

Design Project n°33: Evaluation of forestry damage caused by a large snow avalanche using drone technology

EPFL supervisor: Dr Jan Skaloud External partner: Uzufly Sàrl

> El Khoury Charbel Zhang Félicia

EPFL Context

Context

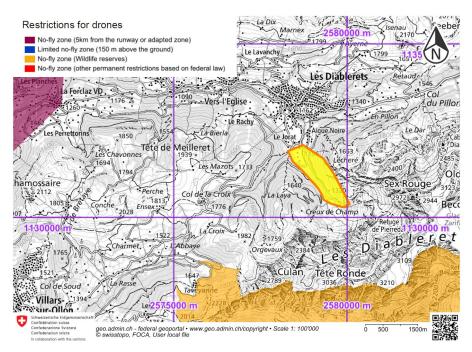
EPFL Context

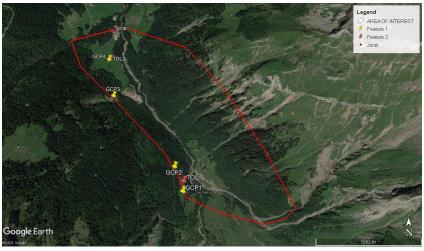
European spruces Bark beetles

Objectives

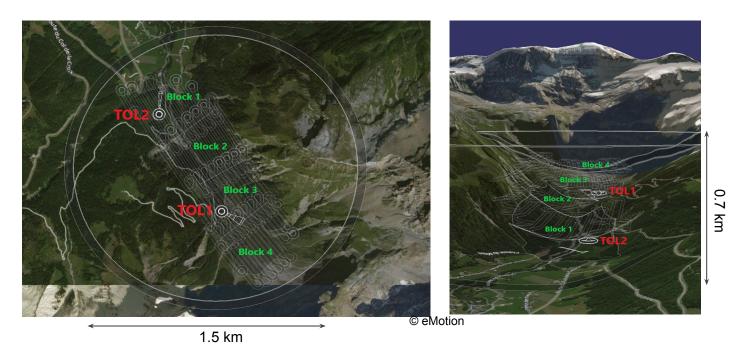
- 1) Using drone technologies, create a detailed orthomosaic (2D map) and 3D model of the area of interest.
- 2) Compare Real Time Kinematics (RTK) and Post Processing Kinematics (PPK) georeferencing techniques.
- 3) Estimate the volume of wood to be removed in order to prevent a spruce bark beetle outbreak in the forest.
- 4) Estimate the volume of displaced snow due to the avalanche

- I. Drone Flight
- II. Photogrammetric results
- II. Wood volume estimation
- IV. Snow volume estimation
- V. Conclusion




- I. Drone Flight
- II. Photogrammetric results
- III. Wood volume estimation
- IV. Snow volume estimation
- V. Conclusion

I. Drone flight: Preparation


- Check the restrictions
- Delineate the area of interest (1.2km²)
- Set take-off and landing locations as well as Ground Control Points (GCPs)
- Create flight plans (eMotion)

I. Drone flight: Preparation

- 4 blocks of ~30 ha
- Each flight duration <30 min
- Lateral and longitudinal overlap: 70% and 85% respectively
- Planned Ground Sampling Distance: 3.5 cm/pixel (processing 5.61cm/pixel)

I. Drone flight: Execution

Equipment Used

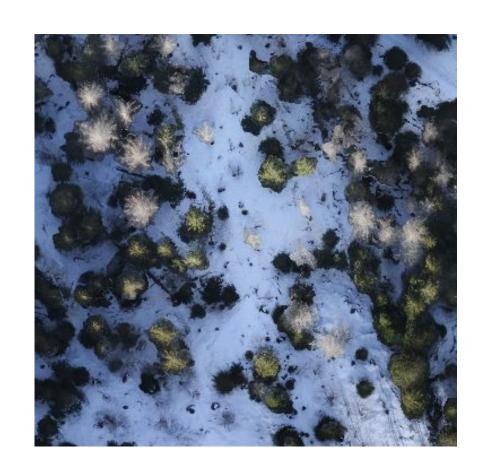
2 eBee X Drones with S.O.D.A. cameras and 6 fully charged batteries

4 GCP targets

2 Triumph LS GNSS receivers

- 2 fully charged laptops
- Snow shoes

I. Drone flight: Execution


Weather Conditions

Ideal Conditions:

- Max. wind speed: 12.8 m/s
- No precipitation
- Cloud cover throughout the flight

Site Conditions:

- Wind speed: 3 m/s
- No precipitation
- Cloud cover for the first part of the flight only

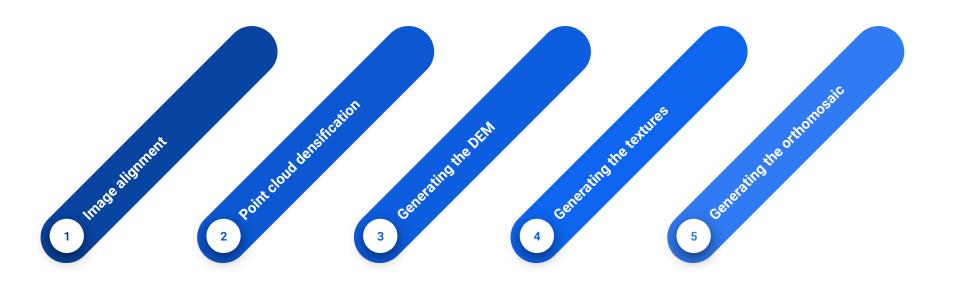
I. Drone flight: Execution

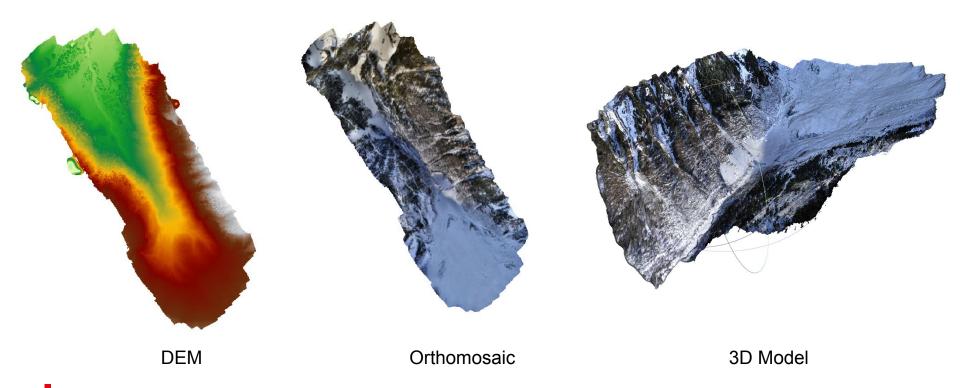
Problems Faced

- Placing only 4 GCPs due to rough terrain
- Changing the location of takeoff and landing locations due to wind direction
- Broken drone wing when landing after the second flight
- Payload not detected before the third flight

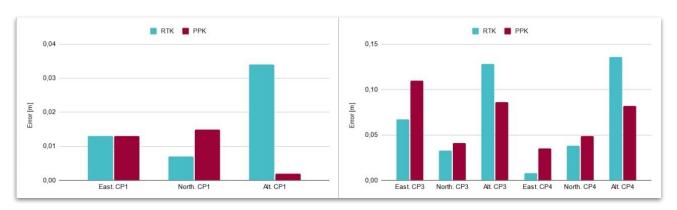
Missing Data

- Coordinates and camera orientations not saved in the EXIF files for flights 3 and 4
- Corrupted log file → PPK not possible through eMotion software
- Event logs of flight 2 corrupted → PPK not possible for flight 2




- I. Drone Flight
- II. Photogrammetric results
- III. Wood volume estimation
- IV. Snow volume estimation
- V. Conclusion

II. Photogrammetric results: model creation Methodology

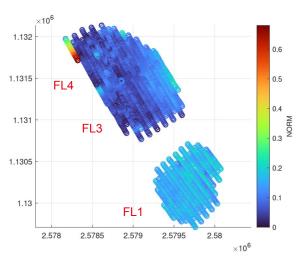

II. Photogrammetric results: model creation Outputs

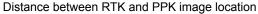
II. Photogrammetric results: quality analysis

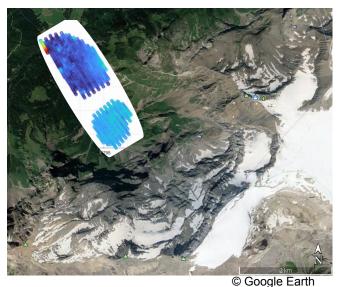
A. Checkpoints (RTK/PPK)

Error on checkpoints for image geolocation in RTK and PPK for Flight 1 (left) and Flight 3 and 4 (right)

	Norme	
СР	RTK	PPK
CP1	0,037	0,020
CP3	0,148	0,146
CP4	0,141	0,102

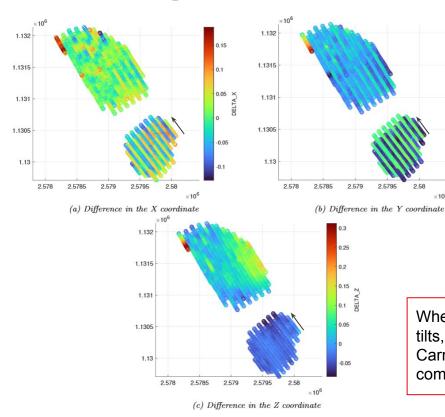

Limitations:


- number of checkpoints
- checkpoints location on images
- geometry leads to strong averaging:
 depends on image position in mapped area



II. Photogrammetric results: quality analysis

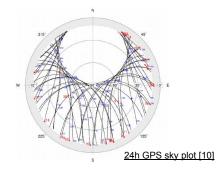
B. Image coordinates in RTK and PPK



- Flight 1, 3 and 4 in RTK and PPK
- Use of GCPs when processing (with coordinates obtained in PPK)
- Compute distances between RTK and PPK: $\Delta d_{RTK/PPK} = \sqrt{[(X_{RTK} X_{PPK})^2 + (Y_{RTK} Y_{PPK})^2 + (Z_{RTK} Z_{PPK})^2]}$

=> overall, differences are larger for flight 1 than for flight 3 and 4 due to the topology of the terrain

II. Photogrammetric results: quality analysis

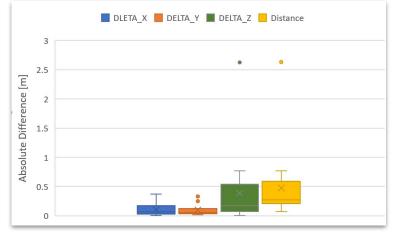

Image coordinates in RTK and PPK

(a)
$$\Delta X_{RTK/PPK} = X_{RTK} - X_{PPK}$$

(b)
$$\Delta Y_{RTK/PPK} = Y_{RTK} - Y_{PPK}$$

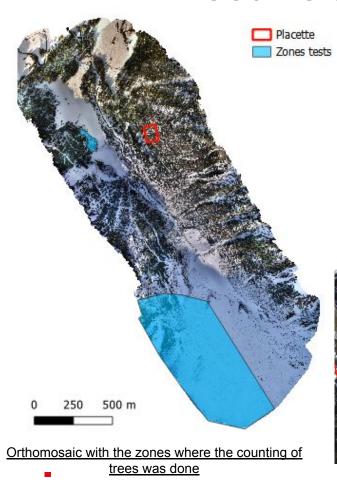
(b)
$$\Delta Y_{RTK/PPK} = Y_{RTK} - Y_{PPK}$$

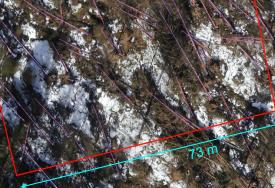
(c) $\Delta Z_{RTK/PPK} = Z_{RTK} - Z_{PPK}$


When the drone turns right from South East to North West, it tilts, the antenna faces North where satellite visibility is limited. Carrier-phase ambiguities can be fixed only once the turn is completed and accumulated to increase the precision.

II. Photogrammetric results: quality analysis

C. Overlap between flights 2 and 3


- Differences in the X and Y directions are in the order of 10 cm
- Higher differences in the Z direction.



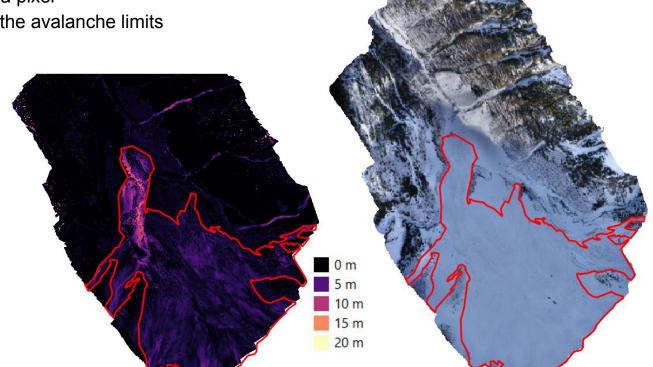
- I. Drone Flight
- II. Photogrammetric results
- III. Wood volume estimation
- IV. Snow volume estimation
- V. Conclusion

IV. Wood volume estimation

- Pin isolated trees and define larger impacted zones
- 2 samples and 1 plot
 - length
 - diameter
 - approximation by a cone

	Plot [m ³]	Total area [m³]
Foresters estimation	259 (2015)	6000-8000
Orthomosaic	39	2200
Extracted	?	5000

- I. Drone Flight
- II. Photogrammetric results
- III. Wood volume estimation
- IV. Snow volume estimation
- V. Conclusion


IV. Snow volume estimation

Draw the limits of the avalanche

Subtract the generated DEM from the SwissTopo DEM

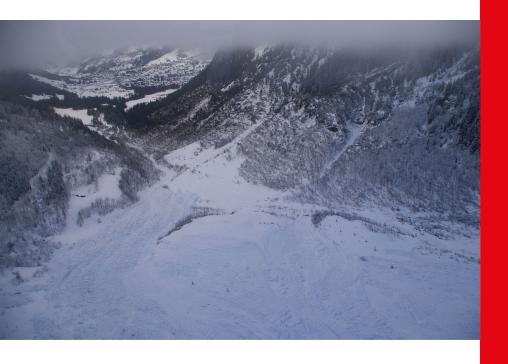
Multiply by the area of a pixel

Sum the values within the avalanche limits

Volume = $941 \ 280 \ m^3$.

- I. Drone Flight
- II. Photogrammetric results
- III. Wood volume estimation
- IV. Snow volume estimation
- V. Conclusion

Speaker


V. Recommendations and Conclusion

Recommendations

- The use of PPK instead of RTK especially in mountainous terrain
- The calculation of a correction factor for the volume of wood estimated from the DEM
- Performing a second flight to make sure that all the trees were extracted
- The use of LIDAR coupled with automating the process of counting the trees

Conclusion

- The orthomosaic is a fast and accurate tool to spot the fallen trees, but not for volume estimations
- The DEM coupled with the orthomosaic can help estimate the volume of displaced snow and quantify the destructive impact on the forest.

Thank you for your attention,

questions?

EPFL Refere

References

- [1] Emmanuel Cledat et al. "Mapping quality prediction for RTK/PPK-equipped micro-drones operating in complex natural environment." In:ISPRS Journal of Photogrammetryand Remote Sensing167 (2020), pp. 24–38.
- [2] "eBee RTK Accuracy Assessment." In: (2017).url:https://www.sensefly.com/app/uploads/2017/11/eBee_RTK_Accuracy_Assessment.pdf.
- [3]Federal Office of Civil Aviation FOCA: Regulations and general questions relating todrones. 2021.url:https://www.swisstopo.admin.ch/fr/cartes- donnees-en-ligne/calculation-services/reframe.html(visited on 04/16/2021).
- [4]Flight restrictions in Switzerland (drone map).url:https://www.bazl.admin.ch/bazl / en / home / good to know / drohnen / wichtigsten regeln / drohnenkarte _einschraenkungen.html(visited on 04/16/2021).
- [5]Forestry in Switzerland. Pocket Statistics 2020. EN. 6728738. Neuch^atel: Bundesamtf'ur Statistik (BFS), 2020, p.
- 7.url:https://www.bfs.admin.ch/bfs/en/home/statistics/catalogues-databases.assetdetail.14838314.html.
- [6]Forêt privéee fran çaise: utiliser un bar^eme ou un tarif de cubage sur pied. 2021.url:https://www.foretpriveefrancaise.com/data/150095_1_1.pdf(visited on05/25/2021).
- [7]Geoinformation Platform of Swiss Confederation.url:https://map.geo.admin.ch/?time = None & lang = fr & topic = ech & bgLayer = ch . swisstopo . pixelkarte farbe &layers = ch . swisstopo . fixpunkte lfp2 , ch . swisstopo . zeitreihen , ch . bfs .gebaeude_wohnungs_register,ch.bav.haltestellen-oev,ch.swisstopo.swisstlm3d-wanderwege&layers_opacity=1, 1, 1, 1, 0.8&layers_visibility=true, false,false,false,false,false&layers_timestamp=,18641231,,,&E=2579551.70&N=1130404.90&zoom=8(visited on 04/27/2021).
- [8]Pix4D: How to verify that there is enough overlap between the images. 2021.url:https://support.pix4d.com/hc/en- us/articles/203756125- How- to- verify-that-there-is-enough-overlap-between-the-images(visited on 05/25/2021).
- [9]Planimetric Fixed Point: CH0300001285 12856120.url:https://data.geo.admin.ch/ch.swisstopo.fixpunkte-lfp1/protokolle/LV03AV/1285/CH0300001285_12856120.pdf(visited on 04/27/2021).
- [10] Gethin Roberts et al. "The Nottingham Locatalite Network." In: Sept. 2007.
- [11] Rupert Seidl et al. "Small beetle, large-scale drivers: how regional and landscape factorsaffect outbreaks of the European spruce bark beetle." In:Journal of Applied Ecology53.2(2016), pp. 530–540.url:https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/1365-2664.12540.
- [12]SwissTopo: Office Fédérale de la Topographie (2021), REFRAME.url:https://www.swisstopo . admin . ch / fr / cartes donnees en ligne / calculation services /reframe.html(visited on 04/16/2021).
- [13]SwissTopo: Office Fédérale de la Topographie: swissSURFACE3D RasteR. 2019.url:https://www.swisstopo.admin.ch/fr/geodata/height/surface3d-raster.html(visited on 05/25/2021).17
- [14]Weather in Les Diablerets.url:https://www.theweathernetwork.com/ch/weather/vaud/les-diablerets(visited on 04/27/2021).
- [15] B. Wermelinger. "Borkenk afer: Der Herr der Rinde." In:B undnerwald56 (2003), pp. 12–16.url:https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:8715.