
Adaptive sampling methodology for structural identification using1

radial-basis functions2

Marco Proverbio1 2

Alberto Costa3 4

Ian F.C. Smith5, F. ASCE

3

ABSTRACT4

The aim of model-based structural identification is to identify suitable models as well as values5

for model parameters that determine structure behaviour through comparing measurements with6

predictions. Well known methodologies, such as traditional implementations of Bayesian model7

updating, have been shown to be inaccurate in cases characterised by systematic uncertainties and8

unknown spatial correlations. Error-domain model falsification (EDMF) is another approach to9

structural identification. This approach is easy to understand for practising engineers and can pro-10

vide robust parameter identification without assumptions on spatial correlations. The performance11

of all approaches involving sampling is affected by the number of model evaluations that is gen-12

erated based on prior knowledge of parameter-value distributions. This paper focuses on a new13

sampling technique, called radial-basis function sampling (RBFS), and its application to EDMF,14

to generate a set of candidate models that represent the behaviour of the structure with a certain15

confidence level. RBFS provides a good exploration of the parameter space even with a limited16

number of samples, which results in reduced computation times. A full-scale bridge in Singapore17

has been tested and a new index of sampling quality is proposed in order to compare this approach18
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with other sampling techniques such as Latin hypercube sampling (LHS) and Markov chain Monte19

Carlo (MCMC). Finally, a cross-validation method is employed to verify the robustness of the ap-20

proach and the sensitivity of sampling on prediction reliability.21

Keywords: adaptive sampling, radial-basis function, optimisation, structural model updating,22

error-domain model falsification, surrogate models.23

INTRODUCTION24

Existing infrastructure elements, which are often designed and built for fixed lifetimes, need25

to be maintained, retrofitted, adapted and replaced to meet new needs. The optimal planning of26

maintenance requires an accurate knowledge of how existing structures behave. This helps avoid,27

for example, replacement when structures have sufficient reserve. Also, expensive interventions28

may be avoided through implementation of cheaper and more sustainable alternatives.29

Structural identification methods are used to improve knowledge of structural behaviour. Mea-30

surement data interpretation has been extensively employed for structural health monitoring in31

the last decades, as reviewed in (Catbas et al. 2013). Many researchers have studied model-free,32

sometimes called data driven, methods using data interpretation strategies (Posenato et al. 2010).33

While these methodologies may be interesting for damage detection, infrastructure future-proofing34

requires behaviour models to compare alternative scenarios and support decision-making. When35

structures are modelled, for instance using finite elements (FE), and measurements are carried out,36

model identification techniques are used to improve the accuracy of model predictions. Although37

advanced simulations require long computation times and sensor equipment may be expensive,38

quantifiable benefits arise when structural replacement and unnecessary interventions are avoided39

(Smith 2016).40

Despite the fact that measurements provide additional information for assessment of struc-41

tures, this inverse problem involves many assumptions and sources of uncertainties. Raphael and42

Smith (1998) proposed a multi-model approach, based on model falsification to overcome chal-43

lenges associated with inverse problems. In this method, model-updating results consist of a set44

of candidate models that explain the measurements taken from a structure. Robert-Nicoud et al.45
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(2005) applied the same methodology and determined threshold boundaries by combining model46

and measurement errors.47

Goulet et al. (2013a) proposed a probabilistic extension, called error-domain model falsifica-48

tion (EDMF), for robust structural identification when there are systematic modelling uncertainties49

and when correlations between measurement locations are unknown. This methodology helps50

identify candidate models among an initial model population, generated according to prior knowl-51

edge and engineering judgment, by using measurement values and probabilistically determined52

thresholds to falsify incorrect model instances. First, uncertainties are combined and threshold53

bounds are evaluated according to a reliability of identification. Then all the instances for which54

residual values between predictions and measurements exceed these bounds, at one or more sensor55

locations, are rejected. Pasquier et al. (2015a) compared traditional Bayesian model updating and56

EDMF in terms of prediction accuracy and demonstrated that EDMF is more robust for both diag-57

nosis and prognosis. Moreover, EDMF has been employed by Goulet et al. (2013b) to evaluate the58

serviceability-limit-state reserve capacity of the Langesand Bridge and by Pasquier et al. (2014) to59

evaluate the fatigue reserve capacity of the Aarwangen Bridge.60

Structural identification methods work most efficiently when there is a prior identification of61

the most sensitive parameters for model identification and prediction. Parameters are selected62

using sensitivity analyses according to their relative importance on model predictions. Model63

predictions are obtained directly using either a FE solver or a surrogate model (SM), which are64

able to capture the essential behaviour of the real structure while being more efficient in terms65

of computation speed. Several families of SMs have been employed in structural engineering,66

such as response surfaces based on polynomial functions (Ren and Chen 2010), Kriging estimates67

(Simpson et al. 2001), and radial-basis functions (RBF) (Buhmann 2000). Surrogate models based68

on RBF often perform well for engineering applications (Holmström et al. 2008). Other methods69

such as neural networks may also be adopted. Neural networks are usually employed for regression70

and classification tasks and they often require large training sets to be effective. When using a71

neural network, the objective function is hidden inside its layered structure and an analysis of the72
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relationship between parameters and objective function values becomes challenging.73

In order to select representative sets of parameter values to be assigned to the initial model class,74

sampling techniques are employed. These model samples, also referred to as model instances, are75

usually evaluated using FE solvers. Uniform sampling techniques such as grid-based sampling76

(GBS) and Latin hypercube sampling (LHS) have been employed with EDMF (Goulet et al. 2010;77

Pasquier and Smith 2016). A direct stochastic algorithm, called PGSL (Raphael and Smith 2003),78

has been applied to identify candidate models (Robert-Nicoud et al. 2005). In Bayesian model79

updating, a well-established method for model updating is Markov chain Monte Carlo (MCMC),80

which is a variant of Monte Carlo (MC) sampling. MCMC is used to sample from the target81

distribution, which is proportional to the posterior distribution of parameter values.82

Optimisation algorithms can be employed to increase sampling performance through focusing83

the search around a particular area of the parameter domain. Adaptive sampling algorithms gener-84

ate new samples by learning from the feedback of the previous samples. In this case, the feedback85

is often based on the optimisation of an objective function.86

The choice of the objective function affects algorithm performance. Gradient-based techniques87

have been applied successfully in the absence of multiple optima and when objective functions are88

smooth and continuous in order to identify parameters of statistical models. However, in struc-89

tural identification, the objective function might have many local optima. In this case, stochastic90

techniques such as genetic algorithms, physics-inspired algorithms and swarm algorithms have91

been employed (Zhang et al. 2010a; Zhang et al. 2010b; Marwala 2010). These methods do not92

require gradient information and are easily implemented. However, good solutions are often ob-93

tained only by tailoring the method through parameter tuning and the convergence of this methods94

is typically slow (Conn et al. 2009). Hybrid approaches which consist of both a stochastic and95

a gradient-based optimisation have also been proposed (Christodoulou et al. 2008; Christodoulou96

and Papadimitriou 2007). A comprehensive overview of these methods and their application in the97

field of structural optimisation can be found in (Hare et al. 2013). Compared with non-gradient98

optimisation methods, derivative-free optimisation techniques have shown to converge to globally99
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optimal solutions when enough evaluations are performed (Torn and Zilinskas 1989; Gutmann100

2001). Some optimisation methods may converge towards a unique “optimal” solution. In struc-101

tural identification, many models can explain the measurement data because of the inverse nature102

of the problem. The presence of measurement and modelling uncertainties increases ambiguity.103

Therefore, in order to increase identification accuracy, a range of good quality solutions is often104

preferred to a single optimal solution. The advantage of derivative-free optimisation approaches105

compared with most stochastic search algorithms is the computational efficiency, which is crucial106

when evaluations have a non-negligible computational cost.107

The need of efficient methodologies for sampling in EDMF has already been highlighted in pre-108

vious studies (Goulet and Smith 2013a; Pasquier and Smith 2016). Traditional sampling methods,109

such as GBS and LHS, are not able to exploit the knowledge acquired from samples that have been110

already evaluated. Stochastic search methods provide efficient sampling only when model evalua-111

tions can be computed fast - which is often not the case for complex models. Adaptive-sampling112

techniques based on surrogate model optimization and compatible with EDMF can enhance sam-113

pling accuracy while reducing computation times. Much work in this direction is still missing.114

In addition, EDMF requires initial model sets that represent the entire population of plausible so-115

lutions (i.e combination of parameter values). Inaccurate, biased or sparse sampling may lead to116

identification shortcomings. Therefore, the sensitivity of sampling on prediction reliability needs117

to be investigated.118

Full-scale case studies are essential for validating model-updating methods since it is only at119

this scale that uncertainties show realistic magnitudes. Brownjohn et al. (2001) highlighted that120

field conditions affect the accuracy of measurements. Therefore, data collected during lab experi-121

ments may not be representative of measurements collected under ambient conditions (Catbas et al.122

2013). Lam et al. (2015) proposed an application of MCMC to update the model of a coupled-slab123

system using field test data. They pointed out that, in real situations, the effects of both modelling124

error and measurement noise are relatively large when compared to numerical examples or experi-125

mental case studies under laboratory conditions. Therefore, posterior uncertainties when field data126
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are collected are higher than those obtained using laboratory experiments.127

While many full-scale studies have been carried out, few researchers have systematically val-128

idated data-interpretation proposals using full-scale structures (Simoen et al. 2013). Strong meth-129

ods for result validation are required to assess the performance of model updating techniques. This130

study implements an approach where cross-validation is carried out using models that have been131

identified as suitable to predict at locations other than those used in model updating.132

This paper proposes a new adaptive sampling methodology, to increase the performance of133

structural identification. The impact of the employed sampling methodology on prediction relia-134

bility is investigated. The first section provides background on error-domain model falsification135

and sampling algorithms. The subsequent section introduces the new sampling methodology and136

its application to EDMF. Finally, a full-scale case study is used to compare systematically the per-137

formance of the proposed approach with those of traditional sampling algorithms and to validate138

results of structural identification.139

BACKGROUND140

Error-domain model falsification141

Initially proposed in (Goulet and Smith 2013a), EDMF helps identify plausible physics-based142

models using information provided by measurement data. Plausible models are defined by nθ pa-143

rameter values and a model class. Each model class Gk has a unique parametrization that includes144

characteristics such as material properties, geometry, boundary conditions and actions.145

Let ny be the number of measurement locations. For each location i ∈ {1, . . . , ny}, Ri denotes146

the real responses of a structure (unknown in practice) and ŷi corresponds to the measured value at147

location i. Predictions gk(xi,Θk) of the model class Gk, which is usually based on a finite element148

analysis, are evaluated at location xi through assigning Θk, which corresponds to instances of the149

parameter vector θk, to the model class. Since model-prediction uncertainty Ui,gk and measure-150

ment uncertainty Ui,ŷ are unavoidable, model predictions and measurements are linked to the true151
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behaviour using Equation (1).152

gk(xi,Θk) + Ui,gk = Ri = ŷi + Ui,ŷ ∀i ∈ {1, . . . , ny} (1)153

Rearranging the terms:154

gk(xi,Θk)− ŷi = Ui,c (2)155

where U c is a vector representing the difference between uncertainties U ŷ and U gk . The left-hand156

side of Equation (2) is the difference between a model prediction and a measurement at location157

xi, which is often called the residual ri = g(xi,Θ)− ŷi.158

The probability density function (PDF) describing the error in measurements fU ŷ
(uŷ) is usu-159

ally estimated by conducting multiple series of tests under site conditions. Manufacturer specifi-160

cations are often very optimistic lower bounds. The PDF describing the error in the model class161

fUgk
(ugk) is estimated using values taken from the literature, stochastic methods, engineering162

judgment and local knowledge. In practical situations, uncertainties associated with the model163

class are usually much larger than measurement uncertainties. Thus, their quantification directly164

affects the performance of the method.165

In the traditional implementation of EDMF, the identification process starts with the definition166

of an initial set of nΩ model instances Ωk = {Θk,m,m = 1, . . . , nΩ}, usually through employing167

uniform sampling techniques. Then the instances for which the residual values exceed defined168

threshold boundaries are falsified.169

In EDMF, threshold bounds are defined through computing the shortest interval {ui,low, ui,high}170

that contains a probability equal to φ
1/ny

d for the combined PDFs fUc(uc) at each sensor location,171

as expressed in the following equation:172

φ
1/ny

d =

∫ ui,high

ui,low

fUc,i
(uc,i) duc,i ∀i ∈ {1, . . . , ny} (3)173

In Equation (3) the confidence level φd is adjusted using the Sidák correction to take into account174
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that measurements at several locations are considered simultaneously to falsify model instances.175

The hyper-rectangular acceptance region adjusted with the Sidák correction (with dimensions cor-176

responding to the number of sensors) has been shown to be conservative regardless of the value of177

correlation between sensor locations (Goulet and Smith 2013a). In the field of structural engineer-178

ing, a value of 0.95 for the confidence level φd ∈ [0, 1] is commonly employed. Falsification is179

then performed according to the following equation:180

Ω′′
k = {θk ∈ Ωk | ∀i = 1, . . . , ny ui,low ≤ gk(xi,θk)− ŷi ≤ ui,high} (4)181

where the candidate model set (CMS), Ω′′
k, is made up of all the initial model instances except182

those that have been falsified at one or more measurement locations. An instance Θ of a model183

class G is thus a candidate model if, for each sensor location i ∈ {1, . . . , ny}, the residual value184

lies inside the interval defined by the threshold boundaries.185

Based on Equation (4), model instances that are falsified are assigned a null probability.186

Pr(Θk /∈ Ω′′
k) = 0 (5)187

Since knowledge of uncertainty-distribution forms is typically poor, all the model instances that188

belong to the CMS are assigned a constant probability:189

Pr(Θk ∈ Ω′′
k) =

1∫
θk∈Ω′′

k
dθk

(6)190

It is very rare that a more sophisticated probability distribution for the CMS can be justified in191

practical situations.192

When all initial model instances generated are falsified, the entire model class is falsified193

(Ω′′
k = ∅). This means that no model is compatible with observations given the current estima-194

tion of model and measurement uncertainties. Thus it is usually a sign of incorrect assumptions in195

the model-class definition and uncertainty assumptions. Complete falsification helps avoid wrong196
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identification of parameter values and detect flaws in initial assumptions, highlighting one of the197

main advantages of EDMF compared with other methodologies. The choice of the parameters to198

be identified is carried out by: i) conducting a sensitivity analysis to determine the relative im-199

portance of each parameter in model predictions and ii) considering the final goal of the structural200

identification, such as loading capacity estimation. For example, when serviceability is the criti-201

cal limit state, relevant parameters include elastic material properties such as the Young’s modulus202

and in-situ boundary conditions. In situations where the ultimate reserve capacity is investigated,203

relevant parameters include structural-element geometry and material strength values. The latter204

can be updated through non-destructive tests or laboratory tests. The choice of the initial interval205

and the distribution of parameter values to be adopted, usually uniform if no specific information206

is available, is based on engineering judgment. The parameters that most influence predictions are207

included in the vector of primary parameters θk and used to generate the initial model set Ωk.208

When a candidate model set is identified (Ω′′
k 6= ∅), prediction tasks can be performed employ-209

ing the CMS to predict at unmeasured locations and to assess the reserve capacity of the structure.210

Predictions Qj at nq locations are given by:211

Qj = gk(xi,Θ
′′
k) + Ui,gk , ∀i ∈ {1, . . . , nq} (7)212

where Θ′′
k = {Θk|θk ∈ Ω′′

k} is a set of vectors of parameter values representing the CMS.213

There is a trade-off between the simplicity of the FE model and the magnitude of model un-214

certainty U gk . For example, it is possible to employ a less precise model class G∗
k, which is215

characterised by higher model-uncertainty magnitudes U ∗
gk

, to obtain more rapidly a good out-216

come compared with a detailed model. The “price to pay” in such cases is the loss of precision in217

prediction due to the higher variance of Q∗
j , according to Equation (7).218

The performance of identification in reducing the initial parameter uncertainties depends on219

factors such as the initial choice of parameters, the sampling technique and the sensor configura-220

tion. Besides the selection of parameters to be considered as primary parameters, the generation221
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of the initial model set (IMS) affects structural identification. The IMS should cover the parameter222

domain that defines candidate models with sufficient density, in order to provide unbiased predic-223

tions. Many sampling techniques have been adopted in structural model updating. Each of them224

involves a trade-off between density and extension of space exploration.225

Sampling techniques226

The goal of EDMF is to falsify incorrect model instances, whose population should represent227

adequately, for each model class, the uncertainty connected to the parameter values after measure-228

ment.229

In previous applications of EDMF mainly uniform sampling techniques, such as grid-based230

sampling (GBS) and Latin hypercube sampling (LHS) have been adopted to explore the model231

instance solution space (Goulet et al. 2010; Pasquier and Smith 2016). The vector of parameter232

range Ij = [θj,low, θj,high] ∀j ∈ {1, . . . , nθ}where θlow, θhigh represent respectively the lower and233

upper bounds for each parameter, is defined based on engineering judgment and the distributions234

of parameter values are usually uniform within the range. Conservative large bounds for parameter235

range are often used in order to ensure that the correct solution is within bounds.236

Grid-based sampling237

In GBS model instances are generated according to an nθ-dimensional grid. Each parameter238

range is discretised into ξ(Ij) intervals which define the density of the sampling. The IMS consists239

of a matrix having nk rows and ny columns, where the total number of combinations to be evaluated240

nk, is calculated with the following equation:241

nk =

nθ∏
j=1

ξ(Ij) (8)242

For example, in a model class defined by 5 primary parameters, each of which is discretized in 8243

uniform intervals, 85 = 32, 768 samples are evaluated.244
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Latin hypercube sampling245

LHS generates model instances in a square nθ-dimensional grid across the parameter space,246

whereby each sample is the only one in each axis-aligned hyperplane containing it. This algorithm247

represents a development of the Monte Carlo sampling methods and it is particularly adopted to248

avoid clustering of samples. LHS requires that each parameter is divided into the same number249

of intervals and the definition of the number of samples to be evaluated. The maximum number250

of combinations for a LHS of M intervals and nθ parameters can be computed with the following251

equation:252 (
M−1∏
nθ=0

(M − nθ)

)nθ−1

= (M !)nθ−1 (9)253

The main drawbacks of LHS are that extreme points, such as corners of the design space, are not254

necessarily covered, and that the selection of few samples can result in a poor exploration of the255

domain.256

Optimal space filling257

Optimal space-filling sampling (SF) is a method whereby LHS is extended with post-processing.258

SF is initialised as LHS and then optimised several times through maximising the distance between259

samples. Samples are equally distributed throughout the design space with the objective of gaining260

the maximum insight into the parameter domain with the fewest number of samples. SF shares261

some of the same drawbacks as LHS, though to a lesser degree. Possible disadvantages are that262

extreme points may not be covered and that a limited number of samples can result in a poor263

exploration of the domain.264

Figure 1 shows, for example, a two-dimensional problem that has two input parameters. Twenty265

design intervals are considered and samples are generated using GBS, LHS and SF. Although GBS266

provides an extensive exploration of the domain, it requires the highest number of samples (i.e.267

400). Through avoiding samples with common rows and columns, LHS and SF require only 20268

samples. However, LHS may generate clustered samples and skip parts of the parameter domain.269

SF addresses extremes more effectively and provides a better coverage of the parameter domain.270
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GBS is not feasible when many parameters have to be considered simultaneously because its271

sampling complexity is exponential with respect to the number of parameters. LHS and SFS272

involve strategies to reduce the number of samples compared with GBS while providing a good273

exploration of the parameter domain. However as with GBS, poor sample density is likely when274

high-dimension domains are investigated.275

Markov chain Monte Carlo276

Adaptive sampling techniques can be applied to increase the performance of the sampling es-277

pecially when high-dimensional spaces are investigated. With non-adaptive sampling techniques,278

the IMS is first built based only on the parameter uncertainties. Adaptive sampling techniques re-279

quire an iterative process because the choice of the next sample depends on the parameter domain280

already explored.281

Markov chain Monte Carlo (MCMC) is an algorithm that samples from a target distribution that282

is proportional to the posterior PDF by constructing a random walk that has the desired distribution283

at equilibrium. The most common method to construct the random walk between subsequent states284

is the Metropolis-Hastings algorithm, which is extensively used in Bayesian model updating. Let285

p(θ) denote the target PDF and q(θ) the proposal density, which depends on the current state286

k ∈ {1, . . . , nk}. The algorithm proceeds as follows:287

1. Sample from the proposal density: q(θc|θk) to generate a candidate state θc from the previ-288

ous state θk;289

2. Evaluate the ratio paccept =
p(θc)q(θk|θc)
p(θk)q(θc|θk) ;290

3. If paccept ≥ 1, θc is accepted. Otherwise, the proposal state is accepted with probability291

paccept < 1. If θc is accepted θk+1 ← θc292

4. A random number r ∈ [0, 1] is generated. If paccept > r the proposal state is accepted and293

θk+1 ← θc, otherwise θk+1 ← θk.294

By generating random numbers and then comparing them with paccept, it is possible to visit regions295

having high posterior probability relatively more often than those associated with low posterior296
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probability. Additionally, even though the posterior had a maximum value and that point was297

reached during the exploration, the algorithm would keep building the posterior distribution until298

nk samples are generated.299

The efficiency of this approach is affected by the choice of the proposal density function form300

and its optimal form is usually unknown beforehand. This issue is aggravated when the uncertain-301

ties are correlated and when the posterior PDF is peaked. Moreover, traditional MCMC techniques302

are inefficient to sample high-dimensional target PDF and cannot be applied if the PDF is mul-303

timodal (Ching and Chen 2007). These issues have already been studied for Bayesian model304

updating in (Beck and Au 2002), which proposed an adaptive Metropolis-Hastings (AMH) based305

on intermediate simpler PDFs instead of the target one, and later developed in (Ching and Chen306

2007) which proposed a transitional version of MCMC (TMCMC). The latter method is based on307

the previous AMH but employs a re-sampling strategy, which is more robust against the increasing308

number of parameters, to generate the intermediate PDFs and it has been shown to perform well309

even when a peaked or multimodal posterior PDF has to be sampled. However, the main drawback310

of this approach resides in the number of intermediate stages required to go through all the adjacent311

PDFs, because the transition between one intermediate PDF and the next should be smooth, but312

more stages mean more samples to be evaluated.313

Goulet (2012) applied a combination of MCMC and GBS to obtain a CMS compatible with314

EDMF using a likelihood function based on the k-order generalised Gaussian distribution. The315

number of samples required by MCMC to get the same CMS as GBS was found to be approxi-316

mately 20% lower. A performance was evaluated based on the size of the CMS compared to the317

initial set and was evaluated only for a simple theoretical example, involving two parameters. Real318

case studies are characterised by many primary parameters (usually 5 to 10) and large initial pa-319

rameter uncertainties, which provide conservative wide initial intervals for parameter values. As320

a consequence, MCMC performance is affected by high-dimensional target PDFs that have to be321

sampled and iterative strategies should be adopted to tailor the proposal distribution to the problem322

at hand.323
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According to Equation (6), all the model instances inside the CMS are assigned the same prob-324

ability, which means that the target PDF will be uniform. If the CMS consists of only few model325

instances, it is likely to observe a peaked posterior distribution, which can also be multimodal de-326

pending on the combination of parameter values generated while sampling the parameter space.327

In this circumstance, it is difficult to implement MCMC with Metropolis-Hastings because if the328

proposal PDF is wide and it is likely that the peaked region will be reached only by chance. If the329

proposal PDF is too narrow, the travel of the Markov chain will be slow and the peak could never be330

reached in a reasonable number of samples. Though this issue can be faced by an adaptive evalua-331

tion of the proposal distribution, sampling from a multimodal distribution may result in a Markov332

chain which is trapped in one local peak. Moreover, to increase the performance of identification333

and to provide redundant information, a large number of sensors, sometimes even more than the334

over-instrumentation limit, are employed to obtain measurement values. Although the multivariate335

Gaussian likelihood can be implemented to accommodate any number of measurement points, its336

evaluation can be difficult when many sensors are considered.337

In this paper a real case-study is employed to compare sampling techniques. An alternative338

approach not explicitly related to Bayesian model updating that is appropriate for sampling high-339

dimensional spaces through balancing domain exploration and result quality, and effective for low340

number of samples, is proposed. The basics of this method are presented in the next section.341

Derivative-free optimization342

In many engineering applications, the goal is to optimise an objective function whose analytical343

expression is unknown, and the function values are only available through a solver. In this study,344

the objective function is expressed in terms of the residual values between FE predictions and345

measurements. For complex structures, the solver evaluation is a time-expensive simulation and346

therefore, estimating the partial derivatives of the response surface by finite-difference methods347

within gradient-based methods is usually not convenient. Traditional derivative-free heuristics348

such as simulated annealing, genetic algorithms, and particle swarm optimisation are also not349

appropriate, since they often require many evaluations to find good quality solutions. Moreover,350
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they may not converge to the best solution if not enough samples are evaluated. These methods351

have been used in structural optimisation, as reported in (Hare et al. 2013).352

In general, a derivative-free optimization problem can be cast in the following form:353

max f(θ)

θ ∈ [θL,θH ],
(10)354

where θ ∈ Rnθ is the vector of the parameters, whose lower and upper bounds are defined by the355

vectors θL ∈ Rnθ and θH ∈ Rnθ , respectively, and f : Rnθ → R is the objective function to356

optimise. The key feature of Equation (10) is that the analytic expression of f is unknown and357

the evaluation of the function value f(θ̄), given a set of parameter values θ̄, is provided only by a358

solver.359

An alternative approach is to adopt a surrogate model of the function f . The kriging-based360

EGO (Efficient Global Optimization) method (Jones et al. 1998), the radial-basis function (RBF)361

method (Gutmann 2001), and the stochastic RBF method (Regis and Shoemaker 2007) implement362

this idea. These approaches build global models of the function f , and not local models that are363

employed by trust-region methods (Conn et al. 2009). This ensures a convergence to the global364

optimal solution, if the number of simulations is large enough, and allows identification of good365

quality solutions within a limited number of simulations. Previous studies (Holmström et al. 2008)366

have shown that the RBF method performs well on engineering problems.367

The radial-basis function method368

The goal of the radial-basis function method is to approximate the unknown objective function369

f using predictions provided by a FE solver. The surrogate model of the objective function is370

an interpolant s that is built by means of radial basis functions. The RBFs are special functions371

ω(||θ − θ̄||) : R+ → R that depend on the Euclidean distance r between a new set of parameter372

values θ and parameter sets θ̄ already employed in FE simulations.373

There are several types of RBFs, and the most commonly employed in engineering are the374

linear RBF ω(r) = r, the cubic RBF ω(r) = r3 and the thin plate spline RBF ω(r) = r2 log(r).375
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Given z parameter sets θ1, . . . ,θz ∈ [θL,θH ] and the FEM predictions f(θi), the RBF interpolant376

sz to the points (θi, f(θi)),∀i ∈ {1, . . . , z} can be expressed as:377

sz(θ) =
z∑

i=1

λiω(r) + p(θ), (11)378

where ω is the RBF employed, p is a polynomial and λi ∈ R are the coefficients of the interpolant379

that are found by solving a linear system. The polynomial p is needed to ensure the existence380

of the interpolant and depends on the RBF type. The polynomial guarantees that this system381

can be solved and that coefficients can be computed. Also, the minimum degree of the required382

polynomial depends on the RBF employed. For example, in the cubic and thin plate spline cases383

the polynomial must have a degree of at least 1, whereas for the linear case a 0-degree polynomial384

(i.e., a constant) is sufficient, as explained in (Costa and Nannicini 2015). Further details on the385

RBF method can be found in (Buhmann 2000).386

According to the RBF method, after z simulations a target value f ∗
z is set. The next set of387

parameter values θz+1 to be evaluated through the FE solver is the point in the domain which min-388

imizes the bumpiness (see Figure 2) of the RBF interpolant if this new set (θz+1, f
∗
z ) is considered.389

The RBF method requires the function f to be smooth and an advantage of this methodology is390

that it is possible to obtain an analytical measure of the bumpiness (Costa and Nannicini 2015).391

Since smooth functions exhibit low bumpiness values, new parameter sets θz+1 are chosen through392

a bumpiness minimization procedure (further details are provided in the next section).393

RBF Optimization-RBFOpt394

RBFOpt is open-source software developed for radial-basis function optimization. The soft-395

ware and additional information are available in (Costa and Nannicini 2015). Using the notation396

introduced above, and by defining z as the counter for the number of simulations and MAX ITER397

as the maximum number of allowed simulations, the RBF method implemented by RBFOpt is398

summarized by the following steps:399

1. Select and evaluate a set of m starting points S = {(θ1, f(θ1)), . . . , (θm, f(θm))};400
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2. Set z = m to include the simulations already performed;401

3. Compute the RBF interpolant for the points in S according to Equation (11);402

4. Choose a target function value f ∗
z ;403

5. Find the point θz+1 such that the interpolant to the points S∪ (θz+1, f
∗
z ) is the least bumpy;404

6. Evaluate θz+1 through the solver to obtain f(θz+1);405

7. Add (θz+1, f(θz+1)) to S and set z = z + 1;406

8. If z=MAX ITER stop; otherwise return to step 3.407

The first step involves the initialization of the RBF interpolant, for which m > nθ starting408

points are needed. Although many strategies may be employed to define the starting points, RB-409

FOpt employs LHS to select m = nθ + 1 random points.410

The target value f ∗
z is chosen according to a cyclic strategy, which alternates between the ex-411

ploration of unknown zones of the domain and the identification of good approximations obtained412

by the surrogate model. The target value is a guess of the best value that the real objective func-413

tion may achieve. If this value is far from the current optima of the interpolant implies that the414

real objective function can achieve a much better value than those predicted by the interpolant.415

In this case, the points which can potentially yield this improvement are searched in unexplored416

part of the domain. When the target value is close to the optima of the current interpolant a good417

approximation of the real objective function is achieved, hence the next evaluation point will not418

be to far from points already sampled. Thus, cyclically changing the target value helps optimize419

the interpolant by avoiding local optimum traps. More details related to the target value definition420

can be found in (Costa and Nannicini 2015).421

Figure 2 represents an illustrative example that describes the meaning of bumpiness. The blue422

circles are the points already evaluated θz. Considering a target value f ∗
z , two predictions (inter-423

polants red and green) can be obtained according to the choice of the next point θz+1. The green424

prediction is less bumpy and thus, it will be chosen by RBFOpt.425

In summary, RBFOpt is an iterative algorithm that optimises an objective function, whose426

analytical expression is unknown. To build the surrogate model of the function f (i.e. RBF in-427
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terpolant) predictions provided by a FE solver are employed. Moreover, this method is able to428

provide good results rapidly, while other approaches such as neural networks, which often need429

a large training set to be effective, would be computationally expensive. Also, RBF returns an430

approximation of the objective function, thus allowing the option to explore other promising parts431

of the candidate domain. Potentials exist for RBFOpt to be applied to EDMF, using an appropri-432

ate objective function (the falsification function), for sampling purposes. The optimisation of this433

function helps increase sampling density in the candidate domain. This new approach is explained434

in the following sections.435

SURROGATE MODELS FOR ADAPTIVE SAMPLING436

FE models are often used to predict structural behaviour, given input data such as element ge-437

ometry, material properties, boundary and interface conditions, load configurations, element type,438

mesh size, etc. To reduce modelling uncertainty, the mesh can be refined and shell or solid elements439

can be employed instead of linear elements. However, computation times increase. Surrogate mod-440

els are substitutes for complex models, since they are able to capture the essential behaviour of a441

structure using much less computation time than FE models. A common approach is to build442

response surfaces based on polynomial functions, through minimising the least-square difference443

between response surface and FE model predictions. When surrogate models are adopted to sim-444

ulate the structural behaviour, an additional source of uncertainty associated with the accuracy of445

the surrogate model has to be considered. Also, surrogate models may not represent adequately446

certain types of non-linear structural response.447

Figure 3 shows a surrogate model that approximates the structural behaviour of a cantilever448

beam. The Young’s modulus E is the only unknown parameter. The goal is to predict the displace-449

ment δ at the free edge, under the distributed load q. The dashed hyperbolic line represents the true450

behaviour of the beam. Although in this simple case the mathematical formulation of δTRUE is451

well known, model predictions of real structures are usually provided by FE solvers. Since solver452

computation can be time consuming, two displacements (δ1 and δ2) are evaluated using two values453

of parameter E. Then a linear surrogate model δSM is built and used to calculate the displacement454

18



δ for many samples of E.455

The difference between the red line (δSM ) and the dashed line (δTRUE) corresponds to the456

uncertainty of the surrogate model. Since the analytical formulation of the SM is built considering457

only few (in this example two) simulations, SM predictions may diverge from the true behaviour458

for E-values far from the two training points. This error can be reduced by increasing the density459

of training points and can be estimated by means of testing points, where both δSM and δTRUE are460

evaluated and compared. Increasing the number of training points enhances the accuracy of the461

SM; however, those points require time-consuming FE simulations.462

Another implementation of surrogate models can be found in structural optimisation, as men-463

tioned in the background section. The radial-basis function method - depicted in Figure 4 - is an464

adaptive sampling strategy that helps focus the sampling of parameter values in particular regions465

of the domain. Such a methodology can reduce the computation times required to reach a defined466

level of sampling accuracy. Considering the same cantilever beam as in the previous example, let467

assume that the goal is to identify E-values for which the residuals (r = δ − δ∗) between pre-468

dicted and measured maximum deflections lie in a predefined interval [rlow; rhigh]. This objective469

is described by means of a uniform residual target distribution f(r). A Surrogate Model (SM) is470

used to generate samples of the parameter E, for which the residuals r follow the residual target471

distribution. In Figure 4a f(r) is defined in the prediction domain, while the analytic expression472

the function in the parameter domain f(E) is unknown. Therefore, a SM (RBF (E)) is used to473

approximate the function f in the parameter domain (Figure 4b). Then, the SM helps find target474

E-values - for which f(E) = 1. Hence, the SM is used as an objective function to guide the sam-475

pling of E-values for which residuals follow the target distribution (Figure 4c). Compared with476

random sampling, the SM generates more samples (i.e. E-values) in the parameter sub-domain for477

which f(E) = 1. Moreover, no SM uncertainty has to be considered, since every model prediction478

is computed using the FE solver. In this approach, the SM is used to approximate the unknown479

function f(E).480
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RBF sampling for EDMF481

As mentioned above, surrogate models can be used for sampling purposes to help increase482

sampling density in sub-domains of the parameter space. The idea is to use radial-basis functions483

to create a surrogate model of a particular target distribution that characterises candidate models.484

This approach is applied to a new framework for adaptive sampling in EDMF, which is introduced485

in Figure 5.486

This new methodology for sampling the parameter space is based on the optimisation of a487

surrogate model that represents a particular target distribution called the falsification function (fF ).488

The optimization, performed using RBFOpt, helps provide sets of parameter values associated489

with residuals that lie within threshold bounds of falsification. The falsification function, which490

can be seen as the projection of a uniform likelihood function in the parameter space, is used as an491

objective function to guide the search of candidate models.492

In order to compute the residuals ri, model predictions are calculated using a FE solver and493

measurement values yi are collected from sensors. Furthermore, model and measurement uncer-494

tainties are combined to calculate the threshold bounds, as stated in Equation (2).495

The next section provides a detailed explanation of the new framework.496

Iterative optimization497

In order to initialise the RBF, a set of parameter vectors θ̃ is defined by sampling in the initial498

parameter ranges Ij using traditional techniques such as LHS. These vectors are assigned to the FE499

model class. The static analysis is performed using a FE solver such as ANSYS and predictions500

g(xi,θ) at locations xi are calculated. Then, residuals ri between measurement values and struc-501

tural predictions are computed. According to Equation (2), the combined uncertainties Ui,c and502

the residuals ri are compared in order to perform falsification. The falsification function, which is503

defined in the error domain, represents the target distribution. This distribution is approximated in504

the parameter domain by means of a surrogate model (i.e. RBF interpolant). The RBF interpolant505

is employed as an objective function for adaptive sampling. This improves the search for parameter506

values that provide residuals which follow the target distribution.507
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RBFOpt generates the first RBF interpolant rbf(θ) which is a function rbf : Rnθ → R that508

provides the falsification value associated with the parameter values θ. The output of rbf -function509

are expressed in Equation (12)510

rbf(Θ) =


1 , if θ ∈ Ω′′

[0, 1[ , otherwise
(12)511

An instance Θ of the parameter vector θ that is in the candidate-model domain Ω′′, provides an512

interpolant value rbf(Θ) = 1.513

The generation of the interpolant consists of two steps. First, the interpolant type (i.e. linear,514

cubic) is chosen by a leave-one-out cross-validation and the RBF type that provides the smallest515

error is selected. Second, the choice of the interpolant shape is performed according to a bumpiness516

minimization procedure.517

The RBF interpolant is iteratively optimised through selecting new instances Θz+1, evaluating518

their predictions and computing the residuals. The choice of the next parameter sample is based on519

two criteria, the improvement of the interpolant accuracy and the search of the interpolant global520

maximum.521

Satisfying these two criteria forms the core of the RBF sampling algorithm (RBFS). The im-522

provement of the interpolant accuracy ensures a sufficient exploration of the parameter space while523

the search for the global maximum generates samples in the candidate domain. The framework in524

Figure 5 is performed iteratively until a stop or restart condition is reached. When the stop con-525

dition is reached, all model instances characterised by an RBF-value equal to 1 are automatically526

included in the CMS. Other instances are falsified.527

The stop condition can be static or dynamic. In the former case, a maximum number of iter-528

ations is defined a priori, for instance, according to the available computation times. In the latter529

case, the variance of parameter values in the candidate domain is checked for each new candi-530

date model. New model instances are generated until the variation in the variance is lower than a531
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predefined limit.532

A restart occurs when, after a given number of attempts, the current best solution (i.e. the533

maximum objective-function value rbf(Θ) found so far) is not further improved. Consequently, a534

new random set of initial points is evaluated and a new RBF interpolant has to be optimised. This535

feature increases the exploration of the parameter domain. The entire process is summarised in the536

flowchart depicted in Figure 6.537

Falsification Function538

The falsification function is defined using the threshold boundaries computed through Equation539

(3). First, all the sources of uncertainties are combined using the Monte Carlo method and thresh-540

old bounds corresponding to 95% and 99% confidence level are calculated and corrected using541

the Sidák correction for a given number of measurements. The green area represents a rectangular542

distribution defined by the thresholds bounds (T95,low;T95,high). More formally, the function is built543

as follows:544

fF (Ui,c) =


1 , if u95

i,L < Ui,c < u95
i,H , ∀i

0 , otherwise
(13)545

where u95
i,L and u95

i,H represent the lower (L) and upper (H) threshold boundaries at sensor location546

i, calculated with a 95% confidence level. This confidence level is a standard engineering criterion547

that is used in many engineering decision tasks. Due to the systematic uncertainties in model-class548

definition, the fF is not centered in zero.549

Since values of the falsification function for previously generated model instances are em-550

ployed to fit RBF interpolants, a perfectly rectangular objective function is not appropriate because551

it cannot guide the search for optimal values. To guide the search, two triangular distributions are552

attached to the rectangular distribution, as shown in Figure 7. These distributions have a 0 proba-553

bility at the 99% confidence bounds. The triangular distributions do not affect the falsification of554

model instances because all the samples outside the 95% interval (i.e. fF < 1) are discarded.555

CASE STUDY556
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The case study is a prestressed reinforced concrete bridge in Singapore. This structure, which557

consists of four prestressed concrete beams, has a single span of 32 m and is supported at each558

end by 4 bearing devices (Figure 8). The beams support and are connected to a reinforced con-559

crete slab that is 22 cm thick. The structure has been modelled using ANSYS and the model560

includes non-structural elements such as the asphalt pavement and precast concrete barriers. These561

elements, which are usually included as permanent loads in design-stage models, are included in562

order to reduce model-simplification uncertainties. A static load test involving 6 trucks, each with563

a gross weight of 33 tons, was performed. A measurement system consisting of a laser tracker, 8564

strain gauges (S) and 2 inclinometers (I) has been designed. In order to increase the accuracy of565

deflection measurements, 4 prisms (P) were placed on the bottom faces of the main beams. Truck566

configuration and sensor locations are depicted in Figure 9.567

Uncertainty definition568

The case study is used to estimate the performance of RBFS and to compare it with results from569

LHS, SF and MCMC sampling. The parameters are defined according to a sensitivity analysis570

of parameter impact on model predictions at measurement locations. Figure 10 shows the relative571

importance of eight parameters that need to be defined in the FE model. Parameter selection is572

often a tradeoff - in this study the five most sensitive parameters are considered for identification.573

Although other parameters may provide additional insights, increasing the number of parameters574

for identification would result in a sampling domain with higher dimensions that requires larger575

sample sizes, in particular when non-adaptive sampling approaches are employed. In this study, the576

initial model set (IMS) is generated through sampling the five-dimensional parameter space defined577

by the Young’s modulus of cast-in-place concrete, the Young’s modulus of precast concrete, the578

Young’s modulus of barrier concrete, the rotational and the vertical stiffness of the bearing devices.579

The initial interval for each parameter, defined using the prior knowledge available, is reported580

in Table 1. This knowledge is based on a preliminary study and in-situ visual inspection. Intervals581

of elastic material properties (i.e. Young’s moduli) include mean values from structural codes.582

Moreover, these intervals are conservatively wide in order to ensure that true parameter values583
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are included. Rotational stiffness intervals are able to describe boundary conditions in the range584

between pinned and fixed constraint conditions. Vertical stiffness intervals are defined in order to585

consider vertical displacements of beam supports up to 40mm. Visual inspection did not provide586

evidence of local change of material properties. Therefore, constant properties have been assigned587

to every bridge element.588

Table 2 describes modelling and measurement uncertainty sources. Uniform distributions are589

adopted to describe model uncertainty sources - a range of plausible assumptions on uncertainty590

forms are described in (Pasquier and Smith 2015b). The minimal and maximal bounds defined591

in Table 2 are expressed as a percentage of the mean value of model predictions for modelling592

uncertainties and as a percentage of the measured value or in absolute terms for measurement593

uncertainties. The uncertainty associated with the FE model takes into account two aspects: i)594

parameters that have not been considered for identification and ii) FE model simplifications. The595

variation in predictions due to parameters not considered for identification are estimated and in-596

cluded as uncertainties in model predictions. Model-simplification uncertainty is related to the597

FE-model-class features. In this study, the bridge model is constructed in ANSYS using solid ele-598

ments (SOLID 185) with perfectly connected interfaces between adjacent layers. This assumption599

leads to a model class that is likely to overestimate the real stiffness of the bridge. Therefore, the600

FE uncertainty distribution is not centered on zero. Bounds of uncertainty associated with mesh601

refinement and bounds for additional uncertainty are taken from (Goulet et al. 2010). Finally, the602

source of uncertainty associated with spatial variability originates from strain sensors measuring603

behaviour that is affected by the spatial variability of material properties. This source compen-604

sates for the choice of assigning constant material properties to every bridge element. Uncertainty605

sources estimated in this paper are similar to those employed in previous studies that focus on606

bridges (Goulet et al. 2010; Pasquier and Smith 2016).607

Sensor accuracies are described by uniform distributions that are based on manufacturer speci-608

fications. The measurement repeatability was assessed by taking multiple measurements under the609

same load case. Since the noise was mainly due to the vehicle traffic across a lane that was kept610
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open during the test, a uniform distribution was used with bounds corresponding to the maximal611

and minimal values recorded. For strain gauges, uncertainty also arises from the imperfect align-612

ment of gauges with respect to the bridge longitudinal axis, which results in underestimation of613

real stresses. Finally, additional noise associated with sensor installation has been considered for614

inclinometers and strain gauges using field observations and conservative engineering judgment.615

In order to perform model falsification, for each measurement location, a combined uncertainty616

PDF is computed and threshold bounds are determined for a confidence level fixed at 95%. The617

remainder of this paper investigates the impact of sampling methodologies employed to generate618

the IMS on candidate-model identification.619

Candidate domain comparison (LHS, SF, MCMC and RBFS)620

Two non-adaptive sampling techniques (LHS and SF) and the traditional adaptive MCMC are621

compared with the new approach introduced in this paper (RBFS). Using each sampling technique,622

1000 initial model instances are generated to form the initial model set. In order to assure a fair623

comparison, the same set of starting points is employed in RBFS and MCMC. Then, falsifica-624

tion is performed using threshold bounds and a candidate model set (CMS) is obtained using each625

sampling technique. Figure 11 shows the prediction values at each sensor location, which are ref-626

erenced in accordance with Figure 9. Initial model instances are depicted in grey, while candidate627

models are highlighted by dark lines. The asterisks represent measured values taken by each sen-628

sor. LHS predictions are almost uniformly distributed throughout the parameter value range while629

RBFS predictions are denser near to measured values at each location. Moreover, RBFS provides630

more candidate models than LHS. RBFS provides larger prediction ranges than LHS at all sensor631

locations. This aspect helps avoid wrong identification due to the incomplete exploration of the632

prediction domain.633

Figure 12 shows the parameter values that define model instances depicted in Figure 11. Both634

techniques cover the parameter domain. However, RBFS focuses the sampling of parameter values635

close to the candidate domain. For example, in Figure 12b sample density is denser for low values636

of the longitudinal stiffness and high values of precast concrete Young’s modulus than in Figure637
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12a. As shown in Figure 12c, RBFS increases the identified bounds for some parameters such as638

Young’s modulus of cast-in-place concrete and the rotational stiffness. Moreover, for the rotational639

stiffness lower bound, RBFS helps identify a portion of the domain where LHS does not find can-640

didate models. Similar observations can be made for the lower bound of cast-in-place concrete641

Young’s modulus. The reduction of parameter initial range after falsification is related to charac-642

teristics of the measurement system. Some parameters such as the longitudinal stiffness and the643

precast Young’s modulus are well identified, while for other parameters such as the Young’s mod-644

ulus of cast-in-place concrete, falsification does not reduce the initial interval. However, RBFS645

provides a thorough exploration of the candidate domain and helps avoid wrong falsification of646

parameter values that are caused by poor sampling.647

Sensitivity of initial model set size648

The number of samples that needs to be evaluated for reaching a defined level of performance649

is a crucial point for selecting the best sampling strategy. In the background section are mentioned650

some challenges, related to the sample size, in order to ensure a sufficient coverage of the pa-651

rameter domain. Increasing the initial sample size is an effective way to improve the exploration.652

However, large sample sizes negatively affect evaluation times. For example, in this case study,653

the computation time required by ANSYS to solve one model instance is about 180 seconds using654

12 cores in parallel (i.e. 50 hours for 1000 simulations). In order to compare RBFS with LHS,655

SF and MCMC, three initial sample sizes, which correspond to 500, 1000 and 2000 samples, are656

defined. Sample sizes smaller than 500 samples are not reasonable considering the dimension of657

the parameter domain and, thus, sampling performance would be largely affected by random gen-658

eration of values. Sample sizes bigger than 2000 samples are discarded because of computation659

time constraints. Figures 13 and 14 present values of rotational stiffness and cast-in-place concrete660

Young’s modulus that have been identified for three initial model sets that consist of 500, 1000 and661

2000 samples.662

Non-adaptive sampling techniques need many samples to provide a thorough exploration of663

the candidate domain while adaptive sampling techniques are more effective in identifying large664
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parameter ranges using small numbers of model instances. For a large number of samples, the665

parameter ranges provided by the four sampling techniques are similar.666

RBFS provides the highest number of candidate models regardless of the initial sample size.667

For the Young’s modulus of cast-in-place concrete, RBFS is able to explore the entire candidate668

domain with 500 samples and outperforms MCMC for both sampling density and identification669

ranges. The employment of adaptive sampling techniques such as RBFS and MCMC increases670

the exploration of the candidate domain. In terms of parameter-value range for a fixed number of671

samples, RBFS often outperforms MCMC in exploring the candidate domain, especially when the672

number of samples is low.673

In the next section, a quantitative index is defined to compare sampling algorithms.674

Quality index675

The quality index is a metric to compare the performance of sampling techniques in terms of676

parameter domain exploration. Let k be a sampling technique. For each parameter θ, the quality677

index at iteration i (when i model instances are generated) is defined as the ratio between i) the678

range of parameter values using sampling technique k at iteration i and ii) the range of parameter679

values obtained using all sampling techniques at the final iteration. Then, the values obtained680

for each parameter are averaged out. In this way, the quality index quantifies the increment of681

candidate domain exploration at each evaluation and for each sampling technique. This index is682

comparable to the performance profile used in derivative-free optimisation, where the performance683

of several algorithms is compared with the performance of the best algorithm (Moré and Wild684

2009).685

More formally, let CMSk be the matrix of candidate models for the sampling technique k.686

CMSk(t, θ) represents the value of the parameter θ for the t-th model in the candidate model set.687

Let CMST be the matrix obtained by merging the CMSk for each k and, if at iteration i a candidate688

model is found, let p(i) be its sequential position in the CMS. The quality index for the sampling689

technique k at iteration i, indicated as Q(k, i), is defined as follows:690
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Q(k, i) =



0, if i = 0,

Q(k, i− 1), if the i-th model does not belong to CMSk,

1
nθ

nθ∑
θ=1

max
t≤p(i)

CMSk(t, θ)− min
t≤p(i)

CMSk(t, θ)

max
t

CMST(t, θ)−min
t

CMST(t, θ)

 , otherwise.

(14)691

Figure 15 shows the comparison of the candidate domain generated using RBFS and four LHS.692

LHS0 denotes the default LHS-setting implemented in ANSYS. Three more populations Three693

more populations (LHS1, LHS2 and LHS3) have been generated through a random selection of the694

sampling seed. The quality of candidate domain exploration provided by LHS is affected by the695

random choice of the seed value. However, there is no direct relationship between the choice of the696

seed value and the LHS performance. For example, although LHS3 is among the best of the LHS697

when the number of samples is less than 500, it provides the lowest quality of exploration when698

more than 1000 samples are generated. RBFS outperforms all sample seeds of LHS and most699

successful LHS seed at high-sample number (LHS1) provides lower quality sampling compared700

with RBFS up to 1000 model samples. Moreover, RBFS is more likely to provide higher quality701

results than those provided by LHS, especially for low sample numbers (< 900).702

As reported in the background section, MCMC requires the definition of a proposal distri-703

bution, which is usually Gaussian. A narrow proposal leads to inefficient sampling and many704

iterations to converge. A wide proposal may never find the candidate-model domain. A common705

approach is to keep adjusting the proposal width during iterations and to check the acceptance706

ratio of new samples. This strategy requires sample sizes large enough to ensure the convergence707

towards good width values. In this study, four proposal widths are employed to sample four IMSs,708

which consists of 2000 samples each. In this way, a fair comparison of sampling quality using709

2000 samples can be carried out.710

Figure 16 shows the quality index of RBFS and four MCMC characterised by different proposal711

widths. MCMC1 denotes the best parameter setting found after four attempts. The quality of712

candidate domain exploration provided by MCMC is affected by the proposal width employed.713
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This is a drawback of this methodology since a good MCMC performance requires the tailoring of714

the proposal width to the problem at hand. However, the proposal width is not the only aspect to715

consider. The poor performance of the tested MCMC compared with RBFS is due to the limited716

number of samples. Indeed, after 2000 samples, MCMC has not converged. Additionally, the717

multi-dimensional posterior and the uniform likelihood adopted by EDMF reduce the ability of718

MCMC to focus the sampling in the candidate domain and to identify candidate models. In this719

case study, RBFS provides higher quality results than those provided by MCMC for all sample720

numbers. Moreover, since RBFS does not require initial tuning, there is less risk of low-quality721

results.722

Figure 17 reports the final comparison between the four sampling techniques, in which the723

default value of the LHS seed is used (LHS0). For MCMC, the best proposal width is chosen.724

Once again RBFS provides the best performance. After 2000 evaluations it performs the most725

accurate exploration of the candidate domain. Moreover, RBFS provides a quality of 75% in just726

180 evaluations. For comparison, MCMC requires 630 iterations to reach the same quality level.727

For a limited number of FE evaluations (i.e. 500), RBFS provides the highest number of candidate728

models and the best exploration of the parameter domain. In this case, the quality index of RBFS729

is twice the one of LHS.730

Moreover, RBFS requires the least number of samples to reach high levels of quality (one-fifth731

of the evaluations needed with MCMC for a quality index of 75%). A 75% quality is reached only732

after 1380 samples using SF and after more than 1800 samples using LHS.733

Cross-validation of structural identification734

Full-scale case studies are essential for validating model updating methods since it is only at735

this scale that uncertainties show realistic magnitudes. Unfortunately, many studies employ only736

simulated measurements. Likewise, data collected during lab experiments may not be representa-737

tive of measurements collected under ambient conditions. Strong methods for result validation are738

required to assess the performance of model updating techniques. In this study, a cross-validation739

is carried out using candidate models that have been identified to predict at locations that were not740
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used for model updating.741

Figure 18 shows an example of cross-validation. First, 2000 initial samples are generated742

through RBFS. Then, falsification is performed using the threshold bounds. Predictions are ob-743

tained by combining model uncertainties with predictions of the candidate model set according744

to Equation (7). The CMS prediction distributions are shown (Figure 18). Because of the Sidák745

correction, the width of threshold bounds depends on the number of measurements that are used746

for falsification. Therefore, in order to perform the cross-validation, threshold bounds have to be747

calculated considering only the measurements that are used for falsification. Since use of EDMF748

involves the hypothesis that all candidate models are equivalently likely due to a lack of knowledge749

of real distribution forms, uniform prediction distributions (PDs) within 95% threshold bounds are750

assigned to the CMS (Figure 18). The PDs at three locations (P1, S1 and I1), which have not been751

used for falsification, are plotted. For each sensor, the PD includes the measured value. Therefore,752

the cross-validation is verified and EDMF prognoses are robust.753

Further investigation is carried out to assess the sensitivity of sampling on prediction reliability.754

Five sensors (three deflection prisms P2, P3, P4 and two inclinometers I1, I2) have not been used755

for falsification and one of the two inclinometers (I2) is used for cross-validation. Four sampling756

techniques (MCMC, LHS, RBFS, and SF) are employed to generate four IMSs of 500 and 1000757

samples. The uniform PD at location I2 and the measured value are plotted in Figure 19. In this758

picture, the y-axis value of each uniform distribution is scaled to improve the visual interpretation759

of PDs. Table 3 summarizes cross-validation results.760

The CMS provided by RBFS is validated when 500 initial samples are considered, while CMSs761

provided by MCMC and SF are validated only when the initial model set is large enough. There-762

fore, EDMF reliability can be affected by the exploration of the candidate domain provided by763

the adopted sampling algorithm. Interestingly, RBFS provides effective sampling even when the764

number of samples is low.765

SUMMARY AND CONCLUSIONS766

In this paper a new sampling methodology - referred to as RBFS - based on radial-basis func-767
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tions (RBF) is employed in combination with error-domain model falsification (EDMF) to perform768

structural identification. First, the finite element model of a bridge is built, the most sensitive pa-769

rameters are selected for sampling and uncertainties are quantified. Then, several sampling tech-770

niques are compared according to their performance in exploring the parameter domain while pro-771

viding predictions that are compatible with the measured behaviour of the structure. RBFS over-772

performs traditional approaches (LHS and SF) and adaptive algorithms such as MCMC. Therefore,773

RBFS can increase the performance of EDMF by reducing computation times. Moreover, RBFS774

sampling accuracy helps avoid identification shortcoming and biased predictions.775

Specific conclusions are as follows:776

• Grid-based sampling is not feasible when many parameters are considered simultaneously.777

LHS and SFS involve a reduced number of samples; however, poor sample density is likely778

when high-dimensional domains are investigated.779

• RBFS outperforms traditional uniform sampling techniques such as LHS and SF even for780

low numbers (500) of samples (FE evaluations). For the case study that was examined,781

RBFS provides the most effective exploration of the parameter domain and helps avoid the782

wrong falsification of parameter values connected with sampling shortcomings.783

• The employment of adaptive sampling techniques such as RBFS and MCMC increases784

the exploration of the candidate domain. In terms of parameter-value range for a fixed785

number of samples, RBFS usually outperforms MCMC in exploring the candidate domain,786

especially when the number of samples is low.787

• The quality index proposed in this paper is useful for comparing sampling techniques.788

When a quality level is established as a target (i.e. 75%), RBFS requires the least number789

of samples. For example, MCMC may require more than four times the number of samples790

than RBFS to obtain the same quality level.791

• EDMF prediction reliability is affected by the exploration of the candidate domain provided792

by the adopted sampling algorithm. RBFS provides effective sampling even when the793

number of initial samples is low.794
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In order to generalise the conclusions above, other case studies involving real-scale measure-795

ments are ongoing. Future work will focus on assessing the performance of RBFS when more796

parameters are selected and when alternative definitions of model class and uncertainty magni-797

tudes are considered. Also, further adaptive sampling algorithms have to be compared. Finally, the798

implication of sampling methodologies in the assessment of reserve capacity for existing bridges799

will be investigated.800
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Parameters Lower bound Upper bound
Young’s modulus of cast-in-place concrete 20 GPa 35 GPa
Young’s modulus of precast concrete 25 GPa 50 GPa
Young’s modulus of barrier concrete 3 GPa 40 GPa
Rotational stiffness of bearing devices 9 log(Nmm/rad) 13 log(Nmm/rad)
Vertical stiffness of bearing devices 8 log(N/mm) 11 log(N/mm)

TABLE 1. Parameter initial intervals.
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Uncertainty source Displacements - (P) Rotations - (I) Strains - (S)
Min Max Min Max Min Max

FE model (%) -5 13 -5 13 -5 13
Mesh refinement (%) -1 1 -1 1 -1 1
Spatial variability (%) - - - - -5 5
Additional uncertainty (%) -1 1 -1 1 -1 1
Sensor accuracy -0.05 mm 0.05 mm -1 µrad 1 µrad -2 µε 2 µε
Repeatability -0.15 mm 0.15 mm -4 µrad 4 µrad -4 µε 4 µε
Sensor orientation (%) - - - - 0 6
Sensor installation (%) - - -5 5 0 5

TABLE 2. Modelling and measurement uncertainty sources.
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Sampling technique Number of initial samples
500 1000

Optimal space filling - SF × X
Latin hypercube sampling - LHS × ×
Markov chain Monte Carlo - MCMC × X
Radial-basis function sampling - RBFS X X

TABLE 3. Outcome of prediction cross-validation at location I2 (X: successful
cross-validation, ×: not successful cross-validation).
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FIG. 1. Examples of sampling in a 2D domain using: a) grid-based sampling, b)
Latin hypercube sampling (LHS) and c) optimal space-filling sampling (SF).
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FIG. 2. Interpolant selection according to the bumpiness minimization criterion.
The blue circles are the points already evaluated θz. Considering a target value f ∗

z

(dashed line), two interpolants (red and green) can be obtained according to the
choice of the next point θz+1 (square). The green interpolant is less bumpy.
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FIG. 3. Surrogate-model of the structural behaviour. A Surrogate models (SM) is
used to speed up the computation of the maximum deflection δ in a cantilever beam.
To build the SM, first two predictions are provided by the FE solver (blue points).
Then, additional predictions are calculated using the SM since it computes faster
than the FE solver.
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FIG. 8. Plan view a), cross-section b) and longitudinal profile c) of the bridge. The
flyover is a 32-meter-long span reinforced-concrete bridge that consists of four
precast beams with cast-in-place diaphragms at the abutments. The cast-in-place
concrete deck connects all the beams and the two precast concrete barriers.
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FIG. 9. Top and bottom views of the flyover. The truck configuration is shown along
with the position of two inclinometers (I), four deflection prisms (P) and eight strain
gauges (S).
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FIG. 10. Relative importance of parameters θ on model predictions at three sensor
locations (P1, S1 and I1).
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FIG. 11. Predictions of 1000 model instances generated using Latin hypercube
sampling (LHS), top and radial basis function sampling (RBFS), bottom. Each
vertical axis represents the prediction at the sensor locations defined in Figure
9. Predictions of the initial model set (IMS) (grey lines) and the candidate model
set (CMS) (dark lines) are plotted. CMS-prediction thresholds are reported for each
axis. Black asterisks (*) represent the measured value at each location.
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FIG. 12. Parameter values describing 1000 model instances generated using LHS
and RBFS. Each vertical axis represents a parameter. Initial model instances (grey
lines) and candidate models (dark lines) are plotted and initial values of each pa-
rameter are given for each axis. The comparison of candidate models is shown in
c).
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FIG. 13. Comparison of rotational stiffness values identified using RBFS, MCMC,
LHS and SF. Falsification has been conducted considering three initial model sets
that consist of 500, 1000 and 2000 samples. RBFS provides the largest CMS and
the most effective exploration of the candidate domain, even with 500 samples.
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FIG. 14. Comparison of Young’s modulus values for cast-in-place concrete, identi-
fied using RBFS, MCMC, LHS and SF. Falsification has been conducted considering
three initial model sets that consist of 500, 1000 and 2000 samples. RBFS covers
the entire candidate domain within 500 samples, performing better than MCMC.
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FIG. 15. Comparison of the candidate domain provided by 2000 samples gener-
ated using RBFS and four LHS. LHS0 denotes the default LHS-setting implemented
in ANSYS. Three more populations (LHS1, LHS2 and LHS3) have been generated
through a random selection of the sampling seed. The quality of candidate domain
exploration provided by LHS is affected by the random choice of the seed value.
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FIG. 16. Comparison of the candidate domain provided by 2000 samples generated
using RBFS and four MCMC characterised by different proposal widths. MCMC1

denotes the best parameter setting found after four attempts. Since RBFS does not
require initial tuning, there is less risk of low-quality results.
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FIG. 17. Comparison of the candidate domain provided by 2000 samples generated
using RBFS, LHS0, MCMC1 and SF. The main drawback of non-adaptive sampling
is the slow exploration of the domain with increasing number of samples.
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FIG. 18. Distribution of candidate-model-set predictions (PD) at three sensor loca-
tions (P1, S1 and I1) that have not been used for falsification. The uniform PDs for
a 95% confidence and the CMS prediction distributions are plotted. For each sen-
sor, the PD includes the measured value. The PDs have been identified using 2000
initial samples generated through RBFS.
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FIG. 19. Uniform distributions of candidate-model-set predictions (PD), for a 95%
confidence, at sensor location I2. Sensors P2, P3, P4, I1 and I2 have not been used
for falsification and two PDs have been identified using respectively 500 (a) and
1000 (b) initial samples. The measurement value at location I2 is shown (dashed
line).
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