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Abstract 14 

As more private firms participate in public projects aiming to increase their profits by 15 

adjusting operational strategies, there has been an increasing demand for structural 16 

identification in the operational phase. In this paper, we propose a framework for 17 

finding the optimal profit of toll highways over a five-year part of the operating period. 18 

Toll rates are adjusted using the updated safety condition of highway bridges as a 19 

constraint on the optimization task. The safety constraint explicitly reflects the 20 

requirement on the traffic volume based on the reserve capacity of bridges. The 21 

framework includes the following three steps. First, structural identification is carried 22 

out to identify parameter values of the bridge involved in the highway project. Then the 23 

reserve capacity under the relevant limit state is calculated based on the requirements 24 

of bridge design codes. The last step is to investigate the effects of reserve capacity on 25 
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the optimal operating profit. This framework is applied to a highway flyover project in 26 

Singapore. The optimal operating profit based on quantified reserve capacity increases 27 

compared to the case without information about reserve capacity. Also, the finding 28 

shows that the optimal profit will increase with the increases in values for the reserve 29 

capacity until the safety constraint is no longer critical. 30 

Keywords:  31 

Build-operate-transfer, model updating, multidisciplinary optimization, structural 32 

capacity, toll roads, static and dynamic testing 33 

1. Introduction 34 

  from the public sector to construct, own, and operate the civil infrastructure that is 35 

stated in the concession contract. After a period of time, the firm transfers ownership 36 

to the government [1], [2]. Since this scheme allows the government to provide public 37 

facilities without using public funds, this type of project financing is popular around 38 

the world. According to the China Public-Private Partnerships Center under the 39 

Ministry of Finance, 13,554 PPP projects were registered nationwide with a total 40 

investment of $ 2.3 trillion by the end of June 2017 [3] (all values in this paper are in 41 

US dollars). 42 

While the primary objective of a project owned by a government agency is to 43 

maximize the benefits for users, for example, congestion control [4], [5] and 44 

environment improvement [6], [7]), a private operator aims to increase its economic 45 

gains as much as possible within the contractual requirements [8]. In the context of 46 

highways and bridges, the profit-maximizing challenge has been formulated as a 47 

pricing optimization task in previous works [9], [10]. For instance, He et al. [11] 48 
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minimized the travel time and maximized the toll revenue of highways simultaneously 49 

by adjusting the toll rates. 50 

Highway bridges are essential yet costly elements of highway networks. Related 51 

research has been focused on their safety condition including damage detection [12], 52 

upgrading assessment [13] and cost-optimized intervention planning (e.g. maintenance, 53 

repair, rehabilitation and replacement) [14].  54 

The reserve capacity of highway bridges usually exceeds the safety level 55 

required in the design phase. Behaviour models are inherently safe due to high risks 56 

and construction-stage uncertainties [15]. The amount of reserve capacity following 57 

construction is unknown. To quantify it, the real condition of highway bridges in 58 

operation needs to be adequately assessed. 59 

Structural identification (SI) methodologies have the potential to provide 60 

accurate assessments of the current condition of structures, including highway bridges, 61 

through updating behavior models using measurements. For highway bridges, 62 

measurements such as displacements, strains, mode shapes and natural frequencies are 63 

acquired by static and dynamic testing. A significant amount of research has focused 64 

on SI; see [16] and [17] for comprehensive literature reviews. Traditional SI 65 

methodologies, such as residual minimization, involve determining a set of model-66 

parameter values that minimizes the discrepancy between model predictions and 67 

measurements [18], [19]. Under the assumption of deterministic model-parameter 68 

values, the accuracy of the solutions to this form of optimization is dependent upon the 69 

presence of uncertainties, particularly systematic model uncertainties, arising from 70 

sources such as model fidelity, boundary conditions, geometric discrepancy and safe 71 

design assumptions. 72 
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An alternative way to perform structural identification is through Bayesian 73 

model updating [20]–[22]. In this methodology, both model parameters and errors 74 

involved in prediction are considered to be random variables, thereby providing a 75 

rational framework for dealing with uncertainties. However, the accuracy of Bayesian 76 

model updating can be influenced by the forms of uncertainty distribution, bias and 77 

correlations. With incomplete knowledge, the identified parameter values may be 78 

unsafe. [15], [23] 79 

Recently, Goulet and Smith [23] proposed a new method called error-domain 80 

model falsification (EDMF) for situations where the dependencies between uncertainty 81 

sources are not available. In this method, a set of plausible model instances defined by 82 

parameter-value combinations are generated and their predictions are calculated. A 83 

model instance is falsified if the difference between its predictions and measurements 84 

lies outside of the region derived from combining modeling and measurement errors. 85 

More recently, Pai et al. [24] showed that EDMF is compatible with a modified 86 

formulation of Bayesian model updating. However, EDMF satisfies engineering 87 

requirements better than standard Bayesian approaches [24].  88 

In this paper, we propose a framework for maximizing the operating profit of 89 

toll highways over a five-year period by adjusting the toll rates and taking the updated 90 

safety condition of bridges into account. Specifically, given structural information from 91 

measured data, EDMF is used to obtain the updated model instances that predict the 92 

current reserve capacity of the bridge under study. Safety constraint is imposed as the 93 

effects of traffic loading should not exceed the predicted reserve capacities. The 94 

influence of introducing the safety constraint is investigated using an example involving 95 

a highway bridge in Singapore. Using this example, the effect of the magnitude of the 96 
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reserve capacity on the optimal profit is studied. Since the focus of this study is on 97 

young bridges, major damage and maintenance costs are not included. 98 

The rest of this paper is organized as follows. First, the background of EDMF 99 

and the formulation of the profit-maximizing goal are presented in Section 2 and 100 

Section 3 respectively. The formulation includes the safety constraint along with other 101 

constraints. Section 4 further discusses the safety constraint in detail. An example is 102 

studied in Section 5 to illustrate the implementation of this framework and to investigate 103 

the influence of updating the bridge condition. Finally, the discussion of the results and 104 

conclusions are presented in Section 6 and Section 7 respectively. 105 

2. Background to the EDMF method  106 

The central idea of EDMF is to falsify the model instances from a pool of plausible 107 

models (instances of a model class) based on the discrepancy between predictions and 108 

measurements. When uniform probability distributions are employed, the thresholds of 109 

falsification can be determined without the consideration of error dependence between 110 

sensor measurements. 111 

Consider a model class 𝑔(𝜽) that predicts a quantity of interest 𝑦 (structural 112 

responses such as deflection and strain for bridges), which involves a vector of 𝑛 113 

parameters 𝜽 = [𝜃!, 𝜃", … , 𝜃#]. If the true values of parameters 𝜽∗ are known a priori, 114 

the sum of the prediction of this model 𝑔(	𝜽∗) and the modeling error 𝜖%&'() equals to 115 

the true output 𝑦*+,( . Meanwhile, 𝑦*+,(  can be obtained as the sum of the 116 

corresponding measurement 𝑦%(-. and measurement error 𝜖%(-.. Therefore, given the 117 

additive errors, the relationship between the prediction and measurement can be written 118 

as 119 



 

6 

𝑔(	𝜽∗) + 𝜖%&'() = 𝑦*+,( = 𝑦%(-. + 𝜖%(-. (1a) 

𝑔(	𝜽∗) − 𝑦%(-. = 𝑈/ (1b) 

Due to the unavailability of 𝑦*+,( and random nature of errors, the combined 120 

error is treated as a random variable 𝑈/  described by a probability density function 121 

𝑓0!(𝜖). A model instance (i.e., a realization of 𝜽) will be falsified if the discrepancy 122 

between its prediction and the corresponding measurement (the observed residual in the 123 

left-hand side of Equation (1b)) is not within the threshold bounds derived from 𝑈/ at 124 

measurement locations. Fig. 1 shows the threshold bounds [𝑇%1#, 𝑇%-2] for a univariate 125 

normal distributed error where 𝑇%1#  and 𝑇%-2  are the lower and upper bounds 126 

respectively. Similar to the concept of confidence interval, the threshold bounds 127 

represent the narrowest interval in which the integral of 𝑓0!(𝜖) is 𝜙, meaning that the 128 

probability of wrongly discarding correct models is 1 − 𝜙.  129 

 130 

Fig. 1: Threshold bounds in EDMF for the combined error 𝑼𝒄 131 

For multiple measurements, a model instance will be falsified when any of its 132 

observed residuals 𝑔1(	𝜽) − 𝑦%(-.,1 	(𝑖 ∈ [1,2,⋯ ,𝑚]), where 𝑚 represents the number 133 

of measurements, lies outside the corresponding threshold bounds [𝑇%1#,1 , 𝑇%-2,1]. The 134 

threshold bounds mark the narrowest interval in which the integral of 𝑓0!,#(𝜖) is 𝜙!/%. 135 

The thresholds bounds can be given by 136 
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𝑇%1#,1 = 𝐹0!,#
6! =

1
2 >1 − 𝜙

!/%?@ (2a) 

𝑇%-2,1 = 𝐹0!,#
6! =1 −

1
2 >1 − 𝜙

!/%?@ (2b) 

where 𝐹0!,#
6! (∙) is the inverse cumulative distribution function of 𝑈/,1 . The expression 137 

𝜙!/%	is used (rather than 𝜙) to ensure constant probabilities for varying numbers of 138 

measurement locations. As 𝑚 increases, 𝜙!/% tends to 1. 139 

In EDMF, detailed finite element models are built based on engineering 140 

information (including design drawings and/or on-site inspection). Modeling and 141 

measurement uncertainties are quantified using sensor specifications, modeling 142 

knowledge of finite element method and engineering judgment. If all initial model 143 

instances are falsified, the model class is rejected. This often originates from wrong 144 

assumptions in the model class or uncertainty levels. Site inspection and new 145 

measurements can be used to improve the model class. For details, readers can refer to 146 

the framework proposed in [25]. 147 

The model falsification procedure is conservative in the sense that the 148 

probability of wrongly discarding the correct model is no more than 1 − 𝜙. After model 149 

updating, the updated model is described by a set of remaining model instances {𝜽}, 150 

(i.e., candidate models (CMS)), which can predict more accurately the future 151 

performance of the system under study. 152 

3. Formulation of profit optimization  153 

Consider a highway link consisting of one or more bridges. It is commonly the case that 154 

toll rates are charged for a range of vehicle types. Also, the toll rates for multi-type 155 
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vehicles affect the traffic composition greatly, which further influences the traffic load 156 

acting on the bridges. In this paper, for a set of vehicle types 𝒦  traveling on the 157 

highway, a unique toll rate 𝑥7 is charged for each vehicle type 𝑘 ∈ 𝒦. The toll rates 158 

can be denoted by 𝒙 = [𝑥7]7∈𝒦 ∈ ℝ|𝒦| where |𝒦| is the cardinality of set 𝒦. 159 

Assume that at year 𝑡;  the condition of the bridges in the highway link is 160 

assessed by conducting static and/or dynamic tests. The objective is to maximize the 161 

operating profits in the following Δ𝑡  years (typically Δ𝑡 ≥ 1, a Δ𝑡  of five years is 162 

assumed in this study) by adjusting toll rates 𝒙. It is assumed that it is a young bridge 163 

that needs no major maintenance interventions. For the fixed capacity 𝑦 of an existing 164 

highway, the traffic volumes 𝒗 = [𝑣7]7∈𝒦 ∈ ℝ|𝒦| corresponding to the toll rates 𝒙 can 165 

be estimated based on the supply-demand equilibrium condition [26]. Both the toll rates 166 

𝒙 and traffic volumes 𝒗 are restricted to make sure that 𝒙 is within the box bound 167 

𝒙%1# ≤ 𝒙 ≤ 𝒙%-2  and the load does not exceed the capacity of the highway. 168 

Furthermore, bridges in service may experience varying traffic loads depending on the 169 

site-specific traffic volumes and the characteristics of heavy vehicles. After the bridge 170 

condition assessment, the reserve capacity of the bridges is calculated to provide an 171 

upper bound for the anticipated traffic loads. This optimization challenge is formulated 172 

as 173 

𝑚𝑎𝑥
𝒙

𝑃(𝒙) =R SR 𝑥7 ∙ 𝑣7(𝑥7)
7∈𝒦

−𝑀𝛿=(𝑡) − 𝐻𝛿>(𝑡) − 𝑂𝑃X
*$?@*

*A*$
− 𝐶𝐶

𝑠. 𝑡. (𝑎)					𝒙%1# ≤ 𝒙 ≤ 𝒙%-2 , 𝒙 ∈ ℝ|𝒦|

(𝑏)					R 𝑣7 ∙ 𝛼7
7∈𝒦

≤ 𝑦

(𝑐)					𝑊(𝒗) ≤ 𝑅𝐶𝑎𝑝

 (3) 

In Equation (3), 𝑃(𝒙) represents the total operating profit in the period Δ𝑡 given 174 

a specific toll rate scheme. It is assumed that the traffic flow is in a stationary state, i.e., 175 
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the traffic volumes 𝒗 remain unchanged between two condition assessments at 𝑡; and 176 

𝑡; + Δ𝑡. The routine maintenance costs and minor rehabilitation cost are denoted by 𝑀 177 

and 𝐻, respectively. 𝛿=(𝑡) and 𝛿>(𝑡) are indicator functions which are equal to one if 178 

maintenance or rehabilitation is conducted at time 𝑡;, otherwise they are zero. 𝑂𝑃 is the 179 

operating cost during the time period studied. In the objective function, the last term 180 

𝐶𝐶 is the cost of the condition assessment, which is conducted only at time 𝑡;. Three 181 

constraints of interest are summarized in Equation (3): (a) box bounds of 𝒙; (b) the 182 

designed traffic volume should not exceed the highway capacity 𝑦 which is determined 183 

by the number of lanes in practice. The designed traffic volume is calculated by 184 

multiplying the equivalent passenger car units (PCU) of vehicle type 𝑘 (denote as 𝛼7) 185 

and the traffic volume of vehicle type 𝑘; and (c) safety constraint based on the updated 186 

condition of bridges. Constraint (c) will be discussed in detail in Section 4. 187 

For vehicle type 𝑘 , its toll revenue 𝑥7 ∙ 𝑣7(𝑥7)  per time unit relies on the 188 

interaction of the traffic supply and demand. The demand for highway transportation 189 

represents the users’ willingness to pay for a trip. If the toll rate falls, the quantity of 190 

the demand will increase. The toll-dependent traffic demand is expressed as 191 

𝑣7 = 𝐷(𝝃7 , 𝑢7) (4) 

where 𝐷(∙) denotes the demand function, which is given in terms of its parameters 𝝃7 192 

and the total travel cost of a trip 𝑢7. For highway users, the total travel cost 𝑢7 includes 193 

two parts, i.e., the user time cost 𝛽7𝑡7(𝑣7) and the toll rate 𝑥7: 194 

𝑢7 = 𝛽7𝑡7(𝑣7) + 𝑥7 (5) 

where 𝑡7(∙) is the travel time function and 𝛽7 is the users’ value of time which converts 195 

the travel time into the monetary cost. Thus, let 𝐵(∙) be the inverse function of 𝐷(∙) or 196 



 

10 

the benefit function, and the traffic demand 𝑣7 can be derived based on the supply-197 

demand equilibrium: 198 

𝑥7(𝑣7) = 𝐵(𝑣7 , 𝝃7) − 𝛽7𝑡7(𝑣7) (6) 

One of the most widely used link travel time estimator is the Bureau of Public 199 

Roads (BPR) function [27]. It is proposed by the United States Federal Highway 200 

Administration as follows: 201 

𝑡(𝑣) = 𝑡;[1 + 𝑟!(𝑣 𝑦⁄ )+%] (7) 

where 𝑡;is the free-flow travel time on the link; 𝑟! and 𝑟" are the first and second BPR 202 

function parameters, respectively (classically 𝑟! = 0.15 and 𝑟" = 4.0 [27]). 203 

However, the standard BPR function does not account for heterogeneity in 204 

traffic flows. Lu et al. [28] developed the microscopic traffic simulation based four-205 

step method to estimate the travel time functions of heterogeneous traffic flows on a 206 

freeway. They considered three vehicle types: passenger car, light trucks, and heavy 207 

trucks. The piecewise travel time functions for the three vehicle types are summarized 208 

as follows:  209 

For cars (k = 1), 210 

𝑡! =

⎩
⎪
⎨

⎪
⎧𝑡!" '1 + 0.29(1 + 𝜌#)!.%&(1 + 𝜌&)!.'((1 𝑣) ∙ 𝛼)

)∈𝒦
𝑦)6

!.%%
7,			𝜌! ≥ 55%

𝑡!" =1 + 0.57(1 𝑣) ∙ 𝛼)
)∈𝒦

𝑦)6
!.!&

?,			𝜌! < 55%
 

 

(8) 

For light trucks (k = 2), 211 
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𝑡& =

⎩
⎨

⎧𝑡&" =1 + 0.08(1 + 𝜌#)!.!,(1 + 𝜌&)".%,(1 𝑣) ∙ 𝛼)
)∈𝒦

𝑦)6
&.",

? ,			𝜌! ≥ 55%

𝑡&" =1 + 0.10(1 𝑣) ∙ 𝛼)
)∈𝒦

𝑦)6
!.(-

?,			𝜌! < 55%
 

 

(9) 

For heavy trucks (k = 3), 212 

𝑡B =

⎩
⎨

⎧ 𝑡B; S1 + 0.12(R 𝑣7 ∙ 𝛼7
7∈𝒦

𝑦)o
!.DE

X,			𝜌! ≥ 55%

𝑡B; S1 + 0.106(R 𝑣7 ∙ 𝛼7
7∈𝒦

𝑦)o
!.FE

X ,			𝜌! < 55%
 (10) 

where 𝜌1 is the proportion of vehicle type 𝑖. 213 

The benefit function 𝐵(∙) is commonly assumed to be a continuously decreasing 214 

and differentiable function with a vector of deterministic parameters 𝝃G. In this paper, 215 

three forms of 𝐵(∙), i.e., negative exponential, linear and polynomial, will be studied in 216 

the example in Section 5. 217 

It can be observed that Formulation (3) is a constrained nonlinear optimization 218 

task, the objective of which is to set the optimal toll rate 𝒙 (thereby controlling the 219 

traffic volume) to maximize the operating profit through the period Δ𝑡. Since the toll 220 

rate 𝑥7  is given explicitly in terms of 𝑣7  as indicated in Equation (6), it is more 221 

convenient to set 𝒗 as the design variable and rewrite Formulation (3) as 222 

𝑚𝑎𝑥
𝒗

𝑃(𝒗) =

1 =1 𝑣) ∙ G𝐵(𝑣)) − 𝛽)𝑡)(𝑣))K
)∈𝒦

−𝑀𝛿/(𝑡) − 𝐻𝛿0(𝑡) − 𝑂𝑃?
1!231

141!
− 𝐶𝐶

𝑠. 𝑡. (𝑎)					𝒙567 ≤ 𝐵(𝑣)) − 𝛽)𝑡)(𝑣)) ≤ 𝒙589 , 𝐵(𝑣)) − 𝛽)𝑡)(𝑣)) ∈ ℝ|𝒦|

(𝑏)					1 𝑣) ∙ 𝛼)
)∈𝒦

≤ 𝑦

(𝑐)					𝑊(𝒗) ≤ 𝑅𝐶𝑎𝑝

 (11) 
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4. Structural safety constraint with the updated bridge condition 223 

In the optimization scheme, the structural safety condition is introduced as constraint 224 

(𝑐) in Formulation (11). The right-hand side of constraint (𝑐) is the reserve capacity 225 

𝑅𝐶𝑎𝑝 calculated based on the updated structural condition, providing the upper bound 226 

for the traffic loads in the safety constraint. The reserve capacity is defined as the ratio 227 

of the traffic loads the bridge can take to the ones specified by the Eurocode. The actual 228 

load factor 𝑊(𝒗) is defined as the ratio of the maximum loads that a bridge will 229 

encounter based on historical traffic records to the design loading.  230 

4.1 Reserve capacity 231 

Based on the updated model of a highway bridge, its current safety condition is 232 

measured in terms of reserve capacity in this paper. Reserve capacity (beyond the 233 

reserve provided by safety factors) exists in most civil infrastructure, as discussed in 234 

[29]–[32]. 235 

During the engineering design of structures, the fundamental requirements are 236 

to sustain all actions that are likely to occur and to remain fit for the required use for a 237 

certain level of reliability during their intended life. Structures should satisfy two 238 

principal criteria: the ultimate limit state (ULS) and the serviceability limit state (SLS). 239 

While ULS describes situations (including fatigue) that may lead to the collapse of the 240 

structure, SLS is concerned with its functioning, comfort and appearance. Consider a 241 

limit state function ℎ(𝜽): 242 

ℎ(𝜽) = 𝑅 − 𝑆 (12) 

where 𝑅 represents the capacity or resistance of a structure and 𝑆 represents the effect 243 

of actions. For a limit state, the failure event of the structure occurs when ℎ(𝜽) < 0. In 244 
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order to sustain the structural reliability, the failure probability 𝑃H(𝜽)  defined as 245 

follows: 246 

𝑃H(𝜽) = 𝑃𝑟𝑜𝑏(ℎ(𝜽) < 0) (13) 

should not exceed the target failure probability [𝑃H]. The allowable failure probability 247 

maps to the target reliability index [33], which may differ amongst different limit states.  248 

The reserve capacity for SLS is determined in an iterative way as shown in Fig. 249 

2. First, the design loads are applied to each candidate model to compute the effect of 250 

loads 𝑆(𝜽) (such as deflection or stress for bridges). Then the CMS failure probability 251 

𝑃H  is computed by adding the modelling uncertainty to the CMS prediction. If the 252 

failure probability is smaller than [𝑃H], a load factor 𝐿𝐹 > 1 is iteratively applied to the 253 

traffic loads, as described in Section 5.3. The iteration continues until the estimated 𝑃H 254 

equals [𝑃H] and the value of the load factor at the final iteration is denoted as 𝐿𝐹IJI. 255 

Finally, the SLS reserve capacity is estimated as  𝑅𝐶𝑎𝑝IJI = 𝐿𝐹IJI. 256 

For ULS, the reserve capacity is quantified using the global resistance safety 257 

factor [34]. The flowchart is shown in Fig. 3. The factor 𝛾K accounts for the uncertainty 258 

caused by geometry, modelling and material variations. The random variation of 259 

material properties is estimated using two non-linear simulations: the first adopting 260 

mean values of material properties 𝑈!(𝜽𝒎), the second including characteristic values 261 

of material properties 𝑈!(𝜽𝒌). All vertical loads are increased by means of two load 262 

factors 𝐿𝐹%, 𝐿𝐹7 until failure is reached. This procedure (depicted in Fig. 3) allows the 263 

computation of the global safety factor 𝛾K. Meanwhile, the model class including mean 264 

values of material properties 𝑈"(𝜽𝒎) is used to determine the load factor 𝐿𝐹0JI which 265 

is applied to the traffic loads in order to reach structural failure. The ULS reserve 266 

capacity 𝑅𝐶𝑎𝑝0JI is then calculated as the ratio between 𝐿𝐹0JI and 𝛾K. More details 267 
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are provided in Section 5.3.2. The overall reserve capacity for this bridge is taken as 268 

𝑅𝐶𝑎𝑝 = 𝑚𝑖𝑛	{𝑅𝐶𝑎𝑝IJI, 𝑅𝐶𝑎𝑝0JI}. 269 

 270 

 271 

Fig. 2: Flowchart to determine the reserve capacity for serviceability limit state,  272 

from [32] 273 

 274 

EDMF

Candidate models (CMS)

Effect of loads 𝑆(𝜽)

CMS probability of failure 𝑃&

𝑃& ≤ 	 [𝑃&]?
YES

NO

Maximum load factor 𝐿𝐹-.-
𝑅𝐶𝑎𝑝-.-	 = 𝐿𝐹-.-

𝐿𝐹 × traffic loads

Increase the 
load factor LF
by 0.01
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 275 

Fig. 3: Flowchart to determine the reserve capacity for ultimate limit state, 276 

adapted from [32]  277 

4.2 Traffic loads on bridges 278 

For an existing highway bridge, the load factor 𝑊 is usually determined by the 279 

extreme loads that the bridge will experience in the traffic environment during its 280 

remaining service life. Traffic loads are related to factors such as gross vehicle weights, 281 

vehicle class (usually defined by the number of axles), and axle configurations for the 282 

heavy vehicles. In practice, traffic loading maybe estimated from measured traffic data.  283 

From a probabilistic viewpoint, if there is, for example, either an above-average 284 

traffic volume or the area has a high proportion of heavy vehicles, then there is a greater 285 

probability that the maximum loading increases, and the design loading is exceeded. 286 

When there is a low traffic volume or heavy vehicle proportion, the probability that the 287 

EDMF

Updated parameter values: 𝜽𝒎, 𝜽𝒌

Effect of loads	𝑈' 𝜽𝒎 , 𝑈'	 𝜽𝒌

Failure?
NO

YES

Maximum load factor 𝐿𝐹*, 𝐿𝐹+
Compute material uncertainty 𝑣*-.

𝐿𝐹 ×	all vertical loads

𝑅𝐶𝑎𝑝456	 = 𝐿𝐹456/𝛾:, …

Effect of loads	𝑈; 𝜽𝒎

Failure?
NO

YES

Maximum load factor 𝐿𝐹456Compute the global safety factor 𝛾:

𝐿𝐹 ×	traffic loads

Geometrical uncertainty 𝑣<=>	
Modeling uncertainty 𝑣*>?

Increase the 
load factor LF
by 0.01

Increase the 
load factor LF
by 0.01
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design loading is exceeded is lower than for average traffic volume or average heavy 288 

vehicle proportion [35]. 289 

The factors influencing the value of 𝑊  vary with specific sites, traffic 290 

environment and bridge types. Leahy et al. [36] investigated the effects of traffic growth 291 

(traffic volume and vehicle weight) on characteristic bridge load and they inferred that 292 

the growth significantly affected the load effects. Specifically, 1% annual growth in 293 

flow caused an average 6% increase in load effects and 1% annual growth in truck 294 

weight caused an 43% increase in load effects. 295 

OBrien et al. [37] investigated the effects of four traffic volume growth (1%, 296 

2%, 3%, and 4.1% annual growth) on bridges with varies lengths (15m, 20m, 25m, and 297 

30m). The authors inferred that the growth of traffic volume generates an increase in 298 

characteristic maximum load effects and the load effects increase with the growth rates.  299 

Furthermore, similar findings regarding the growth of the traffic volume and the 300 

truck weight are obtained in [38]. Besides, Yu et al. [38] also considered the effects of 301 

the growth of the proportion of heavy trucks. It is found that the proportion of heavy 302 

trucks have similar effects on the growth of traffic volume on the predicted load effects. 303 

The growth of the proportion of heavy trucks leads to an increase of 3% to 25% in the 304 

maximum lifetime traffic load effects. 305 

Kim et al. [35] analyzed the annual extreme load effect according to various 306 

traffic environment for both pre-stressed concrete and steel box girder bridges in Korea. 307 

The results showed that for the environments and bridge types that were studied, the 308 

annual extreme loading tends to increase in proportion to the average daily traffic 309 

volume and heavy vehicle proportion. 310 

Overall, the growth of the traffic volume, the proportion of heavy vehicles and 311 

the truck weight are considered as three key factors that influence the value of 𝑊. 312 
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Among them, the change of truck weight is unlikely to occur within a short term without 313 

significant changes in legislation for allowable weight limits. Thus only traffic volume 314 

and heavy-vehicle proportions are considered in this paper.  315 

5. Case study 316 

5.1 Description 317 

In this section, a highway (in operation) in Singapore was investigated. This example 318 

was calibrated to be representative for toll highways that was built in the last 20 years. 319 

The operating time per day was assumed to be 12 hours instead of 24 hours to guarantee 320 

that the total revenue in this case study was more realistic. This is because in the case 321 

study, we did not consider the change of toll rates with seasons and peak hours. 322 

Furthermore, the design traffic volume was usually larger than the real volume. The 323 

capacity of this highway was 2200 Passenger Car Unit (PCU) per hour. 324 

The highway length was assumed to be 100 km with two lanes throughout and 325 

15 bridges along this highway. Normally, highways tolls were charged per km. Since 326 

there was no bypass along this highway, the toll rate was presented as the total charge 327 

of 100 km. The condition assessment of bridges was carried out every five years 328 

(Δ𝑡 =5) and it costed $0.2M per assessment per bridge. The operating cost was $0.05M 329 

per km per year. It was assumed that the routine maintenance was carried out every 330 

year, and each time the cost was $0.15M per km. The cost of pavement rehabilitation 331 

was assumed to be $20M for this highway. In reality, the operating cost and 332 

maintenance cost may vary over years due to the variation in labor cost and the aging 333 

of structures. In this case study, we assumed that costs are fixed during 5 years. 334 

For illustration purpose, it was assumed that among 15 bridges, Bridge A was 335 

taken to be the most critical bridge with respect to reserve capacity. Also, it was 336 
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assumed that if all reserve capacity was used, no other bridge became critical. The 337 

structural identification and reserve capacity of Bridge A have been investigated in 338 

detail in Section 5.2 and 5.3. 339 
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 340 

(a) 341 

 342 
(b) 343 

Fig. 4: (a): Photograph of the static test performed on Bridge A;  344 

(b): Sensor configuration and truck configuration in the static test: top view and bottom view 345 

 346 

Bridge A is a one-span pre-stressed reinforced concrete bridge of 32m length 347 

and 16m width (shown in Fig. 4(a)). The superstructure consists of four precast beams 348 
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and a concrete deck. Both static and dynamic tests have been carried out for structural 349 

identification.  350 

In the static tests, six trucks of approximately 32t each were loaded on the 351 

bridge. Four deflections (P1~P4), two inclinations (I1~I2) and eight strains (S1~S8) 352 

were measured at fourteen locations. The configurations of trucks and sensors are 353 

shown in Fig. 4(b). In the dynamic tests, ten accelerometers (A1~A3, B1~B3, C1~C4) 354 

(shown in Fig. 4(b)) were installed along the bridge to capture the natural frequencies 355 

and mode shapes. Both free-vibration data and ambient vibration data were used to 356 

identify the modal properties of the bridge. According to modal analysis, two bending 357 

modes, one torsional mode and one lateral bending mode were obtained (shown in Fig. 358 

5). 359 

 360 

Fig. 5: The natural frequencies and mode shapes that are identified 361 

 362 

As shown in Fig. 4(b), all dynamic sensors were installed along the two sides 363 

of the bridge. Since there was no accelerometer at mid-span, the mode shape obtained 364 

for Mode 3 is similar to the mode shape for Mode 1. Using the knowledge of dynamic 365 

mechanical properties of the simply supported beam, Mode 3 is identified as a lateral 366 

bending mode. 367 

5.2 Structural identification 368 

Parameter values that are identified include the Young’s modulus of concrete 369 

(E), the density of the bridge (D), the logarithm of the bending stiffness of bearings 370 

Mode 1: 4 Hz             Mode 2: 6.1 Hz               Mode 3: 10.1 Hz          Mode 4: 14.7 Hz

1st vertical bending             Torsional                     Lateral bending            2nd vertical bending
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(LogB) and the logarithm of the vertical stiffness of bearings (LogV). These parameters 371 

are defined based on the sensitivity analysis and their initial ranges are defined using 372 

engineering judgment [39]. Measurement and modeling uncertainties are fixed based 373 

on work by Cao et al. [39]. To obtain a sufficient size of model instances, surrogate 374 

models are fitted using Gaussian processes [40]. A total number of 504 = 6,250,000 375 

samples are generated by grid sampling (50 discrete values for each parameter). 376 

Adopting the framework of system identification using both static and dynamic 377 

measurements, six abnormal strain measurements are removed from the measurement 378 

set [39]. Fig. 6 shows the final results of the identification. A total number of 1,119 379 

candidate model instances are obtained.  380 

 381 

Fig. 6：Histogram of structural identification using EDMF 382 

5.3 Estimation of reserve capacity 383 

Truck traffic is categorized into two types of trucks: standard trucks and permit trucks. 384 

Permit trucks exceed the normal allowable weight and are calculated separately [41]. 385 

In Eurocode specifications of traffic load, Load Model 1 is used for standard trucks and 386 

Load Model 3 is used for permit trucks. Load Model 1 is intended to cover flowing, 387 

congested or traffic jam situations with a high proportion of heavy lorries. In this paper, 388 

Load Model 1 was investigated as the possibility of exploring operating profits was 389 
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investigated within the permit weight limit given in the Eurocode. 390 

5.3.1 Serviceability limit state 391 

For the serviceability limit state, crack control is found to be critical in this case study. 392 

As it is a prestressed bridge and according to its exposure class, crack control requires 393 

that no tensile stress occurs in the concrete around the bonded tendons. As a result, the 394 

serviceability limit state is defined as when the compressive normal stress of concrete 395 

reaches zero. Loads include permanent action, the prestressing force imposed on the 396 

bridge, traffic loads and these three are combined under the frequent load combination 397 

in Eurocode [42]. 398 

First, the predictions of candidate model instances are calculated with the traffic 399 

loads specified in the Singapore code using safety factor LF=1.0 for serviceability. In 400 

this paper, the modeling uncertainty sources of stress include model simplification and 401 

numerical errors in FE methods (e.g. mesh refinement), see Table 1 and Proverbio et 402 

al. [32] for more information. In the second step, modeling uncertainties of stress are 403 

added into the CMS stress predictions using the Monte Carlo method [32]. The methods 404 

for adding modeling uncertainties to predictions vary with applications. For example, 405 

in the online force identification problem, Lai et al. [43] derived a new normalized 406 

standard deviation of the input identification error to interpret the accuracy of the 407 

sequential deconvolution input reconstruction method. Then, the load factor is 408 

increased in steps until the probability of failure 𝑃H meets the standard value of failure 409 

probability for SLS ([𝑃H] = 0.1 for a 50-year period [33]). The increment step of LF is 410 

0.01 which is set as 10% of [𝑃H]. 411 

  412 
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Table 1: Modelling uncertainty sources of stress 413 
 414 

Uncertainty source 
 

Stress 

Min Max 

Model simplification and FE method (%) -5 13 

Mesh refinement -1 1 

Additional uncertainty -1 1 

 415 

Finally, the deflection and stresses are checked to see if they satisfy the 416 

requirements of the code. As shown in Fig. 7, when 𝐿𝐹IJI= 1.72, the failure probability 417 

𝑃H reaches the limit state condition 𝑅𝐶𝑎𝑝IJI =1.72.  418 

 419 

Fig. 7：CMS stress-prediction distribution (SLS) 420 

5.3.2 Ultimate limit state 421 

Statistical studies indicate that the probability distribution of resistance of reinforced 422 

concrete members can be described by a two-parameter lognormal distribution with the 423 

lower bound at the origin [34]. These two parameters are 𝐿𝐹%-mean resistance and 𝑣K- 424 

coefficient of variation of resistance. 425 

The global resistance factor 𝛾K is determined from  426 

𝛾K = 𝑒𝑥𝑝	(𝛼K ∙ 𝛽 ∙ 𝑣K) (14) 
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where 𝛼K  is a sensitivity (weighting) factor for the reliability of resistance, 𝛽  is a 427 

reliability index and 𝑣K  is the combined coefficient of variation due to modeling, 428 

geometrical and material uncertainties, denoted as 𝑣%&', 𝑣N(& and 	𝑣%-*, respectively. 429 

The estimation of 𝑣K  is a challenging task. Since it influences the value of 430 

reserve capacity significantly, cases under various assumptions are investigated. In 431 

Case I, only material uncertainty is considered. i.e. 𝑣K = 𝑣%-*.  432 

𝑣%-* is determined from 433 

𝑣%-*＝
1
1.65 ∙ ln	[

𝐿𝐹%
𝐿𝐹7

] (15) 

where 𝐿𝐹%/𝐿𝐹7 is the resistance value calculated using the mean/ characteristic values 434 

of material parameters [34]. These load factors are applied to the global vertical load of 435 

structure (i.e., the sum of permanent and variable loads) [33]. 436 

The design resistance is calculated from  437 

𝑅𝐶𝑎𝑝0JI =
𝐿𝐹0JI
𝛾K

 (16) 

where 𝐿𝐹0JI is applied only to traffic loads and is calculated using the mean values of 438 

material parameters.  439 

In Case II, all three uncertainties are considered. 	𝑣%-*  is calculated from 440 

Equation (16). 𝑣%&'  and 𝑣N(&  are set to be 0.05, following the assumptions in [44]. 441 

These coefficients of variation are assumed as the basis for the partial factors given in 442 

EN 1992-1-1 (European Concrete Platform ASBL, 2008) [44]. The combined 443 

coefficient of variation 𝑣K is calculated as suggested in [44]. 444 
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𝑣K = ~𝑣%-*" + 𝑣%&'" +𝑣N(&"  (17) 

In Case III, the ECOV (estimation coefficient of variation) approach is adopted. 445 

In calculating 𝑣K , the effects of modeling and geometrical uncertainty are not 446 

considered. The modeling uncertainty is included in the calculation of design 447 

resistance: 448 

𝑅𝐶𝑎𝑝0JI =
𝐿𝐹0JI
𝛾K ∙ 𝛾K'

 (18) 

where 𝛾K' is the model uncertainty factor; for well validated numerical models it is 449 

proposed as 𝛾K' =1.06. 450 

When bridges approach their ultimate limit states, boundary conditions are no 451 

longer the same as the ones in the load tests. For example, no pin-support rigidity can 452 

be assumed. Young’s modulus of concrete, which is identified in the elastic domain, 453 

contributes marginally to the ultimate limit state. Among all identified parameters, the 454 

density of the concrete affects the results by influencing the value for the dead load 455 

applied on the bridge. The density ranges are 1800 to 2020 kg/m3. 456 

A 2D nonlinear model is built using the software JCONC [45]. With the increase 457 

of the load, the tendons gradually yield (dark red areas) and the compressive stress in 458 

the concrete deck gradually reaches the maximum compressive stress (black mesh 459 

elements). The criteria are met when 𝐿𝐹% =  1.38, 𝐿𝐹7 =  1.30, 𝐿𝐹0JI =  1.66 460 

respectively.  461 

  462 
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 463 

 464 

Fig. 8: 2D non-linear finite-element analysis when 𝐿𝐹&'( =1.66, performed using JCONC. 465 

 466 

The results of the three cases are shown in Table 2. Case II gives the lowest 467 

value of reserve capacity while Case I provides the largest value which is 15% and 6% 468 

larger than the assessment in Case II and Case III, respectively. 469 

Table 2: Comparison of 𝑅𝐶𝑎𝑝&'( using three assumptions 470 
 471 

 Case I Case II Case III 
𝒗𝒎𝒂𝒕 𝛾, 𝑅𝐶𝑎𝑝&'( 𝛾, 𝑅𝐶𝑎𝑝&'( 𝛾, ∙ 𝛾,- 𝑅𝐶𝑎𝑝&'( 

0.036 1.116 1.49 1.273 1.30 1.183 1.40 

 472 

5.4 Maximum operating profit 473 

As mentioned in Section 4.2, 𝑊 is assumed solely dependent on the traffic volume and 474 

the proportion of heavy vehicles [35]–[38]. For illustration, a linear relation is assumed:  475 

𝑊(𝒗) = 𝑐!
∑ 𝑣7 ∙ 𝛼77∈𝒦

𝑦 + 𝑐"𝜌O + 𝑐𝑜𝑛𝑠𝑡 (19) 

where 𝑐! and 𝑐" are coefficients that determine the weightings of traffic volume and 476 

heavy-vehicle proportion respectively; total traffic volume ∑ 𝑣7 ∙ 𝛼77∈𝒦  (passenger car 477 

unit (PCU)) is normalized by the traffic capacity 𝑦 (PCU) of the highway; 𝜌O is the 478 

proportion of heavy vehicles in the traffic flow. 479 

Situations where the extreme loading cannot be calculated in this manner are 480 

e.g., the local authority agrees to increase the allowable weight limit or new permissions 481 
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for special vehicles. In this study, it is assumed that such situations are not present and 482 

conditions where 𝑊 depends on traffic volume and heavy-vehicle proportion prevail. 483 

In practical applications the accuracy of this relationship should be verified by traffic 484 

load data.  485 

5.4.1 Scenario I: Homogeneous traffic 486 

In this scenario, the vehicle traffic is assumed to be homogeneous without 487 

distinguishing trucks from cars. The classic BRT function (Equation (7)) is adopted to 488 

estimate the travel time. Three typical benefit functions (shown in Table 3) [46] are 489 

compared. The corresponding relations of the traffic volume and toll rate for different 490 

benefit functions are plotted in Fig. 9. The box bound of the toll rate is [$1, $20]; The 491 

structural safety constraint in this example is assumed as follows: 492 

𝑊(𝒗) = 3
∑ 𝑣7 ∙ 𝛼77∈𝒦

𝑦 + 0.3 < 𝐿%-2 (20) 

Table 3: Three types of benefit functions 493 
 494 

Type Equation Parameter values 

(I) Negative exponential 𝐵(𝑣) = (−1/𝑏./)ln	(𝑣/𝑞./0 ) 𝑏./ = 0.15, 	𝑞./0 = 30000 

(II) Linear 𝐵(𝑣) = 𝑏1ξ1 − 𝜂1𝑣 𝑏1ξ1 = 30, 	𝜂1 = 0.005 

(III) Polynomial 𝐵(𝑣) = 0.015ξ2
3.05 − 0.0002𝑣3.6 ξ2 = 1300 

 495 
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 496 

Fig. 9: The relationship between toll rate and traffic volume for three benefit functions 497 

 498 

The optimization challenge is a traditional nonlinear optimization task; in this 499 

paper, we use the optimization toolbox in Matlabâ. According to the calculation in 500 

Section 5.3, the reserve capacity of the bridge under study can be 1.30, 1.40 and 1.49 501 

for various uncertainty assumptions. For each possible reserve capacity, the optimal 502 

operating profits and corresponding toll rates are reported in Table 4. Comparing to the 503 

case without reserve capacity (=1.0), , when reserve capacity is equal to 1.30, the 504 

optimal profit can be increased by 18.2%, 37.0% and 40.5% for negative exponential, 505 

linear and polynomial function respectively. The corresponding toll rates are decreased 506 

by 19.8%, 8.9% and 7.7%. When reserve capacity changes from 1.30 (the lowest 507 

estimation) to 1.49 (the largest estimation), the optimal profit increases 5%, 13.2% and 508 

14.9% for negative exponential, linear and polynomial function respectively. The 509 

corresponding toll rates decrease by 12.4%, 6.2% and 5.6%. 510 

 511 

 512 

 513 
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Table 4: Optimal operating profit for various reserve capacities in Scenario I 514 
 515 

Reserve 
capacity 

Benefit function 
(I) Negative exponential (II) Linear (III) Polynomial 

Operating profit 
(per year) (M$) 

Toll 
rate 
($) 

Operating profit 
(per year) (M$) 

Toll 
rate 
($) 

Operating profit 
(per year) (M$) 

Toll 
rate 
($) 

1.0 22.0 12.1 22.7 12.4 21.0 11.7 
1.30 26.0 9.7 31.1 11.3 29.5 10.8 
1.40 26.8 9.1 33.4 10.9 31.9 10.5 
1.49 27.3 8.5 35.2 10.6 33.9 10.2 
 516 

 517 

Fig. 10: Optimal operating profit over reserve capacity in Scenario I 518 

 519 

To further investigate the influence of reserve capacity on the optimal profit, 520 

hypothetical reserve capacities ranging from 1 to 3 are studied (shown in Fig. 10). The 521 

linear benefit function results in the highest profit followed by the negative exponential 522 

and polynomial benefit function before the reserve capacity is larger than 1.1. After it 523 

reaches 1.1, the polynomial benefit function surpasses the negative exponential benefit 524 

function and obtains the second highest profit. The optimal operating profit peaks when 525 

the reserve capacity is 2.2 (polynomial benefit function), 2.2 (linear benefit function) 526 

and 1.8 (negative exponential benefit function). Ideally, if there is enough reserve 527 

capacity, the optimal profit is 94% (polynomial benefit function), 84% (linear benefit 528 
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function) and 27% (negative exponential benefit function) larger than the one when 529 

there is no reserve capacity. 530 

It can be inferred from the results that for all three benefit functions, the optimal 531 

operating profit increases with the reserve capacity until the latter exceeds a certain 532 

value. When the profit reaches a peak, the corresponding reserve capacity varies 533 

according to different benefit functions. After reaching the peak, the profit remains 534 

constant and does not change further with reserve capacity. As illustrated in the 535 

previous section, the reserve capacity demonstrates the additional loads that an existing 536 

bridge can take compared with the design traffic loads. The additional loads transform 537 

into larger traffic demand (toll-dependent, see Equation (4)) when the reserve capacity 538 

is introduced in the optimization scheme, leading to a higher profit.  539 

 540 
Fig. 11: Optimal operating profit over toll rate in Scenario I 541 

 542 

The relation between the toll rate and reserve capacity is illustrated in Fig. 11. 543 

With the increase of reserve capacity, the toll rate decreases. The decreasing trend stops 544 

when the reserve capacity reaches a certain value. This is consistent with the 545 

performance of the optimal profit in Fig. 10. After the reserve capacity reaches 1.1, the 546 
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order of toll rates changes from 𝑥J1#(-+ > 𝑥PQ > 𝑥R&)S to 𝑥J1#(-+ > 𝑥R&)S > 𝑥PQ. At 547 

the final stage, the toll rate decreases by 33% (polynomial benefit function), 36% (linear 548 

benefit function) and 41% (negative exponential benefit function) when compared with 549 

the one when there is no reserve capacity. 550 

It can be inferred that by introducing reserve capacity as a safety constraint, the 551 

optimal toll rate decreases considerably which is beneficial to the highway users. With 552 

consideration of reserve capacity, the highway is able to take on larger traffic volume 553 

and heavier vehicles without compromising safety. As a result, the private firm is able 554 

to achieve optimal profit through lower prices with greater traffic volume. 555 

5.4.2 Scenario II: Heterogeneous traffic 556 

Vehicles on the highway can be classified into three vehicle types: passenger cars, light 557 

trucks (2 axles) and heavy trucks (5-axle semi-trailers) [47]. In this case, the travel time 558 

functions (Equation (8-10)) are adopted. The parameters of these functions are 559 

summarized in Table 5. The box bounds of toll rates are [$1, $40]. The structural safety 560 

constraint used in this example is assumed as follows: 561 

𝑊(𝒗) = 3 ∑ U7∙W77∈𝒦
S

+ 𝜌O+0.3 (21) 

 562 
  563 
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Table 5: Prespecified parameters of the travel time function and the benefit function for three 564 
types of vehicles 565 

 566 

Parameter 
Passenger car 

(𝒌 = 1) 

Light truck 

(𝒌 = 2) 

Heavy truck 

(𝒌 = 3) 

Passenger car unit 𝜶𝒌 1 1.5 2.5 

Value of time 𝜷𝒌	($/𝒉) 	∗ 15 27.5 50 

Free flow travel time 𝒕𝒕𝒌𝟎 (hour) 0.4 0.5 0.55 

Linear benefit function 
𝑏1ξ1 30 45 60 

𝜂1 0.005 

Polynomial benefit function ξ2 1300 2300 3000 

Note: * Vehicle parameters referenced from [47]. 567 
 568 

The results of the optimal profit and toll rates are shown in Table 6. For the 569 

lowest estimate (reserve capacity is equal to 1.30), the optimal profit increases from 570 

43.1 M$ to 61.5 M$ under linear and from 49.1M$ to 71.2M$ polynomial functions 571 

compared with no reserve capacity. When reserve capacity is 1.49 (the highest 572 

estimation), the profit increases by 18.2% and 19.1% under linear and polynomial 573 

functions compared with the estimation of 1.30. 574 

Table 6: Optimal operating profit for various reserve capacities in Scenario II 575 
 576 

Reserve 
capacity 

Benefit function 

(I) Linear (II) Polynomial 

Operating 
profit (per year) 

(M$) 
Toll rate ($) Operating profit 

(per year) (M$) toll rate ($) 

1.0 43.1 
𝑥3= 21.8 

49.1 
𝑥3= 21.2 

𝑥<= 30.7 𝑥<= 36.3 
𝑥== 32.3 𝑥== 39.4 

1.30 61.5 
𝑥3= 21.2 

71.2 
𝑥3= 20.9 

𝑥<= 30.1 𝑥<= 35.7 
𝑥== 32.1 𝑥== 39.2 

1.40 67.5 
𝑥3= 21.0 

78.4 
𝑥3= 20.8 

𝑥<= 30.1 𝑥<= 35.5 
𝑥== 32.0 𝑥== 39.2 

1.49 72.7 
𝑥3= 20.8 

84.8 
𝑥3= 20.6 

𝑥<= 29.8 𝑥<= 35.3 
𝑥== 31.9 𝑥== 39.0 

  577 
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 578 

Fig. 12: Optimal operating profit over toll rate in Scenario II 579 

For heterogeneous traffic, we investigate the optimal operating profit under 580 

reserve capacity ranging from 1 to 5. Fig. 12 and Fig. 13 show the projected optimal 581 

operating profits and toll rates at different levels of reserve capacity. 582 

The same trend is observed in Scenario II. The optimal profit increases with 583 

reserve capacity until it reaches its maximum when reserve capacity is equal to 3.3 for 584 

both the polynomial benefit function and the linear benefit function. In this case study, 585 

the profit using the polynomial benefit function is always larger than the profit using 586 

the one with linear benefit function.  587 
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 588 
(a)                                                                            (b) 589 

Fig. 13: The relation between reserve capacity and toll rates in Scenario II:  590 

(a): linear benefit function; (b): polynomial benefit function 591 

 592 

As shown in Fig. 13, for both benefit functions, the optimal toll rate of the heavy 593 

truck is always the highest, followed by the light truck and passenger car. With enough 594 

reserve capacity, the optimal toll rates are decreased by 16% (passenger car), 13% (light 595 

truck) and 7% (heavy truck) for linear benefit function, 22% (passenger car), 19% (light 596 

truck) and 8% (heavy truck) for the polynomial benefit function comparing to the case 597 

where there is no reserve capacity. 598 

To summarize, in both Scenario I and Scenario II, the optimal operating profit 599 

increases with reserve capacity until reserve capacity reaches a certain value (as shown 600 

in Fig. 10 and Fig. 12). Due to the consideration of three vehicle types, private firms 601 

manage to achieve the optimal profit not only by decreasing the toll rates (to obtain 602 

larger traffic demand) but also by increasing the ratio of heavy vehicles.  603 

6. Discussion and limitations 604 

In this study, we propose a framework for maximizing the operating profit of toll 605 

highways by adjusting toll rates in order to account for updated safety condition 606 

assessments of young bridges. The toll rates represent the total charge of the whole 607 
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highway. They are generally higher than the ones in reality since only private profit in 608 

the operating period is considered in this paper. For a complete design and evaluation 609 

of road pricing, the optimal BOT contract is usually a trade-off between private profit 610 

and social welfare. In this paper, three simplified benefit functions [46] are studied to 611 

demonstrate the impact of bridge capacity on highway profits. Nevertheless, in real 612 

applications, the benefit function is determined by many country/region specific 613 

factors, including the network of highways, the presence of a detour option, traffic 614 

congestion and the local economy. 615 

For old bridges, the profit calculation will be more complicated due to the 616 

complexity of maintenance and rehabilitation. Besides, the condition assessments 617 

before and after the maintenance and rehabilitation are accordingly more complicated 618 

with special emphasis on the structural behaviour of the damaged area.  619 

As discussed in Section 5.4, it is assumed that good estimates of extreme loading 620 

are dependent on traffic volume and heavy vehicle proportion. When such a 621 

dependency is not present through the research in the local traffic environment, the 622 

proposals in this paper are not appropriate. 623 

7. Conclusions 624 

This study focuses on the effects of bridge reserve capacity on the optimal operating 625 

profit of highway projects. It is motivated by two factors (i) bridges are usually 626 

subjected to critical loading constraints in highway projects, and (ii) quantitative 627 

estimates of reserve capacity can be conducted through structural system identification.  628 

The specific conclusions are as follows: 629 

• The proposed framework allows a quantification of the impact of reserve 630 

capacity on the optimal operating profit of toll highways by adjusting toll rates 631 
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while taking into account the updated safety condition of highway bridges as a 632 

constraint of the optimization problem. In the case study, at least 18.2% 633 

additional profit could be achieved by considering the most conservative reserve 634 

capacity with the most conservative benefit function compared with the case 635 

without consideration of reserve capacity in the optimization. 636 

• The optimal operating profit of highways increases with the reserve capacity of 637 

bridges until the loading constraint is no longer critical. This applies 638 

consistently to both homogeneous and heterogeneous traffic and for each one 639 

of the benefit functions considered (polynomial, linear and negative exponential 640 

function). 641 

• Introducing reserve capacity as a constraint in the operating profit scheme gives 642 

an explicit interpretation of the value of structural identification and at the same 643 

time provides more flexibility to decision makers. Use of reserve capacity is 644 

promising to narrow the gap between the increasing demand and insufficient 645 

supply of infrastructure in many countries. Furthermore, the potential of 646 

improved economic returns is expected to encourage private firms to invest 647 

more in quantitative condition assessments of critical civil infrastructure. 648 
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