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Abstract: In situ measurements have the potential to provide valuable information 12 

about the safety and the condition of bridges through implementation of system-13 

identification methodology. A significant amount of research has focused on system 14 

identification using either dynamic or static measurements separately. Realizing the 15 

complementary relationship between static and dynamic measurements, traditional 16 

model updating methods adopt error functions to account for the residual between 17 

modeling and measured values for various types of measurements. Behavioral models 18 

may be inaccurate due to incomplete representation of modeling and measurement 19 

uncertainties. Furthermore, the normalization of error functions may bring additional 20 

uncertainty to the identification process. In this paper, an approach based on the model 21 

falsification method is proposed to combine both static and dynamic measurements 22 

with explicit consideration of both modeling and measurement uncertainties. A 23 

measurement selection strategy is also used to help detect abnormal measurements. The 24 

approach has been evaluated using a highway flyover bridge in Singapore. Dynamic 25 
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measurement data include natural frequencies and mode shapes whereas static 1 

measurement data include inclinations, deflections and strains. By combining both 2 

static and dynamic measurements, this approach leads to falsification of additional 3 

model instances and obtains a more precise prediction of parameter values than 4 

approaches which interpret static measurements only. 5 

Keywords: System identification; parameter estimation; multi-response; finite element 6 

method; static measurements; dynamic measurements 7 
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1. Introduction 9 

Measurements obtained from sensors enable engineers to evaluate the condition 10 

of existing civil infrastructure, thus providing valuable information for asset managers. 11 

Realizing the importance of structural health monitoring, an increasing number of asset 12 

managers require instrumentation and monitoring during and after construction. 13 

A significant amount of research has focused on the determination of unknown 14 

structural properties using data-interpretation techniques based on measurements. The 15 

most widely used technique is residual minimization, also known as model calibration. 16 

This approach aims to find the optimal parameter values that yields the best match with 17 

the corresponding measurements [1-4]. The main drawback of this method is that it 18 

either does not include uncertainties in modeling and measurements or it involves the 19 

assumption that all uncertainties are zero-mean-Gaussian-distribution along with 20 

enough measurement data to justify that such a statistical distribution is adequately 21 

reflected in the data. Such assumptions are not compatible with most applications in 22 

civil infrastructure because they do not recognize model bias and systematic uncertainty 23 

introduced by epistemic uncertainties. 24 
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Probabilistic model updating using Bayesian inference scheme dates from the 1 

1990’s. Prior knowledge of model parameters is updated by Bayesian condition 2 

probability using measurements and inspection. Instead of looking for an optimal 3 

solution, this approach estimates posterior probabilities of updated results. Many 4 

applications can be found in the literature [5-8]. Extensions of the traditional Bayesian 5 

approach include a covariance matrix to describe correlations of uncertainties for each 6 

comparison point. This method is able to provide statistical characteristics of prediction 7 

when systematic errors are adequately described. Nevertheless, risk exists when the 8 

uncertainty dependency values are incorrectly estimated, and this may result in biased 9 

posterior probability density functions (pdf) of the parameters [9]. 10 

In contrast to the logic of looking for the “right” parameter values, the model-11 

falsification method follows the logic brought by Karl Popper that every scientific 12 

theory can be tested and falsified, but never logically verified [10]. A multi-model 13 

approach based on this logic was proposed by Raphael and Smith [11]. Specifically, 14 

instead of looking for the “optimal” parameter values, a set of parameter values are 15 

considered “acceptable” as long as they agree well with observations. Robert-Nicoud 16 

et al. [12] further adopted threshold boundaries to quantify the effects of modeling 17 

measurement errors. Goulet et al. [9] proposed a probabilistic extension, which is called 18 

error-domain model falsification (EDMF). This method is able to provide robust 19 

parameter identification without making assumptions on uncertainty correlations and it 20 

is most useful when dealing with systematic uncertainties. This method was evaluated 21 

for cases of existing bridges, such as the Langensand Bridge [13] and the Aarwangen 22 

Bridge [14] in Switzerland, and the Grand-Mere Bridge [15] in Canada. It has also been 23 

applied in wind engineering by Vernay et al. [16], optimal sensor placement by 24 

Papadopoulou et al. [17] and leak detection in a fresh-water supply network by Moser 25 

et al. [18]. 26 
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In full-scale monitoring on existing bridges, information is usually obtained 1 

through either dynamic or static tests. Vibration monitoring data has a wide range of 2 

applications, e.g., structural identification [19-21], damage detection [22-26], 3 

upgrading assessment [27-29] etc. Many applications can be found using ambient 4 

vibration data [1, 30-31], free-vibration data [6, 32] and forced-vibration data [32, 33]. 5 

Among them, ambient vibration is the most popular due to its low cost and minimum 6 

interruption of traffic. Global characteristics such as natural frequencies, mode shapes, 7 

and modal damping directly relate to the physical properties such as stiffness, mass and 8 

damping. In static tests, bridges are loaded with heavy trucks while sensors are installed 9 

to obtain global information like deformations and inclinations and local information 10 

like strains. Pasquier et.al [14] used load-test data to reduce the uncertainty related to 11 

remaining-fatigue-life predictions. Ren et al. [34] used static displacements to update a 12 

finite element model. 13 

However, unexpected incidents are inevitable and uncontrollable in field tests, 14 

including malfunctioning sensors, inaccessible sensor locations, poor connection 15 

between sensor and data acquisition devices, etc. Therefore, the exploitation of the 16 

measurements becomes a key issue when applying system identification. 17 

With the presence of multiple types of measurements, the common residual-18 

minimization approach is to find the optimal parameter values which minimize the error 19 

functions between the measured and numerical response. Sanayei et al. [35] subdivided 20 

the error functions into the static flexibility-based error function, strain-based error 21 

function and modal flexibility-based error functions to account for the residuals 22 

between modeling and measured displacements, strains and modal displacements. 23 

These error functions are combined together after they are normalized to ensure that the 24 

contribution of the objective functions is not dependent on the unit chosen. Schlune et 25 

al. [36] tested six objective functions with various normalization methods and studied 26 
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their effects. The main disadvantage is that each objective function influences the 1 

results of identification and modeling. Besides, measurement and modeling 2 

uncertainties are seldom considered. The same applies to Bayesian model updating 3 

where the relative weights given to the contributions of the mode shape vectors and 4 

modal frequencies in the likelihood function significantly affect the results [37]. 5 

The original contributions of this paper are as follows. First, we propose an 6 

approach to combine both static and dynamic measurements by exploiting a user-7 

friendly data-interpretation method called model falsification. Second, we present a 8 

measurement selection strategy to systematically and progressively detect abnormal 9 

measurements that need to be excluded from the falsification methodology. The 10 

remainder of this paper is organized as follows. Section 2 contains an introduction of 11 

the system-identification method using model falsification. The proposed approach 12 

which combines both static and dynamic measurements with a measurement selection 13 

strategy is explained in Section 3. Section 4 covers the application to a highway flyover 14 

bridge in Singapore, followed by conclusions in Section 5.  15 

2. System identification through model falsification 16 

The goal of system identification is to identify unknown system properties      𝜽 =17 

[𝜃%, 	𝜃(, 	𝜃),⋯ , 𝜃+],  such as geometries, material characteristics and boundary 18 

conditions, using information provided by measurements 𝐘 = [𝑦%, 	𝑦(, 	𝑦),⋯ , 𝑦/]. To 19 

describe the system, behavior models 𝐠(𝜽) are built based on initial knowledge of the 20 

system and engineering judgement. Multiple model instances 𝛀 are generated based on 21 

several combinations of system property values 𝜽𝒌 = [𝜃%3, 𝜃(3, 𝜃)3,⋯ , 	𝜃+3], leading to 22 

prediction 𝑔5(𝜽𝒌) corresponding to measurement	𝑦5 for i =1, 2, …, m. Denote 𝜽∗ as the 23 

true parameter values, the difference between the prediction obtained 𝑔5(𝜽∗) and the 24 

modeling uncertainty 𝐔3,:; should be identical as the true value of 𝒯. It is also equal to 25 
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the difference between 	𝑦5 and the measurement uncertainty 𝐔=;. See in Equation (1a). 1 

By rearranging the equation, Equation (1b) is obtained by putting all uncertainties in 2 

the right-hand side. The combined uncertainty is denoted as 𝐔>;. 3 

Based on the error-domain-model-falsification approach (EDMF) [9,13], if the 4 

difference between model predictions and measurements falls inside the threshold 5 

boundaries ?𝑢ABC,5, 𝑢D5:D,5E, the corresponding instance is considered a candidate model. 6 

Otherwise, it is falsified. The threshold boundaries are defined with a m-dimensional 7 

hyper-rectangular domain that has a probability larger than or equal to a confidence 8 

level 𝜙. The confidence level 𝜙 is adjusted using the Šídák correction to account for 9 

using multiple measurements to do falsification simultaneously [9]. The adjusted 10 

confidence level 𝜙%// is calculated through Eq. (1), where 𝑓𝐔I;J𝑢>;K is the probability 11 

density function of 𝐔>;. 𝜙 is commonly set to 0.95 in civil engineering [9]. 12 

 13 

3. Combination of dynamic and static measurements 14 

To obtain more precise predictions of parameter values, several types of 15 

measurements are often needed. The mass distribution and material stiffness of bridges 16 

are normally the unknown parameters in the identification process. The utilization of 17 

dynamic properties (e.g., natural frequencies, mode shapes and damping ratios) is not 18 

𝑔5(𝜽∗) ±	𝑼3,:; 	= 𝒯 = 	 		𝑦5 ±	𝑼=; 
(1a) 

𝑔5(𝜽∗) −	𝑦5 = 	𝑼>; = ∓𝑼3,:; ± 𝑼=;	

	

(1b) 

𝜙%// = P 𝑓𝑼I;J𝑢>;K	𝑑
RS;TS,;

RUVW,;
𝑢>;, ∀𝑖 ∈ {1,⋯𝑚}	 (2) 
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enough to identify these parameters because mass and stiffness can be changed by the 1 

same ratio while still providing the same eigensolutions. On the other hand, measured 2 

changes in deflections, strains and inclinations are dependent on stiffness and 3 

independent on mass distribution. Thus, static and dynamic measurements have the 4 

potential to complement each other. 5 

In EDMF, a model instance is either accepted as a candidate model or rejected as 6 

a falsified model. Regardless of the number of measurements used, a model instance is 7 

falsified when it is not consistent with at least one measurement. The risk that potential 8 

candidate models are wrongly falsified tends to be high, especially when there is doubt 9 

related to the quality of measurements. This can further lead to the bias parameter value 10 

sets and, as a consequence, bias predictions. 11 

Given the importance of the precision of measurements, it is essential to select 12 

good measurements to do system identification. Within the same type of measurements, 13 

Sanayei et al. [35] performed data quality analysis to assess the accuracy and reliability 14 

of the measured data. Noisiest measurements were eliminated from the measured data 15 

set based on the level of signal-to-noise ratio. Among eight load cases, 60% of 16 

displacements, 87.5% of inclinations and 65.6% of strains finally passed the data 17 

quality analysis. The average values of these three sets of tests were used in the 18 

subsequent process. Between different types of static measurements, Pasquier et al. [38] 19 

detected the erroneous measurements by carrying out sensitivity analyses of the 20 

diagnostics to single measurement removal from the data set. The diagnostics used is 21 

the number of candidate models. If the result showed a high sensitivity to a specific 22 

measured data, this data was removed from the data set. 23 

The goal of the measurement selection strategy that is proposed in this paper is to 24 

use high-quality measurements to detect abnormal data in measurements. In this paper, 25 
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modal properties obtained through dynamic measurements are used to detect abnormal 1 

strain-gauge data. 2 

When identifying global structural properties such as Young’s modulus of 3 

concrete and beam density, modal properties are usually considered to be more useful 4 

than local static measurements such as strains. This is because strains are more sensitive 5 

to the response in their vicinity while modal characteristics are related to the global 6 

response of structure. Another reason is that the installation of strain gauges on the 7 

undersurface of concrete bridges is more complicated than the installation of 8 

accelerometers on the deck. The quality of installation will directly affect the 9 

measurement results obtained.  10 

In this approach, it is important to make sure that the dynamic characteristics are 11 

accurate as they are used to detect abnormal static measurements and determine the 12 

confidence level in the measured data. Here, we use two methods of modal analysis and 13 

also two types of vibration data (free-vibration data due to impulsive force and ambient 14 

vibration data) to obtain the modal properties. 15 

The logic of the proposed measurement selection strategy is consistent with the 16 

model falsification concept. A measurement is considered not abnormal until more 17 

information is introduced. The information refers to the consistency of identified 18 

parameter ranges with the more precise measurements. The process is shown in Figure 19 

1. During the process, model falsification is performed iteratively.  20 

The initial parameter set 𝜃 is chosen using initial knowledge (design drawings 21 

and/or on-site inspection). The modeling and measurement uncertainties U:, U=  are 22 

quantified using sensor knowledge, previously estimated uncertainties in the modeling 23 

method (in this case, the finite element method) and engineering judgement. For 24 

example, engineering judgement is used to ensure that modeling uncertainties are at 25 
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least 5% and finite element models typically over-estimate rigidity. A sensitivity study 1 

then needs to be carried out to select parameters according to their relative importance 2 

on model predictions.  3 

In system identification, model simulations are usually time consuming. For 4 

traditional sampling techniques such as grid-based sampling and Latin-hypercube 5 

sampling techniques, the number of simulations increases exponentially with the 6 

dimensionality of the parameter sets. To save computation time, the underlying 7 

relationships between system parameters and responses are approximated using 8 

advanced interpolating functions within surrogate models. A typical procedure is as 9 

follows:  10 

(1) generate a small set of parameters and calculate their responses through finite 11 

element analysis 12 

(2) find the optimal surrogate models that best fit the data. Cross-validation is used 13 

to check whether the surrogate models are accurate enough. 14 

(3) expand the parameter set to the whole set 𝐗, and use surrogate models to 15 

predict their responses 𝒈b. 16 

In the second step, the measurement set is divided into static set 𝐘c =17 

[𝑦c,%, 𝑦c,(,⋯ , 𝑦c,+d]  and dynamic set 𝐘e = [𝑦e,%, 𝑦e,%,⋯ , 𝑦e,+f] . The corresponding 18 

modeling and measurement uncertainties are 𝑼c,:g , 	𝑼c,= , 𝑼e,:g , 	  𝑼e,= . Two model 19 

falsifications are carried out to find the candidate model sets 𝐶𝑀𝑆c and 𝐶𝑀𝑆e using 𝐘c 20 

and 𝐘e separately. 21 

If the identified parameter ranges (𝛉l, 𝛉e) deviate sufficiently from each other, we 22 

consider that there is at least one abnormal measurement in 𝐘c. Otherwise, it is assumed 23 

that no abnormality is present, in which case all measurements should be used to 24 
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perform the final falsification. Notice that what constitutes a “sufficient” deviation for 1 

a measurement to be considered abnormal is a subjective judgement. In real 2 

applications, the information is embedded in measurement uncertainties [39]. It is not 3 

easy to identify this information based only on the knowledge provided by field tests. 4 

Nevertheless, with the help of error domain model falsification, the measurement 5 

uncertainties have been explicitly estimated. In this paper, we define that for each 6 

parameter 𝜃5 , if the distance 𝑑m;  between identified parameters 𝜃5,c  and 𝜃5,e  is more 7 

than 𝛼 = 10% of the initial range 𝑅m;, there exists abnormal static measurements. The 8 

value of 𝛼 is based on engineering judgement and may vary for other applications and 9 

various confidence levels of measurements. 10 

When measurement abnormality is detected, the measurement 𝑦c,3 which falsifies 11 

the largest amount of model instances 𝑟3 of 𝐶𝑀𝑆e is removed from 𝐘c. Then, a model 12 

falsification is performed using the updated 𝐘c to obtain the new candidate model set. 13 

Several iterations may be needed to locate all the abnormal measurements. After all 14 

abnormal measurements are removed, both static and dynamic measurements are 15 

combined together 𝐘 = [𝐘c, 𝐘e] to perform the last round of model falsification. It is 16 

possible that the candidate model set 𝐶𝑀𝑆q is empty, and this may be due to several 17 

reasons including inappropriate assumptions in modeling and bad engineering 18 

judgement regarding uncertainties. At this point, an iterative process involves 19 

consideration of possible reasons and verification through activities such as new 20 

measurements and on-site inspection. A framework to address this task has been 21 

proposed by Pasquier [38] and is not explained in this paper. The final candidate model 22 

set is denoted as 𝐶𝑀𝑆q = 	 [𝛉q, 𝒈bq]. 23 

4. Case study 24 
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The case study involves a single-span concrete bridge for a highway flyover in 1 

Singapore, shown in Figure 2. The bridge is 32m in length, 16m in width, and is 2 

supported at each end by four bearings. The superstructure consists of four prestressed 3 

concrete beams and a 220mm-thick concrete slab. The bridge consists of 3 lanes. 4 

During the tests, Lane 1 was open to traffic while Lane 2 and Lane 3 were closed to 5 

traffic and used for testing.  6 

4.1 Static test 7 

In the static test, six trucks of approximately 32t each are parked on the bridge as 8 

shown in Figure 3(a). Electronic levels (Federal Electronic Level Gage Head, Model: 9 

EGH-02013W2Z) and digital readout (Mahr Amplifier model no. 832F) are installed at 10 

both ends of the bridge to measure inclinations (In1, In2). The deflections at four 11 

locations (P1~P4) are measured by prisms installed at the bottom of the beams and a 12 

laser tracker (FARO Vantage laser tracker) positioned on the road below the bridge. 13 

Unlike other static sensors, strain gauges (TML PL-120-11-3LT, gauge length: 14 

120mm) were installed 24 hours before the test. The installation needed pre-qualified 15 

operators on an aerial work platform and this required traffic closure below the bridge. 16 

The installation process was impaired by the poor quality of adhesive and the lack of 17 

experience of the workers. Only 8 strain gauges instead of 14 (as planned) were 18 

installed due to time constraints. The configuration of the locations of sensors is shown 19 

in Figure 3.  20 

4.2 Free vibration test 21 

To identify the dynamic characteristics of this highway flyover, free-vibration 22 

tests were conducted by moving trucks. Accelerometers (PCB 393B12, sensitivity: 23 

10V/g) including eight vertical accelerometers (A1-A2, B1-B3, C1, C3-C4) and two 24 

horizontal accelerometers (A3, C2) are installed on the surface of the concrete deck 25 
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along both sides of the flyover; the configuration is shown in Figure 3. A1-A3 and B1-1 

B3 are connected to DEWE-511 data acquisition system, and C1-C4 are connected to 2 

CoCo-80 handheld data acquisition system (sampling rate 1024Hz).  3 

In order to obtain the free vibration response of the bridge, eight tests are carried 4 

out to generate the impulsive force (Table 1). 32-ton trucks move along the bridge from 5 

the east end to the west end at two speeds; the slow speed is approximately 20km/h and 6 

the fast speed is approximately 40km/h. In test 5 and test 6, a rubber speed hump 7 

(900mm x 500mm x 50mm) is installed on the surface of the designated lane to help 8 

increase the excitation. 9 

The Fast Fourier Transform (FFT) is used on the 10s free vibration acceleration-10 

time data to give a preliminary evaluation of the vibration properties of the bridge. The 11 

resolution of FFT is 0.1Hz. Figure 4 shows field-test photos, accelerometer signals and 12 

natural frequencies. The mean values of natural frequencies obtained are shown in 13 

Table 2. 14 

4.3 Ambient vibration test 15 

In the ambient vibration test, the sensor configuration is the same as that of the 16 

free vibration tests.  Measurement is recorded during a period of 15 minutes when no 17 

truck is running on Lane 2 and Lane 3 while Lane 1 remains open but with only sporadic 18 

vehicles passing through. The modal properties are obtained using the stochastic 19 

subspace identification method with unweighted principle component (SSI-UPC). The 20 

stabilization diagrams are shown in Figure 5.  21 

Four modes have been identified and the corresponding standard deviation of 22 

natural frequencies are shown in Table 3. Mode 1 is the first vertical bending mode, 23 

and Mode 2 is the torsional mode. Because all sensors are installed outside the vehicle 24 

lanes near the two sides of the bridge, and no sensor is placed on the road surface 25 
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between the two sides of the bridge to capture the mode shape. The mode shape 1 

obtained in Mode 3 is similar to that of Mode 1. Based on the knowledge of dynamic 2 

properties of a simply supported beam, it is easy to infer that Mode 3 is a lateral bending 3 

mode, i.e. the bridge is bending in the horizontal direction. Mode 4 is the second vertical 4 

bending. These measurement results are consistent with the numerical results obtained 5 

by finite element analysis. 6 

4.4 System identification using both static and dynamic measurements 7 

The flyover is modeled in ANSYS [40] using a 3D solid element (element type 8 

“SOLID 185”) shown in Figure 6. The mesh size is 0.2m. Boundary conditions are 9 

modeled using linear springs. Parameters to be identified include Young’s modulus of 10 

concrete (E), concrete density (D), logarithm of bending stiffness of bearings (LogB), 11 

logarithm of vertical stiffness of bearings (LogV) and logarithm of longitudinal 12 

stiffness of bearings (LogL). In this case study, the design drawings we received are 13 

not the as-built reality and on-site measurement of real geometric dimensions was not 14 

allowed by the bridge owner due to time constraints related to the bridge closure. As a 15 

result, the concrete density (D) is in fact an “equivalent density” accounting for the 16 

geometric discrepancies. The logarithmic values of bearing stiffness are used because 17 

the dynamic characteristics of the bridge are influenced by the orders of magnitude, 18 

rather than the precise bearing stiffness values, based on parametric study of the finite 19 

element model. 20 

The initial ranges of all parameter values are defined based on engineering 21 

experience and information obtained from drawings, as shown in Table 4. Note that the 22 

four girders are considered to have the same boundary conditions. 23 

A sensitivity analysis is conducted to evaluate the relative importance of 24 

parameters with respect to responses. Analysis of variance (ANOVA) is used [41] by 25 
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calculating the coefficient of determination (𝑅() for the quadratic correlation between 1 

them. When 𝑅( is smaller than 5%, the influence of parameter to the response can be 2 

neglected. The results in Figure 7 show that the influences of material properties (E and 3 

D) are large on the dynamic response, while E also influences greatly the static 4 

responses. Among the bearing parameters, LogV is influential on deflections (P1~P4) 5 

and inclinations (In1~In2). Nearly all static responses are sensitive to LogB. LogL is 6 

the least influential parameter and is neglected by the 5% 𝑅(  threshold. Hence, all 7 

parameters except LogL are selected to perform system identification. 8 

Following the procedure of generating surrogate models, first, 1000 model 9 

instances generated by the Latin-hypercube sampling technique [42] are calculated 10 

using finite element analysis. Then, surrogate models are built based on Gaussian 11 

process, resulting in 504 = 6,250,000 samples (50 discrete values for every parameter). 12 

In this study, uncertainties are described using uniform distributions and are 13 

generally expressed as ratios (in percentage) of the parameter values. Uncertainties are 14 

calculated as the product of the ratio and the corresponding predicted or measured 15 

values. Sensor accuracies are taken from the respective product specifications. In 16 

dynamic measurements, the uncertainty related to modal analysis is considered by 17 

taking into account the results obtained by free vibrations and ambient vibrations. Other 18 

uncertainty values are taken in according to [13,38,43]. The details are shown in Table 19 

5 and Table 6. 20 

Modeling uncertainties are also introduced by adopting surrogate models. To 21 

evaluate how accurately a surrogate model is able to predict values for unseen data, 22 

generalization error was calculated using 4-fold cross validation (k=4) in this case study. 23 

The training data including parameters 𝛉rs and responses 𝐘rs are randomly divided into 24 

4 subsets. Each data subset is then used as a test set 𝑆trucr  including 𝑛  pairs of 25 
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parameters 𝜽trucr and responses 𝒚trucr, with the remaining data acting as a training set 1 

𝑆trsx5+ = ?𝜽trsx5+, 𝒚trsx5+E. Surrogate models 𝒈b are generated by the training set and are 2 

used to predict the response of test data 𝒈b(	𝜽trucr). The usual average test set error 𝜇̂5 3 

and generalization error 𝜇̂ are calculated following (3) and (4). The calculated surrogate 4 

model uncertainties are shown in Table 7.  5 

4.5 Results and Discussion 6 

First, all available static measurements and dynamic measurements are used to 7 

perform identification. For the dynamic part, the modal assurance criterion is calculated 8 

to ensure the same mode is compared. Then, the natural frequencies are used to perform 9 

model falsification. Candidate model sets (𝐶𝑀𝑆c3 and 𝐶𝑀𝑆e3) are obtained using static 10 

and dynamic measurements separately in the 𝑘th iteration. The identified parameter 11 

values are shown in Figure 8. The identified E values vary from 39,800 MPa to 42,000 12 

MPa in 𝐶𝑀𝑆c% and from 26,740 to 29,900 MPa in 𝐶𝑀𝑆e%. The distance 𝑑|%  between the 13 

two ranges is 9,900 MPa, which is 45% of the whole range of 𝑅|. This already exceeds 14 

the threshold 𝛼 = 10% implying the existence of abnormal measurements. Then, we 15 

investigated the falsification capability of each static measurement and found that S8 16 

falsifies the biggest portion of 𝐶𝑀𝑆e%. Thus S8 is removed from the measurement set. 17 

A new model falsification is carried out based on the new measurement sets. The 18 

identified E values range from 34,400 MPa to 42,000 MPa in 𝐶𝑀𝑆c(. The distance 𝑑|(  19 

between two ranges is 4,500 MPa, which is 20% of the whole range 𝑅|. This value also 20 

𝜇̂5 	=
1
𝑛} ~𝒈b(	𝜽trucr) − 𝒚trucr~

5∈l�
��d�

/𝒚trucr	 (3) 

𝜇̂ =
1
𝑘} 𝜇̂5

3

5�%
	 (4) 
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exceeds 𝛼. Following the same procedure of the previous iteration, S2 is removed from 1 

the measurement set. 2 

In the following iterations, S7, S3, S4, S6 are removed from the static 3 

measurement set in a sequence. The quality of these sensor signals was likely 4 

compromised by the installation process due to inexperienced workers as mentioned 5 

earlier. 6 

In the last iteration, the ranges of 𝛉|,c and 𝛉|,e overlap (as shown in Figure 9). 7 

The identified sets of parameter E in each iteration is shown in Figure 9. The dots 8 

indicate the identified parameter values using static measurements 𝜃|,c and the small 9 

circles represent the ones obtained using dynamic measurements 𝜃|,e. After the last 10 

iteration, the remaining static measurements are P1, P2, P3, P4, S1, S5, In1, In2,  11 

Following our methodology, all selected static and dynamic measurements should 12 

be combined together to determine the candidate models. To study the effects of using 13 

both types of data, we create three different scenarios. In Scenario I, the information 14 

provided by dynamic measurements are used, which falsify 6,210,000 model instances 15 

and lead to 40,000 candidate model instances. In Scenario II, static measurements (after 16 

removing abnormal measurements) are used and 6,138,751 model instances are 17 

falsified leading to 111,249 candidate model instances. In Scenario III, both static and 18 

dynamic measurements are used, which falsify the largest number (6,248,881) of model 19 

instances leading to 1,119 candidate model instances. The results show that the 20 

falsification capability is greatly enhanced by using both static and dynamic 21 

measurements. 98.99% candidate model instance in Scenario II are falsified by 22 

introducing dynamic measurements. 23 

The identified range of parameters by using both measurements is shown in Figure 24 

10. The vertical axes represent parameter values and predictions of static data and 25 
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dynamic data. Each grey line represents a candidate model instance. The red dashed 1 

lines represent the threshold boundaries calculated for each response. Arrows represent 2 

the corresponding measured values.  3 

5. Conclusions 4 

In this paper, an approach based on model falsification is proposed to combine 5 

both static and dynamic measurements with explicit representation of both modeling 6 

and measurement uncertainties. A measurement selection strategy is also presented to 7 

detect abnormal measurements that need to be excluded from the falsification 8 

framework.  9 

1. This approach has been successfully applied to a highway flyover bridge in 10 

Singapore. The measurement selection strategy eliminates six abnormal strain 11 

data in a systematic and progressive way. The identification results have been 12 

improved significantly by using both static and dynamic measurements. 13 

Specifically, in this case study, dynamic measurements help further falsify 14 

98.99% of the candidate models obtained using only static measurements. 15 

2. The proposed measurement selection strategy would help asset managers to 16 

locate possible abnormal sensors and make adjustments to sensor installation if 17 

needed. Not being limited to the application presented in the case study (using 18 

dynamic measurements to detect abnormal strain data), this strategy also applies 19 

to subsets of experiment data, i.e. to use high-quality measurement data to detect 20 

abnormal low-quality measurement data. 21 

3. The proposed framework incorporates the use of surrogate models and 22 

associated uncertainty quantification. It enables efficient execution of the 23 

identification process. In the case study, only 1,000 FEM analyses are carried 24 

out to support 6,250,000 simulations using surrogate models.  25 
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As a multiple-model approach, the output of the identification process is a set of 1 

parameter ranges. They are considered acceptable due to the presence of uncertainties. 2 

Future work will focus on determining efficient ways to employ the candidate models 3 

for prediction. 4 
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Table Captions 1 

Ø Table 1: Details of dynamic tests 2 

Ø Table 2: Identified natural frequencies using free vibrations 3 

Ø Table 3: Operational modal analysis results 4 

Ø Table 4: Parameter initial ranges 5 

Ø Table 5: Uncertainty sources of static measurements 6 

Ø Table 6: Uncertainty sources of dynamic measurements 7 

Ø Table 7: Surrogate model uncertainties 8 
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Figure Captions 1 

Ø Figure 1: Flowchart of system identification using both static and dynamic 2 

measurements  3 

Ø Figure 2: Photos of the highway flyover (image credit: FCL-CCI) 4 

Ø Figure 3: Sensor configuration and truck configuration in the static test:  5 

(a) top view; (b) bottom view 6 

Ø Figure 4: Dynamic test 2 (a) field test photo, (b) signal recorded by C1, (c) FFT 7 

result; Dynamic test 5 (d) field test photo, (e) signal recorded by A1, (f) FFT result. 8 

Ø Figure 5: Stabilization diagrams (SSI-UPC) 9 

Ø Figure 6: Finite element model of the bridge 10 

Ø Figure 7: Parameter sensitivity results 11 

Ø Figure 8: Parameter values of CMS�%  and CMS�% . Each vertical axis represents a 12 

parameter. 13 

Ø Figure 9 : Identified E values by CMS� and CMS� during each iteration 14 

Ø Figure 10: Identified parameter sets using both static and dynamic measurements 15 
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Table 1: Details of dynamic tests 1 

Test No. 1 2 3 4 5 6 7 8 

Vehicle numbers 1 1 1 2 1 1 2 1 

Speed slow slow fast slow slow slow slow fast 

Lane 2 3 2 3 2 3 2 3 

Hump yes yes 

2 
3 
4 

Table 2: Identified natural frequencies using free vibrations 5 

Mode 1 Mode 2 Mode 3 Mode 4 

Natural frequency (Hz) 4.0 6.1 10.1 14.8 

6 
7 
8 

Table 3: Operational modal analysis results 9 

Mode 1 Mode 2 Mode 3 Mode 4 

Mode 
Shape 

Frequency 3.982Hz 6.128Hz 9.929Hz 14.567Hz 

Std. 
Frequency 

0.012Hz 0.011Hz 0.008Hz 0.002Hz 

10 
11 
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Table 4: Parameter initial ranges 1 

Parameter Description Lower 
bound 

Upper 
bound 

Sensitivity 
analysis 
results 

E (MPa) Young's modulus of concrete 20,000 40,000 keep 

D (kg/m3) Density of the bridge 1800 3000 keep 

LogB 
(Nmm/rad) 

log of the bending stiffness 
of bearing 

9 13 keep 

LogV (N/mm) log of the vertical stiffness of 
bearing 

8 11 keep 

LogL (N/mm) log of the longitudinal 
stiffness of bearing 

9 11 delete 

 2 
  3 
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Table 5: Uncertainty sources of static measurements 1 

Uncertainty source Displacement 
(P1~P4) 

Rotations 
(In1~In2) 

Strains 
(S1~S8) 

Min Max Min Max Min Max 

Modeling 
uncertainties 

Model 
simplifications 

and FE 
method (%) 

-5 13 -5 13 -5 13 

Mesh 
refinement 

(%) 

-1 1 -1 1 -1 1 

Spatial 
variability (%) 

- - - - -5 5 

Additional 
uncertainty 

(%) 

-1 1 -1 1 -1 1 

Surrogate 
model 

uncertainty 
(%) 

Shown in Table 7 

Measurement 
uncertainties 

Sensor 
accuracy 

-0.05mm 0.05mm -
1𝝁rad 

1𝝁rad -
2𝝁𝝐 

2𝝁𝝐 

Repeatability -0.15mm 0.15mm -
4𝝁rad 

4𝝁rad -
4𝝁𝝐 

4𝝁𝝐 

Sensor 
orientation 

(%) 

- - - - 0 6 

Sensor 
installation 

(%) 

- - -5 5 0 5 

2 

3 
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Table 6: Uncertainty sources of dynamic measurements 1 

Uncertainty source Measured frequency (Hz) 

4.0 6.1 10.057 14.732 

f1 f2 f3 f4 

Modeling 
uncertainties 

Model 
simplifications 

and FE 
method (%) 

[-8, 5] [-8, 5] [-8, 5] [-8, 5] 

Mesh 
refinement 

(%) 

[0, 2] [0, 2] [0, 2] [0, 2] 

Additional 
uncertainty 

(%) 

[-1, 1] [-1, 1] [-1, 1] [-1, 1] 

Surrogate 
model 

uncertainty 

Shown in Table 7 

Measurement 
uncertainties 

Modal 
analysis 

results (Hz) 

[-0.1, 
0.1] 

[-0.1, 
0.1] 

[-
0.144,0.144] 

[-
0.169,0.169] 

Additional 
uncertainty 

(%) 

[-1, 1] [-1, 1] [-1, 1] [-1, 1] 

 2 
  3 
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Table 7: Surrogate model uncertainties 1 

Surrogate 
model 

uncertainties 
Min/ Max (%) 

f1 f2 f3 f4 

∓0.012 ∓0.011 ∓0.012 ∓0.026 

P1 P2 P3 P4 

∓0.3 ∓0.65 ∓0.25 ∓0.33 

S1 S2 S3 S4 

∓0.26 ∓0.24 ∓0.25 ∓0.22 

S5 S6 S7 S8 

∓0.22 ∓0.22 ∓0.24 ∓0.3 

In1 In2   

∓0.33 ∓0.59   

 2 

  3 
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1 

Figure 1: Flowchart of system identification using both static and dynamic 2 

measurements 3 
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 1 

Figure 2: Photos of the highway flyover (image credit: FCL-CCI) 2 

 3 

 4 

 5 

 6 
(a)                                                            (b) 7 

Figure 3: Sensor configuration and truck configuration in the static test: 8 

(a) top view; (b) bottom view 9 

  10 
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(a) (d) 

(b) (e) 

(c) (f) 

Figure 4: Dynamic test 2: (a) field test photo, (b) signal recorded by C1, (c) FFT 1 

result; Dynamic test 5: (d) field test photo, (e) signal recorded by A1, (f) FFT result. 2 

3 
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 1 

Figure 5: Stabilization diagrams (SSI-UPC) 2 

 3 

Figure 6: Finite element model of the bridge 4 

 5 
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	1 

Figure 7: Parameter sensitivity results 2 

  3 
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 1 

 2 

Figure 8: Parameter values of 𝐶𝑀𝑆c% and 𝐶𝑀𝑆e%. Each vertical axis represents a 3 

parameter. 4 

 5 

 6 

Figure 9: Identified E values by 𝐶𝑀𝑆c and 𝐶𝑀𝑆e during each iteration 7 
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1 

Figure 10: Identified parameter sets using both static and dynamic measurements 2 
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