013) 53 

approximations of reality (Walker et al. 2003). Civil engineering models have been shown to 54 

possess large and biased modelling uncertainties (Goulet and Smith 2013; Pai et al. 2018; Pasquier 55 

and Smith 2015), which have to be taken into account during model-based data interpretation. 56 

Residual minimization has been the most popular methodology for data interpretation in practice 57 

(Alvin 1997). This methodology implicitly involves the assumption of zero-mean uncertainties 58 

and no systematic bias. In the presence of typically conservative modelling assumptions, wrong 59 

solutions are likely (Pai et al., 2018; Goulet et al., 2013c; Reuland et al., 2017a). 60 

Bayesian model updating (BMU) (Beck and Katafygiotis 1998) has been used primarily by 61 

researchers. In BMU, probability distributions of model parameters are updated using information 62 

from data. While employing BMU, uncertainties have been traditionally been defined by zero-63 

mean, Gaussian and independent distributions. When these uncertainty assumptions are not 64 

satisfied, the solutions obtained have been shown to be inaccurate (Goulet and Smith 2013; 65 

Pasquier and Smith 2015; Simoen et al. 2013). 66 

Few researchers have included the effect of model uncertainty when applying BMU (Kwon et al. 67 

2013; Papadimitriou et al. 2001; Simoen et al. 2015). To incorporate the effect of model 68 
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uncertainties in a more rigorous manner, researchers have included hyper-parameters in BMU 69 

(Behmanesh et al. 2015; Brynjarsdóttir and O’Hagan 2014; Gelman et al. 2013; Huang et al. 2017; 70 

Kennedy and O’Hagan 2001). However, inclusion of hyper-parameters makes the task of structural 71 

identification computationally more expensive and leads to problems of unidentifiability (Kuok 72 

and Yuen 2016). Often, hyper-parameter values are assumed to be invariate over the structure. 73 

Since model bias and other systematic uncertainties come from many sources, this is rarely the 74 

case for civil infrastructure. 75 

To address challenges related to structural identification, Goulet and Smith (2013b) developed a 76 

multi-model probabilistic methodology for structural identification, called as error-domain model 77 

falsification (EDMF). This methodology, based on the philosophy of falsification by Popper 78 

(1959), has been successfully applied for interpretation of civil infrastructure measurement data. 79 

Using EDMF, enhanced predictions of reserve capacity related to remaining fatigue life (Pai et al. 80 

2018; Pasquier et al. 2014), ultimate capacity (Proverbio et al. 2018c) and serviceability (Cao et 81 

al. 2020) have been made.  82 

While many researchers have utilised data to enhance asset-management decision making, a 83 

challenge that has not been addressed is validation of structural-identification solutions. Without 84 

sufficient validation of identification solutions, predictions made using updated models may lead 85 

to non-conservative asset management. Pai et al. (2019) and Proverbio et al. (2018a) suggested the 86 

use of leave-one-out cross-validation to assess accuracy of structural identification solutions. 87 

While such validation may be sufficient for comparing data-interpretation methodologies, 88 

solutions are not necessarily accurate for making predictions outside the domain of the data 89 

(extrapolation). 90 
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In this paper, assessment of validation using information entropy is presented. Structural 91 

identification of a full-scale steel-concrete composite bridge using three data-interpretation 92 

methodologies is carried out using cross-validation strategies. Assessment of data used for 93 

validation is performed using joint entropy. If data utilised for validation contains exclusive 94 

information, i.e., information that is not included in identification, then validation is appropriate 95 

for making predictions to support asset management decision-making. Once structural 96 

identification solutions are validated, an accurate estimation of the reserve capacity of the bridge 97 

with respect to remaining fatigue-life (RFL) becomes possible. 98 

In addition to the contribution described above, a modified BMU methodology is presented. This 99 

methodology has already been shown to be numerically equivalent to EDMF (Pai et al. 2018, 2019; 100 

Pai and Smith 2017; Reuland et al. 2017). In this paper, the analytical equivalence of this new 101 

implementation of BMU and EDMF is presented. 102 

2. DATA-INTERPRETATION METHODOLOGIES 103 

In this section, three data-interpretation methodologies are described. These methodologies require 104 

various assumptions related to the uncertainties affecting the inverse problem of structural 105 

identification. Depending upon the validity of the assumptions made, the solutions obtained using 106 

these methodologies may be either accurate or inaccurate for further use to support the 107 

extrapolations that are part of asset-management decision making. 108 

2.1 Error-domain model falsification 109 

Error-domain model falsification (EDMF) is a model-based probabilistic data-interpretation 110 

methodology proposed by Goulet and Smith (2013b) that builds on more than a decade of research, 111 
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including over ten full-scale case studies (Smith 2016). This methodology is based on the assertion 112 

by Karl Popper (Popper 1959) that data can be used to falsify (reject) models than validate them. 113 

In EDMF, models instances with predictions that are incompatible with observations (data) are 114 

rejected. Model instances include the physics-based model with specific input values for model 115 

parameters. In EDMF, these model parameters are quantified as random variables. The probability 116 

distribution of these random variables is estimated using engineering knowledge (Goulet and 117 

Smith 2013; Pasquier and Smith 2015). The Initial model set (IMS) includes various possible 118 

model instances (physics-based model with samples of model-parameters values). 119 

For example, beam depth and modulus of elasticity of a beam are model parameters involved in a 120 

model for beam deflection. In this example, these parameters can be quantified as random variables 121 

and samples of these parameters serve as input to a physics-based model for simulating beam 122 

deflection. Combinations of samples drawn of these parameters and provided as input to the 123 

physics-based model form instances of the IMS. 124 

The task of selecting appropriate parameters to sample and form the IMS is part of model-class 125 

selection. The task of model-class selection involves selecting a model from competing choices 126 

and selection of model parameters that are identifiable using monitoring data (Ljung 2010). 127 

Traditionally, the selection of model parameters for identification (and to form the IMS) is 128 

performed using various forms of sensitivity analysis (Van Buren et al. 2013, 2015; Friedman 129 

1991; Matos et al. 2016). Recently, Pai et al. (2021) have suggested using machine learning 130 

methods to develop a trade-off curve that provides engineers with guidance in selecting a suitable 131 

model class for structural identification. 132 
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In EDMF, when a model in the IMS provides predictions that are incompatible with observations 133 

(measurements) it is falsified (rejected). Model instances that are not falsified after testing against 134 

all measurements form the candidate model set (CMS). These model instances are parameter-value 135 

combinations that, when provided as input to a physics-based model, provide predictions that are 136 

compatible with observations (measurements). 137 

Let a structure be represented by a physics-based model, g(⋅) and the modelling uncertainty 138 

associated be ϵmod,i. Modelling uncertainty arises from assumptions and choices made during 139 

development of the physics-based model. Typical approximations that are involved are modelling 140 

of the boundary conditions, loading conditions and material behavior. These approximations may 141 

differ between models and are made in to accommodate a lack of knowledge or to simplify model 142 

development and thus reduce computational costs of performing simulations. 143 

Quantification of modelling uncertainty associated with a physics-based model is a challenging 144 

and knowledge-intensive task. Simplifications and choices made during model development may 145 

be unique to the model developed. Therefore, the engineer developing the model is an important 146 

source of knowledge to quantify modelling uncertainties (Brynjarsdóttir and O’Hagan 2014). With 147 

engineering knowledge, bounds of modelling uncertainty sources may be determined; other 148 

information such as variance is rarely available. With bounds as the only available information 149 

about uncertainties, uniform distributions are the most appropriate choice of probability 150 

distribution for uncertainty quantification. Such a choice also satisfies the principle of maximum 151 

entropy (Jaynes 1957). With more information related to some modelling assumptions, such as 152 

experimentally evaluated probabilistic material models, more precise uncertainty quantification 153 

may be possible. However, such uncertainties rarely dominate structural identification and 154 

subsequent decision making. 155 
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Let measurements recorded on the structure during a monitoring exercise be y. Let the number of 156 

measurements recorded be m and uncertainty associated with measurement at a location i be ϵmeas,i. 157 

For an instance of model parameters, θ, provided as input to the physics-based model, let 158 

predictions at measurement locations be, g(θ). Let Qi be the real response of the structure at 159 

location i, which is related to measured and model-predicted value, as shown in Eq. (1). 160 

𝑄𝑖 = 𝑔𝑖(𝜃) + 𝜖mod, 𝑖 =  𝑦𝑖 + 𝜖meas, 𝑖  (1) 

Rearranging Eq. (1), provides Eq. (2) shown below, which relates residuals between model 161 

predictions and measurements with combination of measurement and modelling uncertainties at 162 

measurement locations.  163 

𝑔𝑖(𝜃) − 𝑦𝑖 =  𝜖meas, 𝑖 − 𝜖mod, 𝑖 (2) 

For an instance of model parameters, θ, the model predictions at sensor locations, g(θ), are 164 

assessed for compatibility with measurements, y, in EDMF. This assessment of compatibility is 165 

carried out on the basis of Eq. (3). 166 

𝑇low,𝑖 ≤ 𝑔𝑖(𝜃) − 𝑦𝑖 ≤ 𝑇high,𝑖 𝑖 ∈ [1, . . . , 𝑚] (3) 

In Eq. (3), gi(θ)-yi, is the residual between measurement and model predictions at a measurement 167 

location, i. Tlow,i and Thigh,i are compatibility thresholds calculated for measurement location i. 168 

These compatibility thresholds are calculated based on the modelling and measurement 169 

uncertainties that are affecting the task of structural identification, as shown in Eq. (2).  170 

Let ϵi be the combined uncertainty at a measurement location i. This combined uncertainty is 171 

calculated by combining modelling uncertainty, ϵmod,i, with measurement uncertainty, ϵmeas,i using 172 

Monte Carlo sampling (Cox and Siebert 2006). Other sampling methods such as Latin hypercube 173 
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sampling and stratified sampling (McKay et al. 1979) may be used to combine uncertainties from 174 

multiple sources to obtain a combined distribution of uncertainty. To obtain the combined 175 

uncertainty PDF, random samples from modelling and measurement uncertainties are generated 176 

and these samples are combined together (ϵmeas,i - ϵmod,i). Using this combined uncertainty at a 177 

measurement location i, thresholds for falsification, Tlow,i and Thigh,i, are calculated using Eq. (4). 178 

𝜑
1

𝑚⁄ = ∫ 𝑓(𝜀𝑖)
𝑇high,𝑖

𝑇low,𝑖

𝑑𝜀𝑖 (4) 

In Eq. (4), f(εi) is the probability distribution function (PDF) of combined uncertainty at 179 

measurement location i and φ is the target reliability of identification. In Eq. (4), φ  [0,1] is the 180 

desired target reliability of identification (Goulet and Smith 2013). The target reliability of 181 

identification is a user-defined metric and sets the minimum required probability (level of 182 

confidence) that the ground truth (θ*) is included in the set of solutions identified using EDMF.  183 

While Eq.4 has an infinite number of solutions, the thresholds, Thigh,i and Tlow,i, are computed as 184 

the ones that provide the shortest interval. Calculation of Thigh,i and Tlow,i  may involve numerical 185 

errors directly related to the discretization (sampling) of the combined uncertainty PDF, f(εi). This 186 

numerical error is lower when more samples are generated with random sampling to approximate 187 

the combined uncertainty PDF. However, these numerical precision errors are significantly smaller 188 

than errors from modelling sources (ϵmod,i). In Eq. (4), the term 1/m is the Sidak correction (Sidak 189 

1967), which accounts for m independent measurements used in identification of model 190 

parameters. 191 

If predictions for a model instance, θi, does not satisfy Eq. (3) for even one measurement location, 192 

then that model instance is falsified. All falsified model instances compose the falsified model set 193 

(FMS) (Goulet 2012; Goulet et al. 2010; Goulet and Smith 2013) as shown in Eq. (5). 194 
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𝛀″ = 𝜽 ∈ Ω ∀𝑖: 𝑔𝑖(𝜃) − 𝑦𝑖 ∉ [𝑇low,𝑖 , 𝑇high,𝑖] (5) 

Falsified model instances are assigned a probability of 0. The remaining parameter instances from 195 

the IMS, Ω, whose responses for all measurement locations lie within the thresholds, i.e., they 196 

satisfy Eq. (5), form the CMS. The probability densities attributed to CMS and FMS are shown in 197 

Eq.(6). 198 

𝑝(𝜃) = {

0 𝜽 ∈ 𝛀″

1

∫ 𝜽
𝑑𝜃

𝜽 ∉ 𝛀″  (6) 

Due to a lack of knowledge of uncertainties, no model instance is assumed to be more likely than 199 

another in the CMS. Consequently, all model instances in the CMS are assumed to have a uniform 200 

probability density. As the knowledge of uncertainties is not known completely, the exact 201 

probability of one model instance being more likely than the other is also not known accurately. 202 

This assumption is conservative and accurate under the assumed uncertainty conditions. This 203 

assumption is also compatible with the accuracy of engineering knowledge that is available. It is 204 

important to ensure that the methodologies and representations do not provide a level of detail that 205 

cannot be warranted by the quality of input knowledge. Candidate models are used for making 206 

further predictions using the physics-based model (Pasquier and Smith 2015).  207 

EDMF, when compared with BMU and residual minimization, has been shown to provide more 208 

accurate identification (Goulet and Smith 2013) and prediction (Pasquier and Smith 2015) than 209 

the more traditional methods that are described in Sections 2.2 and 2.3. EDMF is more accurate 210 

due to its robustness to correlation assumptions and explicit estimation of model bias based on 211 

engineering heuristics (Goulet and Smith 2013; Pasquier and Smith 2015).  212 
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2.2 Residual minimization 213 

Residual minimization, also called model updating, model calibration and parameter estimation, 214 

originated from the work of Gauss and Legendre in the 19th century (Sorenson 1970). In residual 215 

minimization, a structural model is calibrated by determining model parameter values that 216 

minimize the error between model prediction and measurements. A typical objective function for 217 

residual minimization is shown in Eq. (7).  218 

�̂� = argmin
𝜃

∑ (
𝑔𝑖(𝜃) − 𝑦𝑖

𝑦𝑖
)

𝑚

𝑖=1

2

 (7) 

In Eq. (7), ̂   is the optimum model parameter set obtained by minimising the sum of normalized 219 

square residual between model response, gi(θ), and measurement, yi, for all measurement locations, 220 

i.e., ∀ i ∈ [1,…m]. 221 

Residual minimization requires the assumption that the difference between model predictions and 222 

measurements is governed by the choice of parameter values (Mottershead et al. 2011). This 223 

inherently implies that model bias in civil infrastructure that is caused by application of safe design 224 

models is not taken into account. Moreover, this also requires the assumption that the uncertainties 225 

associated with each residual are independent and have zero means.  The presence of systematic 226 

bias may lead to the assumption of independence not being fulfilled (Jiang and Mahadevan 2008; 227 

McFarland and Mahadevan 2008; Rebba and Mahadevan 2006). When these assumptions are not 228 

appropriate, residual minimization may not provide accurate identification (Beven 2000).  Any 229 

model is intrinsically imperfect due to parameter-value compensation and ill-posed nature of 230 

structural identification task (Atamturktur et al. 2015; Beck 2010; Goulet and Smith 2013; Moon 231 

et al. 2013; Neumann and Gujer 2008). However, the simplicity of this methodology has made it 232 
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popular for use in structural (Brownjohn et al. 2001, 2003; Chen et al. 2014; Feng and Feng 2015; 233 

Mosavi et al. 2014; Sanayei et al. 2015) and geotechnical (Hashemi and Rahmani 2018; Levasseur 234 

et al. 2008; Rechea et al. 2008; Zhang et al. 2013) applications, among many others. 235 

While identification with residual minimization may occasionally be accurate, prognosis and 236 

predictions with models updated using residual minimization are limited to the domain of data 237 

used for calibration (Schwer 2007). Therefore, calibrated model-parameter values may be suitable 238 

for interpolation predictions (within the domain of data used for calibration) (Schwer 2007). They 239 

are, however, not suitable for extrapolation (predictions outside the domain of data used for 240 

calibration) (Beven 2000; Mottershead et al. 2011). 241 

2.3 Bayesian model updating 242 

BMU is a data-interpretation methodology that is based on Bayes' theorem (Bayes 1763). Use of 243 

BMU for structural identification was popularized in late 1990's (Alvin 1997; Beck and 244 

Katafygiotis 1998; Katafygiotis and Beck 1998). In BMU, prior information of model parameters, 245 

p(θ), is conditionally updated using a likelihood function, p(y|θ), to obtain a posterior distribution 246 

of model parameters, p(θ|y), as shown in Eq.(8). 247 

𝑝(𝜃|𝑦) =
𝑝(𝜃) ⋅ 𝑝(𝑦|𝜃)

𝑝(𝑦)
 (8) 

In Eq.(8), p(y) is a normalization constant. The likelihood function, p(y|θ) is the probability of 248 

observing the measurement data, y, given a specific set of model-parameter values, θ. The 249 

likelihood function leverages information gained from measurements to create a mapping between 250 

residuals (difference between model predictions and measurements) in error domain, Ξ, and the 251 

parameter domain, Ω (Goulet and Smith 2013). 252 
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2.3.1 Traditional Bayesian model updating 253 

Traditionally, BMU has been carried out using a L2-norm-based Gaussian PDF, as a likelihood 254 

function, as shown in Eq.(9). 255 

𝑝(𝑦|𝜃) ∝ constant ⋅  e
[-

1
2

(𝒈(𝜽)−𝒚)TΣ−1(𝒈(𝜽)−𝒚)]
 (9) 

 In Eq. (9), g(θ) - y, is the residual between model response, g(θ), and measurements, y and Σ is a 256 

covariance matrix that consists of variances and correlation coefficients of uncertainties for each 257 

measured location.  258 

In this traditional application of BMU, uncertainties at measurement locations are assumed to be 259 

defined by independent zero-mean Gaussian distributions (Beck et al. 2001; Ching and Beck 2004; 260 

Katafygiotis et al. 1998; Muto and Beck 2008; Yuen et al. 2006). In addition, the variance in 261 

uncertainty, σ2 is assumed to be the same for all measurement locations, which leads the covariance 262 

matrix to be a diagonal matrix, with all non-zero terms being equal. However, the dubious 263 

assumptions of a Gaussian distribution for model uncertainty (Tarantola 2005) and uncorrelated 264 

error (Simoen et al. 2013) are rarely satisfied in civil-engineering systems and this leads to wrong 265 

updated probability distributions (Goulet and Smith 2013; Pasquier and Smith 2015). 266 

2.3.2  Modified Bayesian model updating 267 

To alleviate shortcomings of traditional BMU, a box-car likelihood function is presented in this 268 

section. This likelihood function is more robust to incomplete knowledge of uncertainties and 269 

correlations compared with traditional assumptions of normality and independence. Moreover, 270 

model updating with a box-car-shaped likelihood function has been shown numerically to provide 271 

results that are compatible with those obtained using EDMF (Pai et al. 2018, 2019; Pai and Smith 272 
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2017; Reuland et al. 2017). In this section, this compatibility is demonstrated analytically, which 273 

complements the numerical compatibility that has been observed previously.  274 

The modified L∞ norm-based Gaussian likelihood function is developed using the thresholds (Tlow 275 

and Thigh) determined for EDMF. The objective of this new likelihood function is to update 276 

knowledge of structural behaviour in the presence of biased, non-Gaussian sources of uncertainty 277 

with unknown correlations. A generalized Gaussian distribution is defined as shown in Eq.(10).  278 

𝑝(𝒙|𝜽, 𝜅) =
𝜅1−𝑞

𝜅⁄

2𝝈𝜿𝛤(1
𝜅⁄ )

𝑒
𝜅[

|𝒙−𝝁𝒙|
𝝈𝜿

]
𝜅

 (10) 

Eq. (10) is valid for a random variable x, based on κ-norm with mean, μx, and standard deviation, 279 

σκ. As κ → ∞, p(x|θ,κ) tends to a box-car shape. The likelihood function, p(y|θ), for infinity norm 280 

is given in Eq. (11)  281 

𝑝(𝒚|𝜽) =  {
1/2𝝈∞ for   𝝁𝒙 − 𝝈∞ ≤ 𝒈(𝜽) − 𝒚 ≤ 𝝁𝒙 + 𝝈∞ 

0 otherwise
 (11) 

 In Eq. (11), parameters of the likelihood function μx and σκ, are determined using Eq. (12) and 282 

Eq.(13). The random variable x represents the combined uncertainty associated with the structural 283 

identification task, ϵi.  284 

𝝁𝒙 =
𝑻𝒉𝒊𝒈𝒉 + 𝑻𝒍𝒐𝒘

𝟐
 (12) 

𝝈∞ = 𝑻𝒉𝒊𝒈𝒉 − 𝝁𝒙 (13) 

In using Eq. (12) and Eq.(13), Tlow and Thigh are the thresholds computed for EDMF using Eq. (4) 285 

for a target reliability of identification, ϕ (assumed to be equal to 0.95 in this paper).  The likelihood 286 
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function is developed with no inherent assumptions related to the distribution and bias of combined 287 

uncertainty at measurement locations.  288 

Figure 1 shows a graph of the likelihood function developed based on the EDMF thresholds for 289 

application of modified BMU on a full-scale bridge that is explained later on in this paper. In the 290 

uncertainty (error) domain, the likelihood function and the thresholds for EDMF define a similar 291 

region as shown in Figure 1.  292 

 293 

Figure 1 Comparison between L∞-norm  Gaussian likelihood function and EDMF thresholds 294 

In Figure 1, marginal PDF of uncertainty at a measurement location, i estimated as a L200-norm 295 

Gaussian likelihood function (approximation of a L∞-norm Gaussian function) is shown, which is 296 

calculated using Eq. (10(11) with shape factor, κ = 200. This PDF of uncertainty has bounds similar 297 

to the EDMF thresholds, Tlow and Thigh, which are calculated using the combined uncertainty at a 298 

measurement location i using Eq. (4). Figure 1 also shows a comparison of traditional bell-shaped 299 

L2-norm-based Gaussian likelihood function (see Eq. (9) with an L200-norm-based Gaussian 300 

likelihood function estimation of uncertainty at measurement location i. The modified likelihood 301 
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function explicitly accounts for model bias and makes conservative estimations of uncertainty 302 

(Jaynes 1957) at a measurement location with incomplete information (thresholds or bounds). 303 

Let g(θ) be the model of a structure with parameters θ. In the absence of complete information 304 

related to model parameters, the prior PDF of these parameters, p(θ), can be assumed to be 305 

uninformative, with a uniform density p. The probability distribution of these parameters can be 306 

updated using Eq.(8) using information from measurements y. Eq. (14) provides the posterior PDF, 307 

p(θ|y), of model parameters, θ, using the L∞-norm-based Gaussian likelihood function as defined 308 

in Eq.(11). 309 

𝑝(𝜽|𝒚) = {

𝑝 ⋅ 1/2𝝈∞

𝑝(𝒚)
,  for   𝝁𝒙 − 𝝈∞ ≤ 𝒈(𝜽) − 𝒚 ≤ 𝝁𝒙 + 𝝈∞

𝟎,  otherwise

 (14) 

 Eq. (14) provides posterior PDF of model parameters based on the residual between model 310 

predictions, g(θ) and measurements, y. According to Eq.(14), the posterior probability distribution 311 

for model parameters θ, which satisfy the condition, μx - σ∞  ≤ g(θ) - y  ≤ μx + σ∞, are distributed 312 

with density  𝑝/2𝝈∞ ⋅ 𝑝(𝑦). Let this region of model parameters with non-zero probability be 313 

denoted by ΩmBMU. Substituting Eq.(12) and Eq.(13) into the condition defining the region ΩmBMU, 314 

the new condition for this region based on the EDMF thresholds is θ ∈ ΩmBMU for 𝒈(𝜽) − 𝒚 ∈315 

[𝑻low, 𝑻high]. Comparing this with Eq.(6), the non-zero probability region obtained using EDMF 316 

(CMS) is the same as ΩmBMU , which is obtained using BMU with a box-car likelihood function.  317 

The space defined by ΩmBMU is equivalent to the space CMS defined for EDMF using Eq. (6). 318 

Since the posterior probability density under both sets of parameter space is defined as a constant 319 

(see Equations (6 and (14) and since the integral of the posterior PDFs for both sets have to be 320 

equal to 1, the posterior densities of the updated parameter spaces are equal.  321 
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EDMF is more robust to assumptions about correlations between uncertainties at various sensor 322 

locations than implementations using Gaussian distributions (Goulet and Smith 2013). This has 323 

been demonstrated to be an important condition to obtain accurate structural identification (Simoen 324 

et al. 2013). Furthermore, changes in values of systematic uncertainties, such as boundary 325 

conditions, can change correlations between uncertainties (Goulet and Smith 2013). BMU with 326 

L∞-norm-based Gaussian likelihood function provides results that are equivalent to EDMF and are 327 

robust to changes in correlations between uncertainties at sensor-location pairs, as shown in Figure 328 

2. 329 

 330 

Figure 2 Robustness to changing correlations 331 

Figure 2 shows samples of error between model response and measurement, r1 and r2, for two 332 

measurement locations assuming three different correlation values. In Figure 2 (a), the correlation 333 

between samples of r1 and r2 is zero, i.e., r1 and r2 are independent. As shown in the figure, the 334 

threshold bounds and high-density region of the L∞-norm-based Gaussian likelihood function 335 
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overlap. The bounded region includes at least 95 percentile of the error samples. In Figure 2 (b) 336 

and (c), correlations between the error samples are -0.8 and 0.8, respectively. For both of these 337 

scenarios, the bounded region includes at least 95th percentile of the error samples. Therefore, 338 

BMU with the L∞-norm-based Gaussian likelihood function is robust to changes in correlations 339 

and provides robust results in a similar way to EDMF.  340 

Application of EDMF has practical advantages compared with this modified implementation of 341 

BMU. Development of the likelihood function, which involves conditional probabilities, is more 342 

complex and is less compatible with typical engineering knowledge and practise. EDMF has a 343 

simpler and easy-to-understand updating criteria using threshold bounds. Additionally, grid 344 

sampling with EDMF is analogous to typical trial and error methods used in practise. BMU 345 

typically involves adaptive sampling methods such as Markov Chain Monte Carlo (MCMC) 346 

(Tanner 2012). Moreover, the L∞-norm-based Gaussian likelihood function is approximated using 347 

a L200-norm-based Gaussian likelihood function for implementation as shown in Figure 1. Such 348 

approximations lead to differences between solutions obtained with EDMF and modified BMU. 349 

A detailed evaluation of practical advantages of EDMF compared with this modified Bayesian 350 

implementation is provided by Pai et al. (2019). 351 

3. VALIDATING STRUCTURAL IDENTIFICATION 352 

Validation of structural identification of full-scale case studies is a challenging task. In full-scale 353 

case studies, the true parameter values (ground truth) is not known. Methods for cross-validation 354 

provide indications of the accuracy of structural identification solutions without knowledge of the 355 

ground truth. In the next section, two methods of cross-validation for structural identification are 356 

presented. 357 
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3.1 Validation 358 

EDMF, compared with traditional BMU and residual minimization, has been shown to provide 359 

accurate model updating for theoretical cases using simulated measurements (Goulet and Smith 360 

2013; Pasquier and Smith 2015). In these theoretical comparisons, the ground truth values are 361 

known.  For assessment of accuracy of full-scale structures, data-driven methods can potentially 362 

provide quantitative validation. 363 

Comparisons of EDMF with traditional BMU and residual minimization have been made for full-364 

scale case studies using leave-one-out cross-validation (Pai et al. 2019) and hold-out cross-365 

validation (Pai et al. 2018). In these comparisons, one or more measurements (data points) are 366 

excluded during identification. Subsequent to identification, the updated parameter values are used 367 

to predict response at measurement locations that were excluded. If the predicted response is 368 

similar to the measurement value, then structural identification is assumed to be validated (Vernay 369 

et al. 2018).  370 

EDMF and modified BMU provided updated parameter distributions, which when used to predict 371 

response (with modelling uncertainties) provide prediction distributions that may be assumed to 372 

be uniformly distributed. Bounds of these updated prediction distributions must include the 373 

measured value left out from structural identification for solutions obtained to be accurate. If the 374 

updated prediction bounds do not include the measured value, then structural identification is 375 

inaccurate, as shown in Eq. (15). 376 

Accuracy, Ψ𝑖 =  {

1 for 𝑦𝑖 ∈ [min[𝑔𝑖(𝜃"), max[𝑔𝑖(𝜃")]]]

0 for 𝑦𝑖 ∉ [min[𝑔𝑖(𝜃"), max[𝑔𝑖(𝜃")]]]

 (15) 
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 In Eq. (15), Ψi is a binary variable with value equal to 1 for accurate structural identification and 377 

0 for inaccurate structural identification at a measurement data point i, which is held out for 378 

validation. In the equation, θ”, are instances from updated model parameter distributions obtained 379 

using EDMF and modified BMU. 380 

Predictions with updated model-parameter distributions obtained using traditional BMU leads to 381 

informed (not uniform) prediction distributions. To assess accuracy, measurement recorded may 382 

either be compared with the median value or with the 95th percentile bounds of the updated 383 

prediction distribution. In this paper, traditional BMU is assessed to provide accurate structural 384 

identification when the measurement value lies within the 95th percentile bounds of the updated 385 

prediction distribution as shown in Eq. (16). 386 

Accuracy, Ψ𝑖 =  {

1 for 𝑦𝑖 ∈[𝑃95(𝑔𝑖(𝜃"))]

0 for 𝑦𝑖 ∉[𝑃95(𝑔𝑖(𝜃"))]

 (16) 

In Eq. (16), P95 are the 95th percentile bounds of the updated prediction distribution, gi(θ”), at a 387 

measurement point i. Similarly, residual minimization is taken to provide accurate identification 388 

when the updated prediction lies close to the measurement value (within 95th percentile bounds of 389 

measurement uncertainty, no modelling uncertainty considered in residual minimization), as 390 

shown in Eq. (17). 391 

Accuracy, Ψ𝑖 =  {

1 for 𝑔𝑖(�̂�) ∈ [𝑃95(𝑦𝑖 + 𝜖meas,𝑖)]

0 for 𝑔𝑖(�̂�) ∉ [𝑃95(𝑦𝑖 + 𝜖meas,𝑖)]

 (17) 

In Eq. (17), yi, is a measurement held out from structural identification and ϵmeas,i is the 392 

measurement uncertainty associated with the recording. P95 are the 95th percentile bounds of the 393 
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measured value including measurement uncertainty. 𝒈𝒊(�̂�) is the prediction at measurement point, 394 

i, with updated optimal parameter instance, �̂�. 395 

Equations, (15), (16) and (17), provide conditions to determine whether updated predictions at 396 

locations of measurements not included for structural identification are accurate. However, in data-397 

driven methods for cross-validation (Golub et al. 1979; Kohavi and others 1995) such as leave-398 

one-out and hold-out cross-validation (Hong and Wan 2011), the data points left out may or may 399 

not contain new information. If information contained in the validation dataset is not exclusive, 400 

then validation with redundant data is not suitable for assessment of accuracy.  401 

No research so far has been carried out to assess exclusivity of information in validation data and 402 

suitability of validated solutions for making further predictions to support asset management 403 

decision-making. In the next section, the concept of joint entropy and information gain is 404 

introduced. This concept helps assess whether data used for validation contains exclusive 405 

information. 406 

3.2 Joint entropy and mutual information 407 

Information entropy was introduced as a sensor-placement objective function for system 408 

identification by Papadimitriou et al. (2000). Information entropy is a measure of disorder in 409 

predictions obtained at a sensor location due to changes in model-parameter values (Robert-410 

Nicoud et al. 2005). High values for information entropy indicate higher disorder in model-411 

instance predictions, and this makes these locations attractive for sensor placement. Consequently, 412 

response at these locations (model predictions) is more sensitive to variations in structural 413 

behaviour (parameter values) than at locations having low entropy values. Therefore, 414 
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measurements at high entropy locations have more potential to improve structural identification 415 

than at low-entropy locations. 416 

Within any system, measurements are typically correlated, leading to redundancy in information 417 

gain. Papadopoulou et al. (2014) developed a joint entropy metric to assess information gain from 418 

measurements from multiple sensors, while accounting for redundancy.  419 

Let H(gi,i+1) be the joint entropy of predictions at measurement locations i and i+1. Let H(gi) and 420 

H(gi+1) be the information entropy at these measurement locations. Joint entropy, H(gi,i+1) is less 421 

than or equal to the sum of individual information entropies, H(gi) and H(gi+1) due to redundancy 422 

in information gain, I(gi,i+1). This redundancy in information, I(gi,i+1), can be calculated using Eq. 423 

(18). 424 

𝐻(𝑔𝑖,𝑖+1) = 𝐻(𝑔𝑖) + 𝐻(𝑔𝑖+1) − 𝐼(𝑔𝑖,𝑖+1) (18) 

 Eq. (18) can be re-ordered to calculated the mutual (redundant) information, I(gi,i+1), between 425 

measurements at two sensor locations. Consequently, Eq. (18) may be extended to sets of data 426 

from multiple sensors as shown in Eq.(19). 427 

𝐻(𝑔A,B) = 𝐻(𝑔A) + 𝐻(𝑔B) − 𝐼(𝑔A,B) (19) 

 In Eq. (19), A and B are two sets of measurement locations. H(gA) and H(gB) are the joint entropies 428 

for predictions at these two sets of locations. The total joint entropy including locations in sets A 429 

and B is H(gA,B). The redundancy in information between these two sets of model-predictions data 430 

is I(gA,B).  431 

In Eq. (19), let A be a set of measurement locations, data (measurements) from which is used for 432 

structural identification (identification set). Similarly, let B be a set of measurement locations, data 433 
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(measurements) from which are held-out for validation after structural identification (validation 434 

set). Redundancy in information between data used for identification and validation, I(gA,B), may 435 

be calculated using Eq. (19), as shown in Eq.(20). 436 

𝐼(𝑔A,B) = 𝐻(𝑔A) + 𝐻(𝑔B) − 𝐻(𝑔A,B) (20) 

 Validation of structural identification is accurate when data used for validation provides new 437 

information regarding structural behaviour, which is not available in the data used for 438 

identification. This new information may be assessed using the metric of information entropy as 439 

shown in Eq. (19). Exclusive information in validation set B, EB, which is not included in 440 

identification set A, is calculated as shown in Eq. (21). 441 

𝐸𝐵 =  𝐻(𝑔𝐵) − 𝐼(𝑔𝐴,𝐵) (21) 

In Eq. (21), the quantity H(gB) is the joint entropy of validation set B and I(gA,B) is the redundancy 442 

in information between identification set A and validation set B. I(gA,B) is calculated using Eq.(20).  443 

Let m measurements be available for structural identification. In leave-one-out cross-validation, 444 

one measurement is held out from identification for validation. Structural identification is 445 

performed using m-1 measurements (identification set A). The measurement held out is the 446 

validation set B. The exclusive information available for validation using this one measurement is 447 

calculated using Eq. (21). As m measurements are available, m iterations of validation by leaving 448 

each sensor out can be carried out. 449 

For holdout cross-validation, instead of only one measurement, let h measurements out of m be 450 

held out for validation. In this case, the identification set includes m-h measurements, which forms 451 



 

 24    

the identification set A. The validation set B includes h measurements. The exclusive information 452 

in set B, not available for identification in set A, is calculated using Eq. (21). 453 

For both validation methods, data used for validation must include new and exclusive information 454 

to be able to assess accuracy of structural identification. Low or negative values of exclusive 455 

information, EB, indicate either uninformative data, i.e., low H(gB) or large redundancy in 456 

information between identification and validation data i.e., high I(gA,B). 457 

In the next section, the application of structural identification methodologies for evaluation of a 458 

full-scale bridge case study is presented. The results of structural identification are assessed using 459 

leave-one-out and hold out cross-validation methods. Subsequent to assessment of accuracy of 460 

structural identification, fatigue life of the bridge at a critical detail is evaluated using updated 461 

knowledge of structural behaviour acquired using measurements. 462 

4. POWDER MILL BRIDGE 463 

In this section, the three data-interpretation methodologies described previously have been applied 464 

for structural identification of the Powder Mill Bridge (PMB) (Follen et al. 2014) shown in Figure 465 

3. This bridge has also been called the Vernon Avenue Bridge (Sanayei et al. 2011). The PMB is 466 

a steel-concrete bridge built over the Ware river in Barre, Massachusetts, USA. The bridge was 467 

built in 2009 and connects the state highway with a depot road that services mainly truck traffic. 468 
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 469 

Figure 3 Powder Mill Bridge (PMB) located in Massachusetts, USA. 470 

Figure 4 shows a schematic drawing of the PMB. This bridge has three spans with a total length 471 

of 47 m. The bridge has a concrete deck, which is supported by six I-section steel girders as shown 472 

in the figure. 473 

 474 

Figure 4 Schematic drawing of the Powder Mill Bridge 475 

 476 

 477 
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4.1 Load test and measurements 478 

A load test was performed on the PMB. During the load test, a truck weighing 33 tonnes was 479 

driven across the bridge at a speed of 10 km/h to avoid dynamic amplification effects. The 480 

transverse alignment of the truck on the bridge is shown in Figure 4 (b). The response of the bridge 481 

to this truck loading was recorded using strain gauges. Strain gauges were placed on the lower 482 

flange of the steel girders as shown in Figure 4 (b). The placement of the gauges in plan view is 483 

shown in Figure 5. In total, 20 strain gauges recorded structural response during the load test.  484 

 485 

Figure 5 Location of 20 strain gauges installed on the bridge to record data during the load 486 

test. Data from 8 sensors is used for identification (and leave-one-out cross-validation). Data 487 

from remaining 12 sensors is used for hold-out cross-validation of structural identification. 488 

Strain from 8 sensors, S1, S2, S6, S7, S11, S12, S16 and S17, shown in Figure 5 are used in this 489 

paper for structural identification of the PMB. Data from other sensors is held-out for cross-490 

validation. The data utilised for structural identification corresponds to the point in time when 491 

movement of the truck leads maximum strain recorded in S13 (see Figure 5). 492 

The objective of measuring this bridge is to update a FE model and enable better prediction of the 493 

remaining fatigue-life (RFL) of the bridge. A fatigue critical detail on the bridge that has been 494 

identified is a welded cover plate detail near support C at the bottom flange of girder G2 (see 495 
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Figure 5). In the next section, the development of a FE model of the bridge and estimation of 496 

uncertainties affecting the task of structural identification are described. 497 

4.2 Model development and uncertainties 498 

To interpret data recorded during the load test, a finite element (FE) model of the bridge has been 499 

developed in Ansys (APDL 2010). In the FE model, the concrete deck is modelled as a 500 

homogeneous slab using four-node SHELL182 elements (ANSYS 2012). The steel girders are 501 

modelled using SHELL182 elements.  502 

The connection between the steel girders and concrete deck (in transversal and longitudinal 503 

directions) is modelled using zero-length spring elements (COMBIN14). The end supports of the 504 

bridge (support A and D) and intermediate supports (Support B and C) are modelled with zero-505 

length spring elements (COMBIN14) with parameterized stiffness in longitudinal and vertical 506 

directions. Springs belonging to each support have been parameterized individually to account for 507 

any changes in structural behaviour between supports. 508 

The footpath on the bridge and the railings also contribute to bridge structural behaviour (Sanayei 509 

et al. 2011). However, stiffness of the connection between the concrete deck and railings is not 510 

known. Thus, the deck slab thickness and thickness of the deck and railing at the edge of the bridge 511 

are parameterized in the FE model. Table 1 shows the parameters included in the FE model and 512 

the prior distributions assumed for these parameters based on engineering heuristics. 513 

 514 

 515 
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Table 1 Parametric sources of uncertainty in the model and their range 516 

Index Parameter Variable Range 

1 Modulus of elasticity of concrete (GPa) Ec 20-55 

2 Modulus of elasticity of steel (GPa) Es 195-210 

3 Thickness of deck slab (mm) Hd 200-210 

4 Height of concrete slab, sidewalk and railing (mm) Hr 300-500 

5 Deck-girder connection stiffness, transversal (log N/mm) Kdg,x 2-6 

6 Deck-girder connection stiffness, longitudinal (log N/mm) Kdg,z 4-10 

7 Vertical stiffness of abutment A (log N/mm) K1,y 4-7 

8 Horizontal stiffness of abutment A (log N/mm) K1,z 2-5 

9 Vertical stiffness of pier B (log N/mm) K2,y 4-7 

10 Horizontal stiffness pier B (log N/mm) K2,z 2-5 

11 Vertical stiffness of pier C (log N/mm) K3,y 4-7 

12 Horizontal stiffness of pier C (log N/mm) K3,z 2-5 

13 Vertical stiffness of abutment D (log N/mm) K4,y 4-7 

14 Horizontal stiffness of abutment D (log N/mm) K4,z 2-5 

Not all parameters included in the FE model influence structural behaviour significantly. Based on 517 

a sensitivity analysis, a model class is chosen for structural identification. The parameters included 518 

in the model class for structural identification are Ec, Hr, Kdg,x, K2,y and K3,y. The prior distributions 519 

of these parameters are presented in Table 1. 520 

Identification of the five parameters in the model class is carried out using three data-interpretation 521 

methodologies in this paper. The task of structural identification is computationally expensive, 522 

especially when it has to be repeated for three methodologies. To alleviate the computational load, 523 

the FE model has been replaced with a set of surrogate models. One simulation with a FE model 524 

takes a few minutes (approximately five minutes using an Intel(R) Xeon(R) CPU E5-2670 v3 525 

@2.30GHz processor) while one simulation with surrogate models takes less than a second. The 526 

computational cost of using an FE models increases drastically when thousands of simulations 527 

have to be performed to search for solutions using the data-interpretation methodologies. 528 

Therefore, use of surrogate models successfully alleviates this computational cost. 529 
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The methodology adopted for development of the surrogate models is Gaussian process regression. 530 

One regression model each has been developed to replicate the FE model response at each sensor 531 

location. The surrogate models are trained and validated (hold-out) using data simulated using the 532 

FE model for various parameter-value combinations based on the model class for identification. 533 

Updating the parameters requires assessment of uncertainties affecting the task of structural 534 

identification. Uncertainties are given in Table 2. Measurement uncertainty is estimated based on 535 

knowledge of sensors.  536 

Load uncertainty includes uncertainty from the magnitude of the truck load and uncertainty in its 537 

position on the bridge. This uncertainty is quantified by varying the position of the truck and its 538 

load within reasonable limits based on engineering heuristics. The affect of this variability on the 539 

model response at sensor locations is used to quantify the load uncertainty related to magnitude 540 

and position. 541 

Model bias is estimated based on an engineering understanding of assumptions made during model 542 

development. Assumptions involved in development of the model include the choice of finite 543 

element, modelling of the boundary conditions as springs and homogeneous modelling of the 544 

concrete slab. While no objective quantification of these assumptions is possible (Goulet et al. 545 

2013), model bias, as tabulated in Table 2, is largely based on the engineering knowledge that is 546 

available. 547 

Surrogate model uncertainty is the error between surrogate model predictions and predictions 548 

obtained using the FE model. This uncertainty is estimated based on hold-out cross-validation of 549 

the surrogate models. 550 
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Table 2 Uncertainty sources and their distribution (%). Uncertainty from measurements is 551 

quantified as normal distributions (N) and uncertainty from other sources are quantified as 552 

uniform probability distributions (U).  553 

Source Distribution 

Measurement N (0, 5) 

Load U (-5, 5) 

Model bias U (-15, 5)  

Surrogate model uncertainty U(-1,1) 

Apart from the uncertainties listed in Table 2, there is uncertainty from parameters in the FE model 554 

that have not been included in the model class for identification. This parameter uncertainty is 555 

calculated using the FE model and is estimated to be uniformly distributed with bounds -15% and 556 

+ 5% at all sensor locations.  557 

Combining uncertainties from Table 2 with parameter uncertainty (-15% to +5%), structural 558 

identification of the PMB is carried out. These uncertainties are combined together to obtain the 559 

combined uncertainty PDF as explained in Section 2.1. This combined uncertainty is utilised to 560 

calculate the falsification thresholds for EDMF using Eq.(4) and the likelihood functions for 561 

traditional and modified BMU using Eq.(9)  and Eq. (10). 562 

4.3 Structural identification 563 

Structural identification for the PMB using data from eight strain gauges has been carried out using 564 

EDMF, traditional BMU, modified BMU and residual minimization. In Figure 6, marginal 565 

posterior PDFs of model parameters obtained after structural identification using EDMF, 566 

traditional BMU, modified BMU and residual minimization are presented.  567 

In Figure 6, initial model instances identified as compatible with measurements using EDMF 568 

(CMS) and modified BMU (ΩmBMU) are similar. This equivalency in identification between 569 

EDMF and modified BMU has been demonstrated analytically in Section 2.3.2. However, in 570 
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Figure 6, the bounds of parameters Ec and K2,y identified using EDMF and modified BMU are 571 

similar but not the same due to variations in the sampling methodologies adopted and 572 

approximation of the box-car likelihood function using a L200-norm-based Gaussian likelihood 573 

function (instead of a L∞-norm-based Gaussian likelihood function). Also, EDMF utilizes an 574 

engineering compatible grid sampling (Pai et al. 2019), while modified BMU is carried out using 575 

MCMC sampling (Tanner 2012). Due to these differences in practical application of EDMF and 576 

modified BMU, results obtained with these methodologies may differ. 577 

Updated PDFs of model parameters obtained using traditional BMU and the optimal parameter 578 

values obtained using residual minimization are shown in Figure 6. While Figure 6 shows the 579 

updated parameter distributions, it does not provide any information regarding accuracy of the 580 

updated parameter distributions. In the next section, multiple cross-validations have been carried 581 

out to assess accuracy of structural identification solutions obtained. 582 
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  583 

Figure 6 Histogram of joint posterior PDF obtained using traditional BMU and optimal 584 

parameter values obtained using residual minimization 585 

4.4 Cross-Validation 586 

Cross-validation methods are used to assess accuracy of structural identification and validate the 587 

assumptions made in uncertainty estimations. In the next few sections, validation methods, leave-588 

one-out and hold-out cross-validation for assessment of structural identification solutions, are 589 

presented. 590 

4.4.1 Leave-one-out cross-validation 591 

In leave-one-out cross-validation, one data point among a set of m data points available is omitted. 592 

Using the m-1 data points, structural identification is carried out to obtain an updated distribution 593 

of model parameters. This updated model parameter distribution is then provided as input to the 594 

physics-based model to predict the response at the location of the data point left out. If the updated 595 
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predictions are compatible with the omitted measurement, then structural identification is accurate 596 

for this measurement location. This process is then repeated m times to independently assess 597 

identification at each measurement location. 598 

Figure 7 shows a comparison of predictions made using updated knowledge of model parameters 599 

with measurement left out. The structural identification is carried out using 7 sensors with one 600 

sensor left out for each scenario. The comparisons shown in the figure indicate that structural 601 

identification carried out using EDMF and modified BMU are accurate for every case. Residual 602 

minimization and Traditional BMU are not accurate for the case studied in Figure 7c. This is also 603 

supported by evaluations using equations (15), (16) and (17). Nevertheless, the updated predictions 604 

using all data-interpretation methodologies are comparable to the measured structural response. 605 

 606 

Figure 7 Leave-one-out cross validation of identification results obtained using the four data-607 

interpretation methodologies. Based on leave-one-out cross-validation all data-608 

interpretation methodologies provide accurate solutions for most cases.  609 
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However, an assumption made during leave-one-out cross-validation is that each data point left 610 

out provides new information that is not available in the dataset (m-1 data points) used for 611 

identification. Exclusive information contained in data point left out (set B) compared with 612 

information contained in dataset for identification (set A) can be calculated using Eq. (21). The 613 

exclusive information contained in the sensor left out, relative to information from all 8 sensors, 614 

H(gA,B), is shown in Figure 8. 615 

 616 

Figure 8 Exclusive information in sensor omitted for leave-one-out cross-validation. The 617 

sensors left out generally contain redundant or little new information for validation. 618 

In Figure 8, exclusive information provided by sensor left-out compared with information from 619 

the other 7 sensors for identification for each case of leave-one-out cross-validation is shown. For 620 

most sensors, the sensor left out shows negative values, which indicates redundant information 621 

and over-instrumentation. Therefore, most sensors provide no new information for leave-one-out 622 

cross-validation. Consequently, validation with leave-one-out cross-validation is not appropriate 623 

to justify accuracy of structural identification in this situation. 624 

 625 
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4.4.2 Hold-out cross-validation 626 

In hold-out validation, a second and independent dataset is used for validation, i.e., data that has 627 

not been used for structural identification in a similar way to training and validating artificial neural 628 

networks. Structural identification for the PMB has been carried out using data from eight strain 629 

gauges (identification set A), shown in Figure 5. In addition to these eight strain gauges, there are 630 

twelve strain gauges (validation set B), as shown in Figure 5, data from which is utilized in this 631 

section for hold-out cross-validation of structural identification solutions. Exclusive information 632 

from these twelve strain measurements compared with information from eight strain gauges is 633 

calculated using Eq. (21). This exclusive information is calculated to be 16% of the total 634 

information from the twenty measurements (8 in set A and 12 in set B) available. Figure 9 shows 635 

a comparison of updated predictions at the held-out sensor locations with measured structural 636 

response.  637 

As shown in Figure 9, updated predictions obtained using all methodologies are not compatible 638 

with measurements at all sensor locations. EDMF and modified BMU provide accurate, albeit 639 

imprecise, prediction bounds that include the measured structural response for all sensor locations. 640 

Traditional BMU and residual minimization provide more precise updated model predictions than 641 

EDMF and modified BMU. However, the predictions are not compatible with measurements at all 642 

sensor locations (for example, see predictions at sensors S8, S9, S13, S14, S15 and S18).  643 

Using equations (15), EDMF and modified BMU are evaluated to provide accurate updated 644 

predictions at all measurements held out (overall accuracy = 100%). Using (16), traditional BMU 645 

is evaluated to provide accurate updated predictions for only 5 out of 12 measurement locations 646 

held out (overall accuracy = 5/12*100 = 42%). Similarly, assessing accuracy using Eq. (17), 647 

residual minimization provides accurate updated predictions for only 5 out of 12 measurement 648 
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locations held out (overall accuracy = 5/12*100 = 42%). Therefore, traditional BMU and residual 649 

minimization do not provide accurate structural identification even for a relatively low amount 650 

(16%) of new information in the held-out data set. 651 

 652 

Figure 9 Hold-out cross validation of identification results obtained using the four data-653 

interpretation methodologies. EDMF and modified BMU provide identification results that 654 

are accurate even when validated with mutually exclusive information. 655 

4.4.3 Hold-out cross-validation using measurements from a second load test 656 

A second load test was performed on the PMB, similar to one described in Section 4.1. During this 657 

load test, a truck weighing 33 tonnes was driven across the bridge at a speed of 10km/h. The 658 
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alignment of the truck on the bridge is shown in Figure 10. The response of the bridge to this truck 659 

loading was recorded using strain gauges placed on the lower steel beam flanges of PMB. The 660 

location of these gauges in plan view is shown in Figure 5. In total, 18 strain gauges recorded 661 

structural response during the load test.  662 

 663 

Figure 10 Plan view of second load test on the PMB showing location of 18 strain gauges and 664 

position of the truck load. Data from these strain gauges is used for cross-validation of 665 

structural identification solutions. Sensors S15 and S20 shown in Figure 5 were not working 666 

during this second load test. 667 

Data from sensors shown in Figure 10 are held-out for cross-validation. The data utilised 668 

corresponds to the point in time when movement of the truck leads to maximum strain recorded in 669 

S13 (see Figure 10). Figure 11 shows few cases of updated predictions made at sensor locations 670 

S4, S9, S14 and S19 (strain predictions close to support C-C, see Figure 10). 671 
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 672 

Figure 11 Examples of holdout cross-validation using measurements from a second load test, 673 

demonstrating inaccurate identification using traditional BMU and residual minimization. 674 

This second load test (18 measurements) has 40% exclusive information compared with 675 

information from load test data used for structural identification.  676 

For cases shown in Figure 11, traditional BMU and residual minimization provide precise 677 

predictions (low variability), which are biased from the measured value, indicating inaccurate 678 

identification. Conversely, EDMF and modified BMU provide wide bounds of predictions (large 679 

prediction variability), which include the measured value and therefore provide accurate structural 680 

identification. Additionally, due to similarity in solutions obtained with EDMF and modified 681 

BMU, the prediction bounds obtained are also similar. 682 

For the eighteen measurements used in cross-validation, traditional BMU provided accurate 683 

predictions (see Eq. (16) at nine sensor locations leading to an overall accuracy of 50% (9 out of 684 

18). Residual minimization is also found to provide accurate predictions (see Eq. (17) for nine out 685 

of eighteen validation predictions (50% accuracy). EDMF and modified BMU provided accurate 686 

predictions (see Eq. (15) for seventeen out of eighteen cases (95% accuracy).  687 

EDMF and modified BMU provide accurate structural identification. Moreover, predictions 688 

obtained using both methodologies are similar with differences arising only from use of different 689 

sampling strategies for structural identification. In the next section, the validated structural 690 
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identification solutions have been used to predict the remaining fatigue life of a critical detail on 691 

the Powder Mill Bridge. 692 

4.5 Remaining fatigue life prediction 693 

Using updated model parameter distributions obtained using the application of data-interpretation 694 

methodologies, reserve capacity of PMB is predicted with respect to its RFL. The critical detail 695 

evaluated for fatigue is a welded connection located on girder G2, close to north pier (support C, 696 

near sensor S10, see Figure 9). 697 

The category of this detail is ’C’, which has a detail constant, A, of 44 ksi3. This detail has also 698 

been evaluated by Saberi et al. (2016). Based on in-service measurements carried out on the bridge, 699 

the average daily truck traffic (ADTT) is 255 vehicles/day. The RFL of PMB is predicted using 700 

reference manual (AASHTO 2016), as shown in Eq. (22). 701 

𝑅𝐹𝐿 =  
log [

𝑅𝑅 ∙ 𝐴
365 ∙ 𝑛 ∙ 𝐴𝐷𝑇𝑇 ∙ [Δ𝜎]3 ∙ 𝑔(1 + 𝑔)𝑎−1 + 1]

log(1 + 𝑔)
 

(22) 

In Eq. (22), RR is the resistance factor, which is equal to 1, A is the detail constant and n is the 702 

number of cycles per truck passage, equal to 2. In the equation, g is the annual growth of traffic in 703 

percentage, which is assumed to be 1% and the variable, a, is the present age of the bridge, which 704 

during measurements was 11 years. Δσ in the equation is the effective stress range (ksi).  The 705 

effective stress range for PMB is computed using the FE model with the fatigue load as specified 706 

by the design code. Based on Eq. 10, the predictions of RFL are shown in Figure 12. 707 

In Figure 12, using updated information of model parameters uncertainty in RFL prediction of the 708 

PMB is reduced. EDMF and modified BMU predict a minimum RFL of 620 and 610 years 709 

respectively. Updated model parameter distributions obtained using both these methods have been 710 
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validated using leave-one-out and hold-out cross-validation. Therefore, a minimum RFL of the 711 

PMB may be estimated to be 610 years. This value is significantly higher than the design RFL of 712 

64 years. This reserve capacity may be utilised to guide asset-management decisions, such as 713 

replacement and possible retrofit actions due to loading changes, in the future. 714 

 715 

Figure 12 Updated RFL prediction of a critical welded detail using identification results 716 

obtained using the four data-interpretation methodologies. Traditional BMU and residual 717 

minimization provide a likely RFL greater than the minimum value estimated using EDMF 718 

and modified BMU. As these two methodologies are assessed to provide inaccurate structural 719 

identification, the predictions of RFL may be un-conservative for decision making. 720 

Residual minimization and traditional BMU (using the maximum a-posteriori estimate) predict a 721 

RFL of approximately 670 years. This value is greater than the minimum RFL predicted by EDMF 722 

and modified BMU. Moreover, structural identification using residual minimization and traditional 723 

BMU has been assessed to be potentially inaccurate using hold-out cross-validation. Therefore, 724 

residual minimization and traditional BMU provide un-conservative structural identification and 725 

possibly unsafe predictions of RFL. 726 

 727 

 728 
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5. DISCUSSION 729 

In this paper, equivalence between modified BMU and EDMF is demonstrated analytically. 730 

Modified BMU provides similar results to EDMF when applied to full-scale evaluations (see Eq. 731 

(14)), with differences arising from sampling and approximation of the box-car likelihood function 732 

(see Figure 1). Modified BMU, as shown in Figure 2, is robust to misevaluation of correlations 733 

and provides accurate results for structural identification compared with residual minimization as 734 

shown in Figure 7, Figure 9 and Figure 11. Therefore, modified BMU provides an alternative 735 

Bayesian approach for accurate structural identification, comparable with EDMF.  736 

EDMF enables explicit quantification of uncertainties from sources that affect structural 737 

behaviour. Some of these sources are included in the model class for identification (Pai et al. 2021; 738 

Saitta et al. 2005), while others are combined together to estimate the falsification thresholds (see 739 

Eq. (4). Quantification of these uncertainties, particularly those related to the model, are based on 740 

engineering knowledge such as assumptions involved in model development, observations from 741 

site inspection and conditions of loading (Goulet et al. 2013). 742 

Modified BMU provides the same results as EDMF. Additionally, modified BMU also allows for 743 

explicit quantification of uncertainties as part of development of model priors and the likelihood 744 

function based on falsification thresholds (see equations (12 and (13). Traditional BMU (Beck and 745 

Katafygiotis 1998) and other novel variants (Behmanesh et al. 2015; Simoen et al. 2013) do not 746 

allow for engineering knowledge to be explicitly included in development of the likelihood 747 

function. Wang and Liu (2020) have used Bayesian entropy networks to include constraints based 748 

on engineering knowledge. 749 

Bayesian model updating requires complex strategies to sample from the posterior (Kuśmierczyk 750 

et al. 2019; Qian et al. 2003) such as MCMC sampling for accurate inference. Moreover, 751 
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appropriate implementation of these sampling methods and interpretation of posterior PDFs for 752 

asset management requires statistical knowledge (Aczel et al. 2020). The task of asset management 753 

is iterative (Pasquier and Smith 2016). Therefore, the task of model-based data interpretation needs 754 

to be transparent for repeated evaluations as new information becomes available over time. 755 

Iterations of data interpretation with new information may be computationally expensive using 756 

sampling methods such as MCMC. These are few challenges related to practical implementation 757 

of BMU. A more comprehensive discussion related to practical challenges associated with the 758 

application of various data-interpretation methodologies has been carried out by Pai et al. (2019).  759 

Utility of measurements to improve understanding of structural behaviour using EDMF may be 760 

assessed using a cross-entropy measure (Jiang and Mahadevan 2006) to compare prior parameter 761 

distributions with posterior parameter distributions. 762 

Subsequent to structural identification, validation of solutions using leave-one-out and hold-out 763 

cross-validation is assessed. In the absence of informative data to be withheld for validation, 764 

assessment of accuracy of structural identification is not appropriate, as shown in Figure 7. Leave-765 

one-out cross-validation, with mostly redundant information, falsely suggests that all data-766 

interpretation methodologies provide accurate structural identification most of the time. This is 767 

shown to be wrong when validation is carried out using the hold-out method. In the hold-out 768 

method, with informative data in the validation dataset, structural identification using residual 769 

minimization and traditional BMU is assessed to be inaccurate.  770 

Other than leave-one-out and hold-out validation, users may also adopt the k-fold validation 771 

(Bengio and Grandvalet 2004) strategy. In this strategy, the set of measurement data is divided 772 

into k folds (subsets). One of these folds is used for validation, while data in k-1 folds is used for 773 

model updating. Subsequently, the validation is performed with another fold and this process is 774 
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iterated till model updating is validated with all k folds. When k is set equal to number of 775 

measurements available (m), then k-fold validation is essentially leave-one-out cross-validation. 776 

Using this method poses challenges related to amount of data necessary and selecting the 777 

appropriate value of k (Rodríguez et al. 2010), which affects validation accuracy.  778 

Using validated solutions obtained using EDMF and modified BMU, the RFL of the Powder Mill 779 

Bridge with respect to a cover plate detail is calculated. The bridge has significant reserve capacity 780 

with respect to the fatigue limit state compared with design calculations. More importantly, RFL 781 

predictions obtained using traditional BMU and residual minimization were greater than those 782 

obtained using EDMF and modified BMU. Therefore, structural identification with inappropriate 783 

uncertainty assumptions may lead to inaccurate solutions and unsafe predictions.  784 

The presence of significant reserve capacity for the PMB is similar to previous observations that 785 

typically indicate over-design of civil infrastructure. Smith (2016) provided a summary of case 786 

studies that were evaluated to possess significant reserve capacity beyond design requirements by 787 

using information obtained with monitoring. The presence of reserve capacity beyond design has 788 

been observed for steel bridges (Pasquier et al. 2014, 2016) with respect to the fatigue limit state 789 

(Pai et al. 2018) and concrete bridges with respect to serviceability and ultimate limit state 790 

(Proverbio et al. 2018c). Reserve capacity of PMB evaluated in this study adds to existing 791 

observations on over-design of civil infrastructure built with conservative and simplified models. 792 

Similar over-design of civil infrastructure, due to low marginal initial costs to reduce for example, 793 

construction risk, may not be acceptable in the future due to sustainability considerations and lack 794 

of availability of raw materials. Better design guidelines may be necessary to minimize wastage 795 

of raw materials and reduce life-cycle energy consumption. Correctly interpreting monitoring data 796 

to update models provides support for improving data-enhanced design guidelines. 797 
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The modified BMU methodology presented in this paper and the information theoretic approach 798 

adopted to perform validation of structural identification enable use of monitoring for asset 799 

management. Transfer of this research into practice will require users to address additional 800 

challenges related to detecting outliers in data (Proverbio et al. 2018a) and adopting efficient 801 

strategies to search for solutions (Proverbio et al. 2018b; Raphael and Smith 2003).  802 

The EDMF methodology relies on engineering expertise to assess uncertainty sources affecting 803 

the structural system. While developments in model-class assessment and selection (Pai et al. 804 

2021; Pasquier and Smith 2016) provide certain checks to ensure important sources of uncertainty 805 

are addressed, site inspections and engineering knowledge are important for accurate 806 

implementation of EDMF. 807 

In this paper, validation has been performed for one case study. While there are no reasons why 808 

similar cases cannot benefit, to ensure scalability, such validation studies have to be performed on 809 

many full-scale case studies. With more evaluations, guidelines on selecting data for appropriate 810 

validation and improvements in the validation strategy, such as k-fold validation, may be assessed. 811 

With more validation studies, assessment of reserve capacity may be improved, thereby enhancing 812 

asset management. 813 

6. CONCLUSIONS 814 

In this paper, three data-interpretation methodologies are compared for structural identification of 815 

a steel-concrete composite bridge. Results of structural identification are verified using cross-816 

validation and they are subsequently used to predict remaining fatigue lives of the bridge structure. 817 

The conclusions obtained are as follows: 818 
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• EDMF provides more accurate interpretation of measurement data using physics-based models 819 

compared with traditional BMU and residual minimization. Modifications to the likelihood 820 

function for BMU also provides accurate structural identification since the two methods 821 

become analytically equivalent. 822 

• Verification of identification solutions using leave-one-out cross-validation is a necessary but 823 

not a sufficient condition. Leave-one-out cross-validation may lead to verification with 824 

information that is already included in identification. This is not sufficient to justify using 825 

results obtained from identification for extrapolation predictions such as those necessary to 826 

estimate reserve capacity. 827 

• Verification of identification solutions using hold-out cross-validation is required when leave-828 

one-out cross-validation fails to verify solutions with new information. Hold-out cross-829 

validation with information not available during identification helps verify results obtained 830 

from identification for extrapolation predictions that are necessary to estimate reserve capacity. 831 

• Inaccurate structural identification using traditional BMU and residual minimization, as 832 

verified using either leave-one-out or hold-out cross-validation, leads to un-conservative 833 

predictions of reserve capacity.  834 

• Results from this paper add to a growing body of evidence that most structures possess reserve 835 

capacity well beyond design requirements. Accurate and safe quantification of this reserve 836 

capacity using data-informed physics-based models enables well informed asset management 837 

and avoids unnecessary and expensive management actions. 838 
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