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Abstract: This paper presents a study of similarities between electrical and hydraulic pressurized networks. The 15 

primary objective is to examine whether or not it is possible to use electrical laboratory networks measuring voltage 16 

to study leak-region detection strategies measuring flow in water-distribution networks. In this paper, the strategy 17 

used to compare the networks is error-domain model falsification, a previously developed methodology for data 18 

interpretation that combines engineering knowledge with models and data to enhance decision making. Simulation 19 

results obtained for a part of the water-supply network from the city of Lausanne are compared with an analogous 20 

electric network. The electrical network is simulated using resistors to mimic the pipes. The consequence is that 21 

the electrical model is linear. The resistance values are obtained by computing the hydraulic resistance for each 22 

pipe, given by the Hazen-Williams equation. The compatibility of the two networks is evaluated through 23 

simulations in three ways: (1) comparing flow predictions obtained by simulating several leak scenarios; (2) 24 

comparing the expected identifiability (performance) of the two networks; and (3) comparing sensor placement 25 

configurations. The analyses show that even though the models have varying characteristics of underlying physical 26 

principles (the electrical model is linear while the hydraulic model is non-linear), the results are within generally 27 

accepted engineering limits of similarity (10%). This indicates that measurements on electrical laboratory networks 28 

have the potential to illustrate the efficiency and adaptability of leak-detection methodologies for full-scale water-29 

supply and other pressurized hydraulic networks. Finally, two electrical laboratory physical networks, including 30 

mailto:Ian.Smith@epfl.ch


2 
 

an electrical model of part of the water network in Lausanne, were constructed and used in case studies to illustrate 31 

this adaptability. 32 

Key words: Water supply network; Leak detection; Model falsification; Sensor placement; Electrical laboratory 33 

network  34 
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1 Introduction 35 

Fresh water is a key resource in sustainable development. Clean water needs to be preserved 36 

and this includes waste prevention.  The annual cost of the World’s fresh water supply has been 37 

estimated to be 184 billion USD [1]. Approximately 5% of this cost (9.6 billion USD) is the 38 

consequence of leakage. This represents an average of 20% of clean water supply. These 39 

numbers show that there is a need to improve management of fresh-water supply networks. 40 

While efficient monitoring systems for leak detection can enhance knowledge, such systems 41 

also require advanced sensor-based diagnostic methodologies in order to realize their potential.   42 

Leak detection techniques are usually indirect since measured quantities are used to indirectly 43 

infer water loss. Techniques include noise monitoring, pressure monitoring and flow 44 

monitoring [2]. The principle of noise monitoring is to capture the noise signal caused by the 45 

water flowing through a leak. Other techniques involve measuring variations in the hydraulic 46 

state (pressure and flow) due to the presence of a leak. This category can be separated into two 47 

groups. The first is transient-based; these techniques use measured transient signals (usually the 48 

pressure) to detect leaks [3-7].  49 

The second group is based on the study of steady-state regimes. These techniques can be based 50 

on comparisons of measurement with predictions obtained by simulating hydraulic numeric 51 

models. Finding predictions corresponding to measurements can be formulated as optimization 52 

tasks [8, 9] and by Bayesian inference [10-13]. Weaknesses of these kinds of data-interpretation 53 

approaches has been identified by Goulet and Smith [14] and later by Pasquier and Smith [15]. 54 

They have shown that approaches such as Bayesian inference and least-square regression may 55 

lead to biased identification and prediction with the presence of systematic uncertainties and 56 

subsequent unknown correlations, particularly when extrapolating.  57 
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Another strategy that can be used to interpret measurement data is model falsification. This 58 

principle was first applied to leaks by Robert-Nicoud et al. [16]. Model falsification was 59 

developed further by Goulet and Smith [17]; they developed a methodology called error-domain 60 

model falsification for infrastructure diagnosis. This methodology was applied to leak-region 61 

detection in a preliminary study by Goulet et al. [18] and another study extended this to specific 62 

sensor locations [19, 20]. Model falsification typically results in sets of candidate-leak locations 63 

that form one or more candidate regions for subsequent investigation using techniques such as 64 

acoustic emission. 65 

A challenge associated with developing leak-detection methodologies is that water-distribution 66 

networks are difficult to access as they are generally underground. Therefore, monitoring such 67 

systems is usually expensive, and once the sensors are installed, moving them to test other 68 

sensor configurations is often not feasible. For these reasons, development of a laboratory 69 

network is an attractive strategy. However, building hydraulic laboratory networks is costly and 70 

working with a network that is complex enough to represent a real network would be arduous. 71 

No previous research has been found to address this challenge in combination with an explicit 72 

representation of several sources of measurement and modelling uncertainties. 73 

This paper describes a proposal for electrical resistance networks, measuring voltage, that have 74 

behavior characteristics which are similar to water distribution networks, measuring flow, and 75 

are less complex to build. The paper is a greatly extended version of a previously published 76 

conference paper [21]. Through presenting a more extensive range of results, this study goes 77 

into much further detail regarding the usefulness of an electrical analogy for water-supply 78 

networks. Furthermore, several leak intensities, leak locations and sensor configurations are 79 

evaluated for two electrical case studies. 80 

Electrical parallels have already been used by several researchers. Techniques to reduce water 81 

distribution networks into a simpler equivalent network have been developed [22, 23]. Oh et al. 82 
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[24] reviewed the application of electrical circuits for the analysis of pressure-driven 83 

microfluidic networks. Aumeerally and Sitte [25] used electrical networks to model the flow-84 

rate of micro-channels. However, no work has investigated the range of validity of this analogy 85 

in the presence of uncertainty. 86 

Electrical analogies have also been used in fields other than hydraulics. Various systems have 87 

been modeled by electrical networks such as DNA structures [26-28], stomata networks [29] 88 

and tidal stream power resources [30]. However, no previous research has employed electrical 89 

networks to test monitoring strategies, such as leak-detection methodologies in water-supply 90 

networks.   91 

This paper compares the behavior of a direct current (DC) electrical network model with a 92 

hydraulic network model used for leak-region detection using the error-domain model 93 

falsification approach for data interpretation. First, the range of validity of this analogy is 94 

evaluated in Section 2. Direct similarities are shown by comparing results obtained from 95 

simulations of both models. These models are then used to demonstrate similarities through 96 

data interpretation in Section 3. Then, two case studies are presented in Section 4 to illustrate 97 

the advantage of constructing electrical laboratory networks (Fig. 1). Ultimately it is shown that 98 

electrical networks are viable for use as physical surrogates for hydraulic pressurized networks 99 

when designing monitoring strategies. 100 

 101 

Fig. 1. Flowchart of this study of the electrical-hydraulic analogy. Relevant sections and 102 

figures in this paper are noted on the left. 103 
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2 Methodology 104 

In Fig. 1, an outline of this study is presented. The purpose of the study is to show similarities 105 

between the behavior of hydraulic and electrical network models and to test and evaluate the 106 

diagnostic methodology presented in this paper with electrical case studies. In this section, the 107 

analogy between electrical and hydraulic networks is presented. This analogy is then used to 108 

build a model of an electrical network based on the model of a hydraulic network. Following 109 

this, the principle of model falsification as it is applied to leak-region detection is described.  110 

2.1 Hydraulic/electrical analogy 111 

Fig. 2 illustrates the analogy comparing flow in a pressurized pipe with direct current (DC) 112 

through a resistor. The Hazen-Williams relation (left) is an empirical relation: 113 

∆𝐻𝐻 =  10.674𝐶𝐶−1.852𝑑𝑑−4.871𝐿𝐿𝑄𝑄1.852 = 𝑅𝑅𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝑄𝑄1.852   (1) 114 

where  115 

ΔH = head loss  116 

Q = flow  117 

d = diameter  118 

L = length 119 

C = Hazen-Williams roughness coefficient C  120 

RHydraulic = equivalent hydraulic resistance.  121 

While other approximations are available, this formula is typically used by the majority of 122 

commercial software in this field (for example, EPANET). 123 

In the electrical case (right), Ohm’s law states that: 124 

∆𝑈𝑈 = 𝑅𝑅𝑅𝑅      (2) 125 
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where  126 

ΔU = the difference of potential 127 

I = current 128 

R = resistance.  129 

 130 

All physical parameters in the Hazen-Williams relation can be combined to form an equivalent 131 

hydraulic resistance (Rhydraulic). This reveals the resemblance between the Hazen-Williams 132 

relation and Ohm’s law; the difference is that Ohm’s law (Eq. 2) is a linear relation while the 133 

Hazen-Williams equation (Eq. 1) represents a non-linear relationship (due to the power of the 134 

flow, Q). 135 

 136 

 137 

 Fig. 2. Analogy between flow and head loss and hydraulic resistance in a hydraulic 138 

pipe and current, potential drop and resistance in an electrical resistor. 139 

 140 

In the two curves in Fig. 3, the evolution of flow obtained using Hazen-Williams equation when 141 

varying the diameter (a) and head loss (b) and keeping all other variables constant is shown. 142 

This illustrates the non-linearity of the Hazen-Williams relation. However, as long as the 143 

minimum and maximum diameter and head loss experienced by the network is within a specific 144 

range, the relationship can be approximated to be linear. This means that similarities can be 145 

expected between electrical and hydraulic models within a specific range. On these curves, the 146 

values specific to the city of Lausanne network studied in this paper are noted (100 and 300 147 

mm for the minimum and maximum diameter and 0.05 and 0.45 m for the minimum and 148 
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maximum head loss). Differences are generally less than 10% which is a level that is acceptable 149 

for engineering purposes, especially considering the high level of uncertainties, see Section 2.2. 150 

A linear approximation for such cases can thus be considered appropriate. A more specific 151 

requirement is that leak locations are within the set of candidate leak scenarios that describe the 152 

leak region. This is described in more detail in Section 2.2. 153 

In this paper, a laboratory model of a DC electrical network with the same general topology as 154 

the water supply network for the City of Lausanne is built (Fig.4). Each pipe in the water 155 

network is replaced by a resistor in the electrical network. The value of the electrical resistance 156 

is obtained by computing the hydraulic resistance of the corresponding pipe using the Hazen-157 

Williams equation.  158 

 159 

 160 

(a)      (b) 161 

Fig. 3. Flow calculated using Hazen-Williams equation with varying pipe diameter (a) and head loss (b). 162 

Each node of the electrical model is connected to a current sink that removes the appropriate 163 

amount of current from the network. The tank is the only input of the network. It is modelled 164 

using a constant voltage source. In order to compare the results, values of current loss by way 165 

of current sinks are calculated to correspond to the value of the demand for the hydraulic 166 

network model. In this paper, the networks do not need to be equipped with back flow control 167 

devices that force the flow in any one direction. While this kind of element has not been 168 

modelled in this study, such an element could be modeled in an electrical network through use 169 

of a diode. This study is limited to flow directions that do not reverse. 170 

Fig. 4. Electric-network based on part of the water-distribution network of Lausanne. 171 
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2.2 Model falsification 172 

As described in the Introduction, the methodology of model falsification has been presented in 173 

refs [16-20] and is summarized in Fig. 5. First, measurements are compared with predictions 174 

obtained by simulating several scenarios. Each scenario represents a possible state of the 175 

system. A population of scenarios that covers possible behaviors of the system is obtained 176 

through combining discrete parameter values describing the identification target. Then, the 177 

scenarios that are not compatible with the measurements are eliminated using thresholds 178 

determined by a combination of observation and engineering experience. These are called 179 

falsified scenarios. Finally, the remaining scenarios, called candidate scenarios, represent 180 

system states that explain the measurements within the context of the uncertainties.  181 

 182 

Fig. 5. Schema of the falsification process. 183 

 184 

This methodology is applied to leak-region detection in water distribution networks. In this 185 

case, each scenario corresponds to a set of parameter values that represent characteristics of a 186 

leak (location and intensity) and characteristics of the network, such as the level in the tank and 187 

the flow entering at the pump. Because a principal parameter of each scenario is the leak, they 188 

are called leak scenarios. Leak scenarios are then simulated to obtain predictions of the behavior 189 

of the network. Scenario predictions are obtained using steady-state simulations. The 190 

assumption is made that the leaks are located at nodes. While this assumption is not always 191 

realistic, it is not necessary to add the complexity of leaks occurring at intermediate points of 192 

pipes since the data-interpretation goal is to identify leak regions as described in the 193 

Introduction. 194 
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Another assumption is that there is only one leak occurring at a time. If this methodology is 195 

used for continuous monitoring, the hypothesis can be made that two leaks will not appear 196 

simultaneously. 197 

Fig. 5 illustrates the error domain model falsification methodology. Measurements (y) are 198 

compared with predictions (g(s)) obtained by simulating each scenario (s) with the model (g()). 199 

In order to compare the measurements and predictions, modelling and measurement 200 

uncertainties (umodel, umeas) need to be included, such that:  201 

𝒈𝒈(𝑠𝑠) + 𝒖𝒖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝒚𝒚 + 𝒖𝒖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚      (3) 202 

where g(s) = predictions; y = measurements; s = scenario; umodel = modelling uncertainty; and 203 
umeas = measurement uncertainty. 204 

 205 

More precisely, for each scenario, the values of measurements are subtracted from the values 206 

of predictions: 207 

𝒈𝒈(𝑠𝑠) − 𝒚𝒚 = 𝒖𝒖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝒖𝒖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚      (4) 208 

where g(s) = predictions; y = measurements; s = scenarios umodel = modelling uncertainty; and 209 

umeas = measurement uncertainty. 210 

 211 

Thresholds (Tlow, Thigh) are obtained by combining modelling and measurement uncertainty 212 

distributions (umodel, umeas) through Monte Carlo simulations. These distributions are 213 

determined from the uncertainty sources described in Section 2.2.1. They are computed at each 214 

measurement location by determining 95% bounds of the combined probability function.  215 

If the difference between the measurement and model prediction (i.e., the residual) is not inside 216 

the interval defined by the threshold bounds (Tlow, Thigh), the scenario is falsified. The scenarios 217 

that remain after the procedure, the candidate scenarios, are those that could explain the 218 

measurement values at all measurement locations. Thus, they are calculated such that: 219 
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𝑻𝑻𝒍𝒍𝒍𝒍𝒍𝒍 ≤ 𝒈𝒈(𝑠𝑠) − 𝒚𝒚 ≤ 𝑻𝑻𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉      (5) 220 

where g(s) = predictions; y = measurements; s = scenario; and [Tlow,Thigh] = lower and upper 221 

bound thresholds. 222 

 223 

 In Fig. 5, a one-sensor example has been presented. For more sensors, the threshold bounds 224 

are obtained with a multi-dimensional pdf using the Šidák correction (see [14]) and an AND 225 

condition has to be satisfied –residuals at all sensor locations have to be within the threshold 226 

bounds in order for given leak scenario to be a candidate leak scenario.  227 

Defining these thresholds is a knowledge intensive task. Evaluating uncertainty values requires 228 

extensive engineering experience and knowledge of each uncertainty source (model parameter, 229 

model simplifications and measurement uncertainty). The probability of detection of a leak is 230 

dependent on the estimation of the uncertainties. The uncertainties are combined to obtain a 231 

combined probability distribution function (pdf). The thresholds are fixed on this pdf such that 232 

there is a probability of 95% to accept and a 5% probability to reject the correct solution.  233 

Measurement uncertainties are due to the sensor resolution and sensor accuracy. Modelling 234 

uncertainties include those due to model simplifications and parameter uncertainties. Model 235 

simplifications are the consequence of inevitable hypotheses made during development of the 236 

mathematical model. For example, in the electrical network model used for this paper, resistors 237 

are are assumed to operate without heat dissipation. Such a simplification is common in 238 

electronics since the energy lost through heat dissipation often has a negligible effect on 239 

performance. Parameter uncertainties are due to errors in the parameter values.  240 

For the first part of this study, to enable comparison of the results, the same model and 241 

measurement uncertainties have been chosen for both the electrical and hydraulic networks. In 242 

reality, these uncertainties are smaller for the electrical network. Measuring current in an 243 
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electrical network is more precise than measuring flow in a hydraulic network, and the error 244 

associated with Ohm’s law is smaller than associated with the Hazen-Williams relation. For the 245 

sensor resolution (measurement uncertainties), a uniform distribution with upper and lower 246 

bounds at ±2% is used. This value is the tolerance given by the constructor of the flowmeters. 247 

For the purpose of comparison, this uncertainty is used in both networks. 248 

For uncertainty due to model simplifications, the assumption is made that the hypotheses used 249 

in the mathematical model leads to a systematic overestimation of the flow. Various factors 250 

could be the source of this overestimation, such as friction and turbulence that occur at bends 251 

and fittings. For this study, this simplification uncertainty is thus estimated to be between -30% 252 

and 5%. The negative bias in this uncertainty is intended to compensate for the overestimation 253 

following Equation (3). Due to a lack of more precise information, an extended uniform 254 

distribution [31] was assumed between these two bounds.  255 

For the hydraulic model, the principal parameters that are uncertain are pipe diameter, pipe 256 

roughness, minor head loss coefficient, node elevation and nodal demand. Frictional losses dues 257 

to roughness and at nodes contribute the most to modelling uncertainty. For the electrical model 258 

the parameters are resistance value and nodal demand. However, for this study case, only the 259 

nodal demand is considered. The influence of the other parameters on the simulation results is 260 

less than 3% when compared with the nodal demand, and therefore, they are neglected.  The 261 

influence of the demand is so high that it overcomes the other contributions to the uncertainty. 262 

The distribution of the nodal demand can completely alter the behaviour of the network whereas 263 

the other parameters have a much smaller impact on the output value of the simulation. 264 

 The demand at each node (nodal demand) is typically unknown; only the demand of the entire 265 

network (global demand) is known. For the two networks, the nodal demand is modelled using 266 

an exponential distribution with the mean of the distribution that is equal to global demand 267 
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divided by the number of nodes. The global nodal demand used is 0.00694 (cubic meters per 268 

second for the hydraulic network and the same quantity of Amperes for the electrical network). 269 

2.3 Expected identifiability 270 

Expected identifiability is a metric used repeatedly for analysis of the results in this paper. 271 

Goulet and Smith [32] first developed the metric to predict the number of candidate models that 272 

should be obtained using real measurements. Identifiability is described as a criterion which 273 

defines the performance of the identification procedure [32]. In this case, expected 274 

identifiability is computed by creating simulated measurements. The process is illustrated in 275 

Fig. 6. 276 

 277 

Fig. 6. Flowchart for defining the expected identifiability metric. 278 

Simulated measurements (𝒚𝒚𝑠𝑠) are obtained by randomly taking a model instance (𝒈𝒈(𝑠𝑠𝑖𝑖)) in the 279 

initial model set and combining uncertainties ((𝒖𝒖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝒖𝒖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)) to the predictions: 280 

𝒚𝒚𝑠𝑠 = 𝒈𝒈(𝑠𝑠𝑖𝑖) + (𝒖𝒖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝒖𝒖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)     (6) 281 

where 𝒚𝒚𝑠𝑠= simulated measurement; 𝒈𝒈(𝑠𝑠𝑖𝑖) = random model instance; umodel = modelling error; 282 

and umeas = measurement error. 283 

Many (500) simulated measurements are tested through error-domain model falsification in the 284 

same way as represented in Equations (3-5): 285 

𝑻𝑻𝒍𝒍𝒍𝒍𝒍𝒍 ≤ 𝒈𝒈(𝑠𝑠) − 𝒚𝒚𝑠𝑠 ≤ 𝑻𝑻𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉      (7) 286 

where 𝒚𝒚𝑠𝑠= simulated measurement; 𝒈𝒈(𝑠𝑠) = random model instance; and [Tlow,Thigh] = lower and 287 

upper bound thresholds. 288 

 289 
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For each measurement, the number of candidate models is computed and saved. Results are 290 

used to build a cumulative distribution function (CDF) that represents the probabilities to obtain 291 

a number of candidate models less than or equal to a specific number (definition of a cumulative 292 

distribution function). This CDF is the expected identifiability [32]. It represents the capacity 293 

of the system to identify leaks. More specifically, for this work, this CDF is built by testing a 294 

large number of simulated leaks on the network. For each leak, the number of candidate 295 

scenarios is computed using error-domain model falsification (Eq. 6, 7). Then the cumulative 296 

distribution is computed. 297 

This measure indicates the performance of the diagnosis for a given sensor configuration. For 298 

example, this metric indicates the maximum number of candidate models that are expected for 299 

a given probability. A lower number of candidate models for a given probability indicates a 300 

better diagnostic performance than a higher number of candidate models. The ideal 301 

performance is to have a 100% probability to obtain one candidate model that is able to explain 302 

the measurements at a 95% reliability of identification. In this case, the system is 303 

unambiguously identified. 304 

2.4 Sensor placement 305 

The sensor placement strategy used in this paper was adapted from the one proposed by Goulet 306 

and Smith [32]. For each sensor configuration the expected identifiability is computed for a 307 

95% probability, and the sensor configuration selected as the best one is the configuration with 308 

the smallest number of expected candidate models. To reduce the number of solutions to test, 309 

they associated this strategy with a forward greedy algorithm where the objective function was 310 

the expected identifiability. 311 

The first step is to find the best location for one sensor. All potential sensor locations are tested. 312 

According to the objective function, the best one is chosen. Once the location for one sensor 313 
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has been chosen, the second step is to search all potential locations for the second sensor. The 314 

principle of a greedy algorithm is to limit the search domain by considering that the solution 315 

found previously for one sensor is part of the solution for two sensors. This reduces the search 316 

for the locations of the second sensor. This process is repeated to find the optimal configuration 317 

for the desired number of sensors.  318 

The number of combinations tested with a greedy algorithm is N+ (N-1) + (N-2) +…+1. 319 

Therefore, using a greedy algorithm reduces the number of combinations to test from 2N to 320 

N(N+1)/2. While the solution which is found may not be a global optimum, this algorithm has 321 

been found to provide results that are not significantly different from the global optimum in 322 

practical cases [18]. 323 

3 Hydraulic/electrical comparison 324 

This section compares the behavior of the electric and the hydraulic networks to evaluate 325 

whether or not the analogy will suffice for the purposes outlined in this work. First, predictions 326 

obtained by simulating leak scenarios are studied in order to directly compare the behavior of 327 

the two models. Then, the two models are compared through model falsification by looking at 328 

the performance of the identification procedure. Finally, a sensor placement study is carried out 329 

to ensure that both models lead to sensor configurations with similar performance. For all of 330 

these results, the hydraulic network has been modelled and simulated using the software, 331 

Epanet. The software, Simulink, has been used for the electric network. 332 

 333 

Fig. 7. Comparison of predicted values obtained by simulating leak scenarios at three sensor locations. 334 

 335 

Fig. 7 illustrates a comparison of the flow and current obtained by simulating leak scenarios 336 

using the hydraulic and electrical models for three sensor locations. The horizontal axes refer 337 
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to the individual leak scenarios. The vertical axes display the flow in cubic meters per second 338 

for the hydraulic model and the current in Amperes for the electric model. The sensor values 339 

for each scenario are joined by lines in order to increase clarity (though they have no physical 340 

meaning). 341 

Differences between the two data-plots are evident when looking directly at the magnitude of 342 

the values obtained for each scenario. However, by observing the data together (the shape of 343 

the data-plot), the two plots are comparable. Peaks and valleys are obtained for the same leak 344 

scenarios. This shows that, although the electric model is linear and the hydraulic model is non-345 

linear, the behavior of the two models is similar. While it is encouraging that the electric and 346 

hydraulic models have such similar behavior, the aim of this study is to show similarity 347 

throughout the process of model falsification to identify sets of candidate models and, 348 

subsequently, critical regions for local inspection. This similarity is studied in the following 349 

section. 350 

3.1 Model falsification comparison 351 

The hydraulic and electric models have both been used for leak/loss detection using model 352 

falsification (Eq. 5). Fig. 8 shows four examples of leak-region detection in the electrical (left 353 

column) and hydraulic (right column) networks. For each example, the same leak (position an 354 

intensity (125 l/min or 0.002083 m3/s flow and 0.002083 A current) is studied through the 355 

electrical and hydraulic models. Each leak position is displayed by four arrows. The sensor 356 

positions are represented by black squares, the demand nodes are indicated by white circles and 357 

the pipes by grey lines. The black dots show positions of candidate leak scenarios. The voltage 358 

source and tank is designated on each subfigure for the electrical and hydraulic networks, 359 

respectively.  360 
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The areas defined by the candidate leak scenarios, termed “leak regions,” are similar for the 361 

four examples differing only by a few nodes. This implies that electrical networks can be used 362 

to perform leak-region detection for hydraulic networks, regardless of the leak location. 363 

 364 

Fig. 8. Comparison of leak-region detection results using simulations of the electrical (left, Eq. 2) and hydraulic 365 

(right, Eq. 1) networks for four leak locations. 366 

The analysis of the candidate scenarios obtained for simulation of each of the 94 leak locations 367 

shows that, on average, 85 percent of candidate scenarios obtained using the hydraulic model 368 

are identical to those obtained using the electric model. For each case, the number of candidate 369 

leak scenarios that are found, either with only the electric model or with only the hydraulic 370 

model, is calculated. On average there are only seven scenarios that differ when comparing the 371 

electric and hydraulic model behaviors through model falsification. 372 

 373 

Fig. 9. Comparison of the evolution of expected identifiability (Fig. 6) with simulations of four cases of leak 374 

intensity noted in the figure as circled numbers. 375 

In Fig. 9, a comparison of the expected identifiability across varying degrees of leak intensity 376 

is displayed. The probability is displayed on the vertical axis, and the number of expected 377 

candidate scenarios is shown on the horizontal axis. The black curves represent the electrical 378 

model while the hydraulic model results are marked by grey curves. The leak intensities for 379 

each set of curves are marked on the plot.  380 

The results in Fig. 9 indicate that the leak intensity has little influence on the behavior trends 381 

through model falsification, particularly for low numbers of candidate models. In the four cases, 382 

the curves follow the same shape, and the decrease in performance from the hydraulic network 383 

to the electrical network is generally less than 10% for the same leak intensity. Curves diverge 384 
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when the number of candidate models increases beyond approximately 40% of the number of 385 

models in the initial model set. Most measurement systems are configured to do better than this. 386 

Also, for all four scenarios, the difference is not significant (the difference in performance 387 

between both the electrical and hydraulic models does not increase or decrease when the leak 388 

intensity changes). This implies that electrical networks can be used for leak-region detection 389 

in hydraulic networks for a range of leak intensities.  390 

3.2 Sensor placement comparison 391 

A sensor placement study has been carried out using the hydraulic and electrical models. A 392 

greedy algorithm with the objective function set to increase the expected identifiability for a 393 

probability of 95% was used [18]. A greedy algorithm sequentially selects the sensor location 394 

that best satisfies the objective function without putting into question previous selected 395 

positions. At each step of the greedy algorithm, expected identifiability is calculated for all 396 

sensor location alternatives for a 95% probability. The solution with the best results (i.e. the 397 

highest expected number of falsified models) is selected. 398 

 399 

Fig. 10. Comparison of the curve that gives the relation between the expected number of falsified leak scenarios 400 

(obtained through simulations with a probability of 95%) (Eq. 5) and the number of measurements used. 401 

In Fig. 10, the comparison of the sensor placement results for the electrical and hydraulic 402 

networks is presented. On the vertical axis, the expected number of falsified leak scenarios is 403 

represented, and the number of measurement locations is displayed on the horizontal axis. The 404 

black points represent the electrical model, while the grey points represent the hydraulic model. 405 

Each point represents the expected performance for a number of measurement locations, given 406 

the expected number of leak scenarios for a probability of 95%.  407 

 408 
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Fig. 11. Sensor placement results using simulation with a greedy algorithm for 15 and five sensors. 409 

Fig. 11 illustrates the sensor configurations obtained for two cases: (1) with 15 measurements 410 

(top); and (2) with five measurements (bottom). The positions of the measurements are given 411 

by black squares for the electrical model and white stars for the hydraulic model. The sensor 412 

configurations are not identical. Small differences in performance may have an influence on 413 

the sensors chosen in this process. In a greedy sensor placement, the selection of a sensor 414 

location at a given step is dependent on the sensor locations obtained at all previous steps in the 415 

process. For this reason, if the small differences between the electrical and hydraulic models 416 

cause the algorithm to select a different sensor in the first step of the process, then the greedy 417 

algorithm can lead to varying solutions. However, the performance of the two sensor 418 

configurations remains similar, as described next. 419 

 420 

(a)      (b) 421 

Fig. 12. Comparison of expected identifiability (Fig. 6) using simulations of the electrical and hydraulic 422 

networks with the 15 sensor configuration obtained using the Greedy algorithm for a) the electrical model and b) 423 

the hydraulic model. 424 

Fig. 12 illustrates a comparison of the expected identifiability for the hydraulic and electrical 425 

networks with a configuration of 15 sensors obtained using the Greedy algorithm with (a) the 426 

electrical network and (b) the hydraulic network as a starting point. The vertical axis displays 427 

the probability, and the horizontal axis displays the expected number of candidate leak scenarios 428 

considering all leak scenarios (50-125 l/min - 376 leak scenarios).  429 

These results show that the performance of the diagnosis using the hydraulic model is adequate 430 

even if the sensor configuration is obtained using the electrical network model and vice versa. 431 
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Figure 12 shows that the difference of performance, in terms of expected number of candidate 432 

models, is small regardless of which network is used for the sensor placement. 433 

All findings indicate that low-cost electrical laboratory networks can be built and used to test 434 

sensor placement strategies and leak-region detection performance for a range of water 435 

distribution networks. Differences are less than 10%, which is acceptable in engineering 436 

contexts. 437 

4 Electrical case studies 438 

In this section, two case studies are presented in order to illustrate the efficacy of using physical 439 

(not simulated) electrical networks to represent water-distribution networks and, within the 440 

context previous work [16-20], to further demonstrate the potential for using error-domain 441 

model falsification for leak-region detection. The goal in the previous section was to compare 442 

the behavior of the two simulation models. In order to be able to compare the results, the same 443 

uncertainties were used in both cases. Therefore, the uncertainties have been over estimated for 444 

the electrical network. In this section, physical electrical networks are employed, and true 445 

uncertainty values have been used for the electrical networks. In both case studies, the leak 446 

measure used is the difference of potential associated with the resistor.   447 

4.1 City of Lausanne 448 

The first case study is based on a physical electrical network similar to part of the network of 449 

the city of Lausanne, see Fig. 4. The network is supplied with a continuous voltage source with 450 

potential of 18V. In order to simulate the demand, some nodes were connected through resistors 451 

to ground. Leaks are simulated in the same way.  452 
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4.1.1 Uncertainty estimation 453 

The uncertainty due to model simplification is estimated by comparing measurements and 454 

predictions for each resistor. This was achieved for the undisturbed network (no leaks). Fig. 13 455 

(a) shows the results of a comparison between measurements and predictions for each resistor 456 

in a network with no leaks. The vertical axis is the relative error between measurements and 457 

predictions and the horizontal axis shows resistors labels. The results indicate that the relative 458 

error is between -5% and +5% in all cases. Fig. 13 (b) shows a comparison between laboratory 459 

measurements on the physical electrical network and simulation predictions through a 460 

histogram. In order to simplify, the uncertainty is taken to be a uniform distribution between -461 

4.5% and +5%. In this plot, a small bias associated with the model simplification uncertainty is 462 

revealed. Such a bias is to be expected since there are often many sources of systematic 463 

modelling uncertainties due to inevitable modelling assumptions. 464 

The secondary parameters are the uncertainties associated with the resistor values. The resistors 465 

of the E96 series that were used have a standard uncertainty of +/- 1%. The measurement 466 

uncertainty is thus evaluated as +/- 1%. 467 

 468 

(a)      (b) 469 

Fig. 13. Relative error between measurements of the physical electrical network and predictions for 470 

each sensor. 471 

 472 

4.1.2 Sensor placement 473 

Sensor placement was carried out using a greedy algorithm (see Section 2.4), with the 474 

optimization objective to maximize the expected identifiability. The sensor placement study 475 

was carried out using prior knowledge of the demand in this case. In reality, this is not possible; 476 
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the sensors have to perform in a range of demand conditions. In hydraulic full-scale cases, 477 

sensor placement is determined with a general shape for demand, such as the exponential law. 478 

The relationship between the expected numbers of falsified leak scenarios and the number of 479 

measurements for the electrical network of the city of Lausanne is shown in Fig. 14. 480 

 481 

Fig. 14. Sensor placement curve giving the relation between the expected numbers of falsified leak scenarios 482 

(simulations with a probability of 95%) (Eq. 5) and the number of measurements used. 483 

The number of measurements used is displayed on the horizontal axis while the expected 484 

number of falsified models as a percentage of the total number of models in the initial model 485 

set is displayed on the vertical axis. The sensor placement curve shows that, for this case study, 486 

the performance increases significantly from one to four sensors. 487 

Two sensor configurations are tested in this study: first, a configuration with three sensors, and 488 

second, a configuration with six sensors. Fig. 15 shows the performance for a current loss of 489 

0.002 mA. The number of candidate leak scenarios is displayed on the horizontal axis while the 490 

cumulative probability (the probability that the value of a random variable falls within a 491 

specified range) for each sensor configuration is displayed on the vertical axis. The results show 492 

that the performance is good in both cases. The expected identifiability shows that the 493 

performance is much better when uncertainties are reduced; three sensors perform almost as 494 

well as six sensors. These results are based on simulated measurements. An examination of the 495 

performance using real measurements is carried out next. 496 

 497 

Fig. 15. Expected identifiability (Fig. 6) for simulations of three and six sensor configurations, for a current loss 498 

of 0.002 mA. 499 
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4.1.3 Leak-region detection 500 

For this case study, the leak detection (current loss) is carried out at several locations through 501 

application of error-domain model falsification. The results are given for the two sensor 502 

configurations presented in Section 4.1.2.  Fig. 16 shows the leak (current loss) detection results 503 

for four leak locations and two sensor configurations (three sensors (left column) and six 504 

sensors (right column)). These results are not numerical simulations; real measurements have 505 

been carried out in the laboratory on the physical electrical network. Each leak position is 506 

displayed by four arrows. The sensor positions are represented by black squares, the demand 507 

nodes are represented by white circles and the pipes by grey lines. The black dots show positions 508 

of candidate leak scenarios. Ground and voltage source are designated on each subfigure.  509 

The results show that when the parameters of the network are controlled and well known, the 510 

leak-region detection can be accurate. In addition, a high number of sensor is not necessary. In 511 

the first two cases (top two rows), the number of candidate models is reduced to three (first 512 

case) and one (second case) using only three sensors. The third and fourth leaks (bottom two 513 

rows) illustrate the case where adding more sensors helps to falsify outlier candidates (on the 514 

left part of the network) in addition to reducing the size of the leak region. 515 

 516 

Fig. 16. Leak-region detection for measurements on physical electrical networks having four leak locations and 517 

two sensor configurations for a current loss of 0.002 mA. 518 

The results of this case study illustrate that error domain model falsification can be successfully 519 

used for leak-region detection when uncertainties are reduced. When the nodal demands are 520 

well known, the model is more precise and this results in better predictions.  521 
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4.2 10 x 10 square network 522 

The second electrical case study is based on a square network made up of 100 junctions (10x10) 523 

and 180 10KΩ resistors (Fig. 17). The network is supplied with a 12 V continuous voltage 524 

source shown in the bottom left corner. Three leak locations are studied on this network (marked 525 

by four arrows in the figure). The leak is modelled with a variable resistor (potentiometer). For 526 

this case study the demand is fixed at zero; there is no output other than the leak. This can be 527 

representative of a network in a residential area where the lowest consumption is near zero due 528 

to small use of water during the night.  529 

 530 

Fig. 17. Illustration of the 10x10 square electrical network. 531 

 532 

4.2.1 Uncertainty 533 

The uncertainties are the same as in the laboratory network for the city of Lausanne (described 534 

in the previous sections). The uncertainty due to model simplifications is a uniform distribution 535 

between -4.5% and +5%. The resolution of the sensors is estimated at +/- 1%, and the 536 

uncertainty of the resistance values is estimated at +/- 1%. 537 

4.2.2 Sensor placement 538 

Sensor placement was carried out using a greedy algorithm as described in Section 2.4, with 539 

the optimization objective to maximize the expected identifiability and a current loss of 0.3 mA. 540 

The relation between the expected numbers of falsified models obtained through simulations 541 

(Eq. 5) and the numbers of measurements (Fig. 18) shows the percentage of falsified models 542 

for a 95% probability for up to ten sensors. On the horizontal axis the number of measurements 543 

(sensors from one to ten) is designated, and on the vertical axis the corresponding expected 544 
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number of falsified models is displayed. These results demonstrate that, in the case where the 545 

uncertainty related to the demand is nonexistent, the identification performance is sufficient 546 

(90%) with just four sensors. 547 

 548 

Fig. 18. Sensor placement curve giving the relation between the expected numbers of falsified models obtained 549 

through simulations (Eq. 5) and the number of measurements. 550 

 551 

Fig. 19. Simulation results revealing the expected number of candidate models as a function of the leak intensity 552 

and the number of measurements for a 95% probability (left) and a 75% probability (right). 553 

Fig. 19 shows the expected number of candidate models for a probability of 95% (left) and 75% 554 

(right) for three leak intensities (0.1, 0.3, 0.5 mA) and for one to ten measurements. These 555 

intensities correspond to real leak intensities of 6, 18 and 30 l/min in a pipe of 120mm diameter 556 

that is 155m long having Hazen-Williams roughness coefficient of 100.  Results show that the 557 

performance of the identification decreases (more candidate models) with decreasing leak 558 

intensity. For a leak intensity of 0.3 and 0.5 mA, the performance is good even for a small 559 

number of measurements. For a leak intensity of 0.1 mA the performance decreases rapidly 560 

from three to one sensors. 561 

This reveals upper bounds of leak-region detection performance for sensor configurations of 562 

full-scale water distribution networks. These bounds are important for decision making such as 563 

selecting the number and positions of sensors in a network.  564 

4.2.3 Leak-region detection 565 

For this case study, the leak (current loss) detection is achieved for two leak intensities: 0.3 mA 566 

and 0.5 mA using error-domain model falsification. These leaks are tested at three different 567 

locations on the network. Some of the results are given in Fig. 20. Each leak is represented by 568 



26 
 

the four arrows. Each demand node is designated by a white circle, while the pipes are 569 

designated by the black links between the demand nodes. The sensors are designated by black 570 

squares, and the candidate leak scenarios are designated by black dots. Ground and voltage 571 

source are also designated on each subfigure. The results show that the identification of the leak 572 

region improves with the magnitude of the leak intensity since there are lower numbers of 573 

candidate leak scenarios. 574 

These results can be compared to the expected number of candidate models that have been 575 

obtained with simulated measurements. Fig. 21 shows this comparison for leak intensities of 576 

0.3 mA (left) and 0.5 mA (right) and for one to ten measurements. The darkest grey bars 577 

designate the expected number of candidate models for a probability of 95%. For a leak 578 

intensity of 0.5 mA, the number of candidate models is closer to the expected number than for 579 

the 0.3 mA leak intensity for the first two leak cases. For the third leak case, with one sensor, 580 

the results are worse than the expected values based on simulations. Leak 3 cases of 6, 3 and 581 

one measurement(s) with 0.3 mA leak intensity are distant from the expected number of 582 

candidate models. Nevertheless, these results indicate that for the majority of leak cases, the 583 

experimental results are in line with the simulations. 584 

This study illustrates through three leak examples how the identification performance increases 585 

when the leak intensity and number of sensors increase. The behavior obtained through 586 

experiments confirms the expected identifiability predicted with simulated measurements. 587 

 588 

 589 

Fig. 20. Leak-region detection results for sensor measurements and leaks in the physical 10x10 electrical 590 

network. 591 
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 592 

Fig. 21. Comparison between results obtained with measurements on the physical network and expected 593 

identifiability obtained through simulations (Fig. 6). 594 

5 Conclusions 595 

Determination of appropriate analogies of complex systems is dependent upon the data 596 

interpretation strategy that is used for performance assessment. In this paper the data-597 

interpretation strategy assumed is error-domain model falsification, a previously-proposed 598 

methodology that combines engineering knowledge with models and data to enhance decision 599 

making. 600 

Analyses of the results lead to the following conclusions.  601 

Low-cost electrical laboratory networks can be built and used to test sensor placement strategies 602 

and leak-region detection performance for a range of water distribution networks, provided that 603 

pipe diameters and head losses are within a range where the linear approximation is within 10% 604 

of the non-linear behavior. 605 

Electrical networks provide a physical test-bed that is complementary to numerical simulations, 606 

thereby allowing engineers to base decisions on combinations of simulations and 607 

measurements. 608 

Leak-detection performance may be significantly improved when demand uncertainty is 609 

reduced.  610 

Studies of physical electrical resistance networks reveal upper bounds of leak-region detection 611 

performance for sensor configurations of full-scale water distribution networks. These bounds 612 

are important for decision making such as selecting the number and positions of sensors in a 613 
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network. For example, even if it is possible to reduce uncertainties to very low values in a full-614 

scale network, performance will never be better than that reflected by tests on an electrical 615 

network. 616 
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 707 

Fig. 1. Flowchart of this study of the electrical-hydraulic analogy. Relevant sections and 708 

figures in this paper are noted on the left. 709 

 710 

 711 

 712 

 713 

Fig. 2. Analogy between flow and head loss and hydraulic resistance in a hydraulic pipe and 714 

current, potential drop and resistance in an electrical resistor. 715 

  716 
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 717 

 718 

(a)      (b) 719 

Fig. 3. Flow calculated using Hazen-Williams equation with varying pipe diameter (a) and 720 

head loss (b). 721 

 722 

 723 

 724 

Fig. 4. Electric-network based on part of the water-distribution network of Lausanne. 725 

  726 
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 727 

Fig. 5. Schema of the falsification methodology. 728 
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 731 

 732 

 733 

Fig. 6. Flowchart for defining the expected identifiability metric. 734 
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 737 

 738 

 739 

 740 

 741 

 742 

Fig. 7. Comparison of predicted values obtained by simulating leak scenarios at three sensor 743 
locations. 744 
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 746 

 747 

Fig. 8. Comparison of leak-region detection results using simulations of the electrical (left, 748 

Eq. 2) and hydraulic (right, Eq. 1) networks for four leak locations. 749 

  750 
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 751 

Fig. 9. Comparison of the evolution of expected identifiability (Fig. 6) with simulations of 752 

four cases of leak intensity noted in the figure as circled numbers. 753 
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 754 

 755 

Fig. 10. Comparison of the curve that gives the relation between the expected number of 756 

falsified leak scenarios (obtained through simulations with a probability of 95%) (Eq. 5) and 757 

the number of measurements used. 758 

  759 

Number of measurement locations 
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 760 

 761 

Fig. 11. Sensor placement results using simulation with a greedy algorithm for 15 and five 762 

sensors. 763 

  764 
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 765 

(a)      (b) 766 

Fig. 12. Comparison of expected identifiability (Fig. 6) using simulations of the electrical and 767 

hydraulic networks with the 15 sensor configuration obtained using the Greedy algorithm for 768 

a) the electrical model and b) the hydraulic model. 769 

 770 

 771 

 772 

 773 

(a)      (b) 774 
 775 

Fig. 13. Relative error between measurements of the physical electrical network and 776 

predictions for each sensor. 777 
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 780 

 781 

 782 

Fig. 14. The relation between the expected numbers of falsified leak scenarios (simulations 783 

with a probability of 95%) (Eq. 5) and the number of measurements. 784 
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 786 

 787 

Fig. 15. Expected identifiability (Fig. 6) for simulations of three and six sensor 788 

configurations, for a current loss of 0.002 mA. 789 

  790 
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 791 

Fig. 16. Leak-region detection for laboratory measurements on physical electrical networks 792 
having four leak locations and two sensor configurations for a current loss of 0.002 mA. 793 
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 795 

 796 

 797 

Fig. 17. Illustration of the 10x10 square electrical network. 798 
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 800 

 801 

Fig. 18. The relation between the expected numbers of falsified models obtained through 802 

simulations (Eq. 5) and the number of measurements. 803 

 804 

 805 

 806 

Fig. 19. Simulation results revealing the expected number of candidate models as a function 807 

of the leak intensity and the number of measurements for a 95% probability (left) and a 75% 808 

probability (right). 809 
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 811 

 812 

Fig. 20. Leak-region detection results for sensor measurements and leaks in the physical 813 

10x10 electrical network. 814 

  815 



47 
 

 816 

 817 

Fig. 21. Comparison between results obtained with real measurements on the physical 818 
network (Leak 1-3) and expected identifiability (Exp. Id.) obtained through simulations (Fig. 819 
6). 820 
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