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Abstract 

This paper compares four sensor placement strategies which differ according to 

their evaluation criteria. The first involves the minimization of the expected 

number of candidate models, and the second is based on maximizing joint entropy. 

The first methodology shows better results in terms of diagnostic performance. 
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However, the second is promising due to faster execution time. The third strategy 

is a combination of the first two. Finally, a fourth strategy involves consideration 

of the cost of the sensor placement at each location in addition to the evaluation 

criteria of the third strategy. The four strategies are evaluated in terms of 

performance, computational load and cost. Since there is only mild competition 

between the three criteria, a hierarchical multicriteria decision making approach is 

employed to identify the best sensor placement strategy. Two case studies are used 

for illustration. The results show that the sensor placement strategies are useful for 

identifying optimized sensor configurations for new configurations as well as for 

evaluating the performance of existing sensor configurations. Using a hierarchical 

multicriteria decision-making technique, the fourth sensor placement strategy 

satisfies all criteria well, making it the best strategy.   

Keywords: measurement system design; sensor placement; hydraulic network; 

joint entropy; sensor placement cost. 

Introduction 

Water scarcity is a challenge that is faced by approximately one fifth of the world 

population (Watkins, 2006). In addition, one third of reporting countries lose more than 

40% of clean water pumped through distribution systems due to leaks. While the need for 

leak detection services has been recognized by most global water utilities as part of the 

solution to this challenging problem, only 40% of utilities have these services (Sensus, 

2012). Currently, most utilities react to leakage on an ad-hoc basis, responding to obvious 

leaks and bursts and repairing infrastructure as required. There is a need for more rational 

and systematic strategies to manage this infrastructure, and the focus of water supply 

management is slowly shifting towards rehabilitation of the existing networks and away 

from new construction (Tscheikner-Gratl et al. 2016). Advanced sensor-based diagnostic 

methodologies have the potential to provide useful management support. In this direction, 

cost-effective sensor selection and placement are two of the most essential tasks. 



Measurement system design is the task of selecting good configurations of sensors 

with respect to their type, number and location. Prodon et al. (2010) studied the optimized 

placement of hydrophones. Vítkovský et al. (2003) presented an approach to determine 

the optimal measurement site for inverse transient analyses in pipe networks. Farley et al. 

(2010) developed a pressure sensor method for leak detection. Their methodology 

determined the sensitivity to leaks of all the possible locations and found the most 

sensitive locations. Developing a monitoring system for hydraulic and water quality 

parameters, Preis et al. (2009) combined two types of sensors to decrease cost of 

installation and maintenance. How the data is interpreted has already been established as 

an important factor for measurement system design (Laory et al., 2012; Chang et al., 

2008). All of these methods involve evaluation of the performance of measurement 

systems using criteria that do not explicitly include how the data is interpreted for 

diagnosis. With the objective that measurement system design should take into account 

interpretation goals, Goulet and Smith (2012) proposed a methodology for sensor 

placement using model-falsification. While this methodology had the additional 

advantage to include modeling and measurement uncertainties, it did not include criteria 

such as cost. 

In water supply networks, the cost of placing sensors may vary significantly from 

one position to another. For example, a flow sensor placed near an accessible part of the 

network may be significantly cheaper to install than a sensor placed under a main road. 

Since instrumentation costs for sensors are often reported as very expensive (Dorvash et 

al., 2014), this should be considered during the measurement system design stage. There 

are currently, no studies that include the effects of spatial distributions of costs for sensor 

placement in water supply networks. 



The concept of entropy in information theory was first proposed by Shannon and 

Weaver (1949). Entropy is defined as a measure of information, choice and uncertainty, 

and several researchers have found that it is a good metric for use in sensor placement, 

using a greedy algorithm to add sensors where entropy is maximal (disorder is highest) 

(Cressie, 1992). Furthermore, several studies have been proposed for sensor placement 

methodologies employing entropy in combination with the model falsification framework 

(Raphael and Jadhav, 2015; Papadopolou et al., 2014; Robert-Nicoud et al., 2005; 

Kripakaran and Smith, 2009). However, no one has combined entropy with expected 

identifiability and these studies also do not include the impact of costs. 

For many sequential sensor-placement methodologies, entropy is computed for 

each potential sensor location individually. Updating calculations once sensor positions 

have been assigned is usually not performed. This process can lead to selection of sensors 

with similar information. However, Robert-Nicoud et al. (2005) developed a 

methodology that updated calculations with each placement. Guestrin et al. (2005) 

proposed a new criterion based on mutual information to efficiently account for shared 

information. They developed a sensor placement methodology for Gaussian processes 

that maximizes the joint entropy. Papadopoulou et al. (2014) also proposed a sensor 

placement methodology using joint entropy. This technique was developed to support a 

methodology based on error-domain model falsification for wind behavior prediction 

around buildings. Further, they extended this work to take into account contributions in 

performance metrics and multi-criteria decision making (Papadopoulou et al., 2016). 

These strategies do not take into account interpretation goals such as strategies based on 

expected identifiability and the cost of the sensor placement. Leskovec et al. (2007) 

created a sensor placement algorithm which considers a cost-to-benefit ratio but not the 

interpretation goals of the sensor placement. They introduced a modification of the greedy 



algorithm which maximizes the benefit-to-cost ratio of sensor placements to detect 

contaminants in water distribution networks. The configuration that was identified was 

sub-optimal, providing lower performance than configurations identified when 

considering a unit cost for all the nodes. A methodology which accounts for performance 

and cost in parallel needs to be developed. 

When taking into account several criteria (cost, performance, etc.), a mutlicriteria 

decision making (MCDM) process is necessary. In the Pareto-Edgeworth-Grierson (PEG) 

MCDM (Grierson, 2008), a trade-off analysis technique detects compromised solutions 

with mutually satisfied (Pareto-optimal) competing criteria. The preference ranking 

organization method for enrichment evaluation (PROMETHEE) (Brans, 1982; Brans et 

al., 1986; Brans and Mareschal, 2005; Behzadian et al., 2010) ranks each Pareto optimal 

solution by way of a preference index. These techniques are most useful when criteria 

have similar importance and when the competition between criteria is high. An exception 

is the work by Adam and Smith (2007) who created a selection strategy which 

hierarchically reduces the Pareto set until one solution remains that satisfies all criteria 

well. 

There is a need to provide a cost efficient, fast and high-performing strategy to 

evaluate and respond to damage in water-supply networks. An optimal sensor- 

configuration strategy which satisfies these criteria in parallel is needed. This paper 

presents four sensor placement strategies developed to be used with error-domain model 

falsification for leak detection in water supply networks. All four strategies take into 

account specific interpretation goals. They differ according to their evaluation criteria 

(EC) (the optimization objective): EC1 – expected identifiability (a data interpretation 

metric specific to the model falsification approach used in this work); EC2 – joint entropy; 

EC3 – a combination of EC1 and EC2; EC4 – a combination of EC3 and non-constant 



nodal costs. All four strategies employ a forward greedy algorithm. As the literature has 

shown, each of these strategies alone has disadvantages; a comparison of the strategies 

against one another is thus of interest. Comparisons are carried out according to 

performance, cost and computational load in order to identify the best strategy when 

accounting for these significant criteria. 

The next section outlines the methodologies of these strategies. This is followed 

by a results section where the four strategies are employed to identify an optimized sensor 

placement on a real network from the City of Lausanne. Also, the performance on a 

hypothetical configuration on the same network is evaluated. Finally, the last section 

discusses limitations and plans for future work. 

Methodology 

The initial step is to find the best location for a single sensor. Every potential location is 

tested, and the best one is chosen according to the objective function. In the first strategy, 

the expected identifiability (EC1) is used to calculate the objective function. In the 

second, entropy and joint entropy (EC2) are used. In the third strategy these two criteria 

are used in conjunction (EC3), and in the fourth, the cost, entropy and expected 

identifiability (EC4) are all used to calculate the function. Once the location for one 

sensor has been chosen, all remaining potential locations are searched in order to find the 

second sensor location, and again until an optimized configuration is determined for the 

desired number of sensors. This algorithm is called “greedy” because previously assigned 

sensor locations are not changed at each iteration. 

The greedy algorithm can also be performed backwards. Instead of beginning with 

one sensor and adding the best one at each step, the process begins with all the sensors, 

and at each step, the worst is eliminated. In the case of the water distribution network, a 

forward algorithm is more applicable. In general, the number of sensors used is low in 



comparison with the number of possible locations. If the sensor placement is carried out 

for 20 sensors in a network of 100 pipes, then the forward process will require 20 steps 

and the backward 80 steps.  Also, a comparison of the two approaches revealed that the 

forward algorithm provided better results (Papadopoulou et al., 2014). 

Sensor placement using expected identifiability (EC1) 

In this methodology, the performance of the identification is used to evaluate the sensor 

configurations at each step of the greedy algorithm. The criterion to evaluate the 

performance of a sensor configuration is the expected identifiability. 

Expected identifiability 

Goulet and Smith (2012) first developed the expected identifiability metric for a sensor 

placement methodology based on error-domain model falsification, a model-based data-

interpretation methodology. This metric helps estimate the number of candidate models 

that is obtainable using measurements, and it is computed by creating simulated 

measurements. A model instance in the initial model set is randomly selected and the 

uncertainties (modelling and measurement) are added to predictions using Monte Carlo 

sampling to produce simulated measurements as defined in Equation (1), and ten 

thousand simulated measurements were generated: 

𝒚𝒚𝑠𝑠 = 𝒈𝒈(𝑠𝑠𝑖𝑖) + (𝒖𝒖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝒖𝒖𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠)     (1) 

where 𝒚𝒚𝑠𝑠= simulated measurement; 𝒈𝒈(𝑠𝑠𝑖𝑖) = random model instance; umodel = modelling 

uncertainty; and umeas = measurement uncertainty. 

 A candidate model (CM) is defined as any model instance which can explain 

measurement values at all measurement locations. A cumulative distribution function 

(CDF) representing the probabilities associated with obtaining a specific number of CMs 



is constructed. This CDF is the expected identifiability. A more in depth explanation can 

be found in Moser et al. (2015). 

EC1 strategy 

This strategy employs the forward greedy algorithm, beginning with one sensor. The 

expected identifiability is computed for each potential sensor location. The location with 

the best performance (the smallest number of expected candidate models for a probability 

of 95%) is selected as the first sensor location. The next step is to find the second sensor 

location. All remaining sensor locations are tested in combination with the first sensor. 

The methodology searches for the sensor that gives the best results (smallest number of 

expected candidate models) when it is associated with the first one and the expected 

identifiability is calculated. This process is repeated at each step of the methodology. The 

sensor that is added is tested with the sensor configurations obtained in the previous step.  

Sensor placement using joint entropy (EC2) 

In this strategy the criterion for evaluating the sensor configuration is the joint entropy. 

The first sensor in the selection process is chosen as the location with maximum entropy 

in comparison to all other possible locations. Entropy can be used to test the quality of a 

sensor location by evaluating the disorder in the predictions at that point. A high disorder 

conveys a high quantity of information. 

In order to compute the entropy at a given sensor location, a histogram 

representing the variation of the predictions is constructed. Then, the entropy for this 

sensor location is defined as: 

𝐻𝐻 =  −∑ 𝑝𝑝(𝑦𝑦𝑘𝑘)log �𝑝𝑝(𝑦𝑦𝑘𝑘)�𝑁𝑁
𝑘𝑘=1  (2) 



where H = entropy; p(yk) = a probability associated with the kth interval of the histogram; and k 

= histogram interval. The threshold bounds computed by combining modeling and 

measurement uncertainties are used to compute the width of the intervals. For all 

predictions that are in the same interval, there is a range of measurement values that will 

not lead to falsification of the model instances that generated the predictions.  

The first sensor location in the greedy algorithm is chosen as the location with the 

maximum entropy. The sensor with the highest entropy is the sensor that is able to 

differentiate between the predictions to the greatest extent. After this, the sensor 

configurations selected at each sequential step of the greedy algorithm are the 

configurations with the highest joint entropy value, where the joint entropy is calculated 

for the first sensor and every sensor after that according to: 

𝐻𝐻(𝑦𝑦)𝑖𝑖,𝑗𝑗 =  −∑ ∑ 𝑝𝑝�(𝑦𝑦𝑘𝑘)𝑖𝑖, (𝑦𝑦𝑚𝑚)𝑗𝑗�𝑙𝑙𝑙𝑙𝑙𝑙2 �𝑝𝑝�(𝑦𝑦𝑘𝑘)𝑖𝑖, (𝑦𝑦𝑚𝑚)𝑗𝑗��
𝑁𝑁𝐿𝐿
𝑚𝑚=1

𝑁𝑁𝐾𝐾
𝑘𝑘=1   (3) 

= 𝐻𝐻(𝑦𝑦)𝑖𝑖 +  𝐻𝐻(𝑦𝑦)𝑗𝑗 − 𝐼𝐼(𝑦𝑦)𝑖𝑖,𝑗𝑗 

where H(y)i,j = the joint entropy between locations i and j; ; k, l = every potential sensor location; 

p((yk)i,(yl)j) = the joint probability of location k and l; H(y)i = entropy at location i; H(y)j = entropy 

at location j; and I(y)i,j = the mutual information of i and j. 

Joint entropy is the measure of the entropy associated with multiple variables. It 

measures the information that two or more sensors gather together. For sensor placement, 

the strategy is to find sensors that have the lowest amounts of mutual information. This 

methodology is similar to that developed by Papadopoulou et al. (2014); however, it is 

adapted for the uses described in this paper rather than evaluating performance of sensor 

configurations in wind studies.  



Combined sensor placement strategies 

In addition to the strategies which employ a single evaluation criteria, two other sensor 

placement strategies were considered in this paper: one which combines the first two 

evaluation criteria, and a second which also includes the cost of the various potential 

sensor locations. In Figure 1, a flowchart for the sensor placement methodology using 

combined evaluation criteria is displayed. This methodology is hierarchical. In this 

flowchart, N represents the total number of potential sensor locations or the number of 

nodes in the network, n is equivalent to the number of sensors that will be placed, k is the 

number of solutions the solution space is reduced to at the beginning of each iteration, 

and i is the iteration in the loop. For each iteration, the solution space is reduced to a 

predetermined number (in this case, 10), by identifying the 10 locations with highest joint 

entropy (first evaluation criteria). Then, those ten locations are evaluated using the second 

evaluation criteria: expected identifiability, in order to find the single best location. This 

process is repeated for all potential locations or for the number of desired sensors in the 

network.  

Sensor placement using joint entropy and expected identifiability (EC3) 

The goal in this strategy is to select sensor configurations using the joint entropy criteria 

(EC2), and then find the single best location from this smaller subset of locations using 

the methodology based on expected identifiability (EC1). At each step of the algorithm, 

the joint entropy criteria is used to reduce the initial number of possible sensor 

configurations, and then the methodology based on expected identifiability is applied on 

the smaller subset. For example, for one sensor, the first step is to find the ten sensor 

locations that are optimal regarding entropy (ten locations with maximum entropy (Eq. 

2), and then the selection of the best location is found using the criteria of expected 



identifiability. For the following sensor locations, this process is repeated where the ten 

optimal locations in the subsets are found using joint entropy (Equation (3)). 

Sensor placement using joint entropy, cost and expected identifiability (EC4) 

An important aspect that engineers consider when selecting optimal sensor configurations 

is the cost of installing sensors. When every node has equal cost (i.e., unit cost), a 

commonly used heuristic is the basic greedy algorithm (Leskovec et al., 2007) which has 

been used in the first three strategies:  

𝑠𝑠𝑘𝑘 = argmax
𝑠𝑠∈𝑣𝑣\𝐴𝐴𝑘𝑘−1

𝑅𝑅(𝐴𝐴𝑘𝑘−1⋃{𝑠𝑠}) − 𝑅𝑅(𝐴𝐴𝑘𝑘−1) (4) 

where sk = the location which maximizes the marginal gain; R = the reward (or benefit) placement, 

A for all locations, s. 

When the costs of the nodes are non-constant Equation (4) must be modified in 

order to take cost into account. As mentioned in the Introduction, Leskovec et al. (2007) 

introduced a modification of the algorithm which maximizes the benefit-to-cost ratio in 

the following manner: 

𝑠𝑠𝑘𝑘 = argmax
𝑠𝑠∈𝑣𝑣\𝐴𝐴𝑘𝑘−1

𝑅𝑅(𝐴𝐴𝑘𝑘−1⋃{𝑠𝑠})−𝑅𝑅(𝐴𝐴𝑘𝑘−1)
𝑐𝑐(𝑠𝑠)

 (5) 

where c(s) = the cost function; and sk = the location which maximizes the marginal gain. The 

configuration that will be identified using Equation (5) may be sub-optimal, providing 

lower performance than configurations identified when considering a unit cost for all the 

nodes.  

The fourth strategy includes a cost function according to Equation (5). The smaller 

subset of locations is found using a modified greedy algorithm which accounts for the 



benefit-to-cost ratio for each location. In this way, the performance (entropy) and cost are 

considered equally. After this step, the sensor placement methodology is the same as that 

for EC3 (as shown in Figure 1).  

Results 

In order to assess the four sensor placement strategies, two studies have been carried out 

on real water networks. The first study investigates performance of the sensor placement 

strategies on a new network while the second investigates the performance of an existing 

sensor configuration. In both cases, simulated measurements are generated through a 

numerical model of the network. As described in Equation (1), simulated measurements 

are obtained by randomly taking a model instance in the initial model set and adding the 

combined uncertainties (measurement and modeling) to the predictions. Before the two 

case studies are discussed, the sources of uncertainty present in these networks and studies 

are introduced. 

 

Sources of uncertainty in water distribution networks 

Although the principal sources of uncertainty in networks that are reported in the 

literature are pipe roughness and nodal water demand, all the parameters of the model are 

considered uncertainty sources. These parameters and uncertainty sources are discussed 

in this section and presented in Table 1. Many have been named previously by Hutton et 

al. (2004). Pipe characteristics, such as the effective diameter and roughness coefficient 

are sources of uncertainty. With time, the diameter reduces because of encrusted material 

due to precipitation of calcium carbonate and oxidation in the case of iron pipes (Hutton 

et al. 2004). For the same reason, pipe roughness increases with time (Kang et al. 2009). 

 Water distribution networks are demand-driven systems. The temporal demand at 

the nodes is often due to random water use; therefore, these two parameters contribute to 



the overall uncertainty associated with the system. Pumps, valves and tanks are additional 

sources of uncertainty. A pump is simulated using a pump curve which describes its 

performance and is usually given by the pump manufacturer. However, in practice the 

efficiency often differs from the specifications. Tanks are characterized by minimum and 

maximum capacity. All these parameters can be considered addition sources of 

uncertainty (Rossman 2000). The minor loss coefficients used to compute the head loss 

due to turbulence at bends and fittings can also be considered. In addition to parametric 

uncertainties, measurement and modelling uncertainties are also taken into account. 

Measurement uncertainty is due to the inaccuracy of sensors, and modelling uncertainty 

is due to assumptions, omissions and simplifications associated with the formulation of 

the model.  

Configuration of a new network 

For this study, the sensor placement strategies are carried out on a simplified version of 

the water supply network from the City of Lausanne (Figure 2). The network is reduced 

by removing all extension pipes and most of the pipes in series (Moser et al., 2015). The 

resulting network is made up of 123 pipes and 94 nodes. The pump, reservoir and tank 

locations are marked on the figure. On this network, all four evaluation criteria are 

assessed in terms of computational time and performance. The locations of 30 sensors are 

identified using each strategy.  

Comparison of EC1 and EC2 

In terms of computational time, the joint entropy strategy is advantageous. The joint 

entropy methodology requires only 13 minutes and eight seconds to find the location of 

the 30 sensors while the methodology based on the number of expected candidate models 

requires six hours and 48 minutes. Therefore, the joint entropy strategy (EC2) takes 



approximately 2% of the time that the expected identifiability strategy (EC1) takes when 

carried out on the same computer.  

Figure 3 shows the results of the sensor placement in terms of performance. These 

two curves give the number of candidate models that are expected for a probability of 

95% for each of the two strategies. The number of measurements is plotted on the 

horizontal axis (ranging from one to 30), and the expected number of candidate models 

is plotted on the vertical axis. The grey curve is for the methodology which uses joint 

entropy as the optimization parameter, and the black curve is for the methodology based 

on optimization of the expected number of candidate models. In terms of performance, 

the results are better for the methodology based on optimization of the expected number 

of candidate models (black curve). The sensor methodology using the expected 

identifiability leads to better sensor configurations, outperforming that using joint 

entropy. 

Sensor placement using joint entropy and expected identifiability (EC3) 

The third strategy was carried out on the same network (Figure 2) with k = 10 (for the 

subset reduction step). The results presented in Section 3.1.1 show that each of the first 

two strategies have advantages. The greedy algorithm associated with expected 

identifiability leads to higher performing sensor configurations, and the greedy algorithm 

associated with joint entropy is faster. Therefore, the methodology that combines these 

two evaluation criteria benefit from each of these advantages.  

Figure 4 depicts the results of the combined sensor placement strategy in terms of 

performance. These two curves give the number of candidate models that are expected 

for a probability of 95% for the first methodology based on optimization of the expected 

number of candidate models (in black) and the combined methodology (in grey). The 

number of measurements is plotted on the horizontal axis (ranging from one to 30), and 



the expected number of candidate models is plotted on the vertical axis. The two strategies 

found the same location for the first sensor. The results in terms of performance are 

similar except between sensor numbers nine through 13. This area where the two 

strategies differ most is due to the size of the reduced solution space (k = 10). There is no 

practical difference between the two curves when considering only performance. The 

advantage of the combined methodology is the decrease in computational time. 

In Figure 5, the two 3D bar plots show the performance of the sensor placement 

obtained with the combined methodology for leak intensities varying from 20 to 500 l/min 

and a probability of 95% (left) and 75% (right). As in the previous studies, the number of 

sensors is varied from one to 30. These figures show that for a given number of sensors, 

when the leak intensity is higher than 200 l/min, the performance remains constant. In 

Figure 6, the graphs in Figure 5 have been magnified in order to illustrate more precisely 

the evolution of the performance for a small leak (from 10 to 200 l/min). These graphs 

provide useful decision-support for network managers when choosing the number of 

sensors to place throughout a network. 

Sensor placement using joint entropy, cost and expected identifiability (EC4) 

The fourth strategy was carried out on the same network (Figure 2) with k = 10 (for the 

subset reduction step). The cost function (Equation (5)) was defined by assigning a 

random cost value from 1-100 (minimum value = 1, maximum value = 100) across all the 

pipes in the reduced network. The cost function was randomly generated in this way a 

total of ten times and the average of the ten runs was used for the comparisons. Figure 7 

illustrates the results of the two combined sensor placement strategies in terms of 

performance. These two curves give the number of candidate models that are expected 

for a probability of 95% for the third methodology based on optimization of the expected 

number of candidate models and joint entropy (in black) and the average of the ten runs 



for the fourth methodology (in grey). The standard deviations for the fourth strategy are 

marked on the plot as well. Due to the nature of the computation, the scatter gradually 

decreases as the number of sensor locations increases. The number of measurements is 

plotted on the horizontal axis (ranging from one to 30), and the expected number of 

candidate models is plotted on the vertical axis. The results in terms of performance are 

similar except for the first sensor. This shows that the performance is not greatly affected 

by the additional criteria of cost. These results show that the low-cost sensor configuration 

performs adequately. The results in terms of computational time are relatively identical 

to that for the third strategy as the process is the same, only the value used in the argument 

differs (Equation (5)). 

In Figure 8, the simplified version of the water supply network from the City of 

Lausanne from Figure 2 is shown with a configuration of six sensors determined using 

the sensor placement methodology which also considers the cost of each location. The 

optimal sensor locations are represented with boxes. The pump, reservoir and tank 

locations are all marked on the figure as well as the pipes and nodes (junctions). The 

performance of the six-sensor configuration shown in Figure 8 is plotted (in grey) in 

comparison to that for the six-sensor configuration obtained using the third strategy (in 

black) in Figure 9. The number of candidate models (the number of nodes) is plotted on 

the horizontal axis, while the cumulative probability is plotted on the vertical axis.  

Comparison of sensor placement strategies 

A summary of the advantages and disadvantages of the four strategies is shown in Table 

2. In the first row of Table 2, the computational time is shown for each strategy for the 

30-sensor configuration. Since the Pareto front between computational load and the other 

two criteria is so steep, the tradeoff position is very clear. There is very little increase in 

cost or performance for a significant reduction in computational time. For this reason, as 



long as the computational load is below a certain limit (e.g., one hour), it is evident that 

there is no longer a distinct tradeoff. Hence, we can rule out EC1 since EC2 through EC4 

have computational loads that are within 2-3% of the time required for EC1 (the first 

column can be disregarded for the rest of the table).  

By ruling out EC1, the problem becomes two-dimensional in terms of cost and 

diagnostic performance. The diagnostic performance is evaluated as the number of 

candidate models that are expected using a given sensor configuration. This value is 

obtained by testing the sensor configuration through error-domain model falsification 

with a high number of simulated measurements (more details can be found in Section 

2.1.1). The best sensor configuration in terms of performance is the configuration with 

the smallest number of expected candidate models. In the last rows of Table 2, the cost 

and performance associated with strategies EC2-EC4 are shown for a 30-sensor 

configuration and a six-sensor configuration. Again, there is very little loss in 

performance (percentage of expected candidate models) when decreasing the cost (the 

Pareto front between the cost and performance is very steep). Therefore, we can 

effectively choose to minimize the cost, choosing strategy EC4 as the best solution. This 

hierarchical procedure is effective here since the three criteria are not highly competitive. 

EC4 is thus, a solution that satisfies all criteria, making it the best sensor placement 

strategy when considering cost, performance and computational load. 

Evaluation of existing sensor configurations 

The second study investigates the performance of an existing sensor 

configuration. A configuration of six sensors was chosen for the water supply network of 

the City of Lausanne to represent an existing configuration. This configuration and the 

optimal six-sensor configuration determined using EC3 are shown on Figure 10. The 

optimal sensor locations are represented with boxes, and the existing sensor locations are 



shown using four-pointed stars. The pump, reservoir and tank locations are all marked on 

the figure as well as the pipes and nodes (junctions).In order to test the performance of 

the initial configuration, the sensor placement strategy was used. The six monitored 

locations are considered to be potential sensor locations. The sensor placement 

methodology (EC1) is applied to this set of six locations. This provides a classification 

of the importance of each sensor in the initial network in addition to a way of comparing 

the performance of the two configurations. 

In Figure 11, the performance of the existing sensor configuration on the City of 

Lausanne network is shown using the sensor placement algorithm. The expected number 

of candidate models (the number of identified nodes) is plotted on the horizontal axis, 

while the cumulative probability is plotted on the vertical axis. The performance of the 

existing configuration (in grey) is compared with that of the optimal configuration (in 

black) found using EC3. The plot shows the distinction between the two configurations 

and can be used to aide decision makers as to whether or not to take action (move sensors). 

For example, if the desired level of probability 50%, moving the sensors will not add 

much to the performance. However, for a probability of 80-95%, it appears more 

beneficial to consider changing the sensor configuration. 

Figure 12 displays the results of the sensor configurations in terms of number of 

expected candidate models (performance) when it is evaluated using the expected 

identifiability. These two curves give the number of candidate models that are expected 

for a probability of 95% for the optimal sensor configuration (EC3, in black) and the 

existing configuration (in grey). The number of measurements is plotted on the horizontal 

axis (ranging from one to six), and the expected number of candidate models is plotted 

on the vertical axis.  



Evaluating an existing sensor configuration using a greedy sensor placement 

methodology gives a classification of the importance of each sensor. Such a tool is helpful 

when deciding which sensors could be moved in order to improve an existing 

configuration. In this example, the graph shows that sensors one and two could be moved 

in order to increase diagnostic performance. By moving the first and second sensors in 

the existing configuration to the optimal locations, the gain in performance is significant 

(as shown in plot in Figure 12).  

Limitations and future work 

The greedy algorithm used in the four sensor placement strategies does not necessarily 

lead to a global optimum. Additionally, the success of sensor placement depends on the 

model, the model parameters and the estimation of the uncertainties. Thus, if the model 

is weak, the sensor placement configuration may be sub-optimal. Finally, for the network 

from the city of Lausanne, the trade-off position between the three criteria (cost, 

performance and computational load) was very clear. This may not be the case with other 

networks since the topological configuration of the network influences the importance of 

the criteria.  

The cost function used in this study is a randomly distributed function across each 

pipe in the network. Additional work should be carried out on similar networks with more 

realistic cost functions, ranking locations with difficult access or in heavily populated 

areas higher in terms of cost. In addition, regarding sensor configuration strategies EC3 

and EC4, the value of k that is used to reduce the set of potential sensor locations to a 

smaller subset was chosen to be 10 in this case. Further work will involve varying this 

value and an analysis will focus on the impact that it has on overall performance. 



Summary and conclusions 

In order to rapidly evaluate the performance and respond to damage in water-supply 

networks, a cost efficient, fast and high-performing sensor configuration must first be 

established. This paper presented four strategies for sensor placement in water supply 

networks and a comparison of these strategies according to these three criteria. The 

analysis of the results leads to the following observations and conclusions. All four 

sensor placement strategies presented in this paper are suitable for sensor placement in 

water distribution networks. Their performance depends on the evaluation criteria that 

are employed.  

The methodology that is based on the criterion where the expected number of 

candidate models is minimized at 95% probability, provides sensor configurations that 

result in the fewest number of candidate leak scenarios. However, computation cost is 

high. The second methodology uses the criterion where joint entropy is maximized. While 

this is faster than the first strategy, the configurations result in more candidate leak 

scenarios than the first strategy. The third strategy involves combining these evaluation 

criteria, and provides a sensor placement methodology which mixes the advantages of the 

first two strategies. Nevertheless, there are tradeoffs involving search space reduction, 

computation load and candidate leak scenario size. The fourth strategy takes into 

consideration non-constant nodal costs for the pipes in the network. Considering the 

benefit-to-cost ratio leads to a sensor configuration that is similar to that where the 

performance is the sole optimization objective. 

The sensor placement strategies created and presented in this paper are useful for 

identifying optimized sensor configurations for new sensor locations as well as for 

evaluating the performance of existing sensor configurations. Using a hierarchical 



MCDM technique, sensor placement strategy EC4 satisfies all three criteria well, making 

it the best strategy. 
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Table 1. Uncertainties and related to and relative importance of secondary parameters (Exp is 
exponential distribution form, N is Gaussian and U is uniform) 

Parameter Uncertainty 
distribution 

Relative importance for 
flow predictions [%] 

Relative importance for 
pressure predictions [%] 

Nodal demand 
[l/min] ~𝐸𝐸𝐸𝐸𝐸𝐸�1

3.13� � 99.77 97.81 

Node elevation [m] ~𝑁𝑁(0,0.015) 5.45E-04 9.06E-02 

Pipe diameter [mm] ~𝑁𝑁(0,0.75) 2.25E-01 5.14E-01 

Pipe length [m] ~𝑈𝑈(−0.03,0.07) 3.11E-03 3.34E-02 

Pipe roughness ~𝑈𝑈(0,0.015) 5.34E-05 1.49 

Tank level [m] ~𝑁𝑁0(0,0.32) 2.80E-04 6.38E-02 

 



Table 2. Comparison of four sensor placement strategies in terms of computational time, cost 

and expected percentage of CMs for the two sensor configurations. The best result in each 

row is given in bold. 

Strategy EC1: Expected 
identifiability 

EC2: Joint 
Entropy 

EC3: EC1 + 
EC2 

EC4: EC3 
+ cost 

Computational 
Time for 30-sensor 

configuration 
06:48:00 00:13:08 00:19:16 00:18:32 

Cost for 30-sensor 
configuration 

--  1666 1563 589.5 

Expected 
percentage of CMs 

for 30-sensor 
configuration 

-- 16.0 14.9 12.9 

Cost for six-sensor 
configuration 

-- 294 316 53.8 

Expected 
percentage of CMs 

for six-sensor 
configuration 

-- 45.7 30.9 37.0 

 



Figure 1. Flowchart for the combined sensor placement strategies (EC3 and EC4). 

 



 

Figure 2. Reduced network used for the sensor placement. 

 



 

Figure 3. Sensor placement curves for the both sensor placement strategies giving the relation 

between the expected number of candidate models (with a 95% probability) and the number 

of measurements used. 
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Figure 4. Sensor placement curves for the both sensor placement strategies giving the relation 

between the expected number of candidate models (with a 95% probability) and the number 

of measurements used. 
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Figure 5. Expected number of candidate models in function of the leak intensity (20 to 500 

l/min) and the number of measurements (0 to 30) for a 95% probability (left side) and a 75% 

probability (right side). 

 



 

Figure 6. Expected number of candidate models in function of the leak intensity (10 to 200 

l/min) and the number of measurements (0 to 30) for a 95% probability (left side) and a 75% 

probability (right side). 

 



 

Figure 7. Sensor placement curves for the sensor placement methodology using cost as an 

additional evaluation criteria giving the relation between the expected number of candidate 

models (with a 95% probability) and the number of measurements used. For reference, the 

performance of the cost-based sensor placement methodology is compared with that of the 

combined (joint entropy and expected identifiability) methodology. The band indicators in 

grey indicate ±1 standard deviation for ten runs of variable sensor cost distributions. 
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Figure 8. City of Lausanne network showing optimal sensor configuration found using cost as 

an additional evaluation criteria. 

 



 

Figure 9. Performance of the proposed sensor configuration shown in Figure 8. 
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Figure 10. City of Lausanne network showing an optimal sensor configuration (EC3) and an 

existing sensor configuration. 

 



 

Figure 11. Performance of the existing sensor configuration compared with an optimized six-

sensor configuration (EC3) as shown in Figure 10. 
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Figure 12. Sensor placement curves giving the relation between the expected number of 

candidate models (with a 95% probability) and the number of measurements used for the 

optimal sensor configuration (EC3, in black) and the representative existing sensor 

configuration (in grey). 
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