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Machine Learning pour l’énergétique des bâtiments 

sur un outil SIG
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Contexte 3

Réseau de chaleur à distance centralisé qui fournit 
l’énergie à Collombey et Monthey

Source: SATOM SA
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Workflow
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Collection des données
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Données récoltées:  

- Mesures énergétiques: situées dans la base de 
données de SATOM

- Registre fédéral: caractéristique du bâtiment

- Script “web scraping”: collectionne les données 
depuis l’Office Fédéral Statistique (OFS)

Collection des données 8
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Regroupement des données
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▪ Données géométriques

▪ Données énergétiques

▪ Structure basée sur CityDB et CityGML

▪ Axe central du projet 

Regroupement des données
10
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Préparations des données

Développement des 
modèles Machine Learning
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Représentation des données
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Deux étapes: 
▪ Préparation des données: 

▪ Raffinement de la granularité temporelle: simulation sur CitySim
▪ Utilisation des mesures SATOM

▪ Développement des modèles de Machine 
Learning

Machine Learning 13
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fusionnement des 
propriétés physiques 
des bâtiments et des 
géométries existantes
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Comment prédire la 
demande 
énergétique? 
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16Types de demande

Période du 
jour

Période de 
la semaineSaison

Mois
Année

Intervalle 
tri-horaire
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Modèle linéaire (baseline) 

17Modèles Machine Learning

Random Forest 
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Données du registre:

▪ La période de construction 

▪ La fonction du bâtiment

▪ Le nombre d’étage (utile pour 
déterminer le volume)

Données géométriques: 

▪ Volume

18Données du bâtiments

“web scraping”
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▪ Radiation globale horizontale

▪ Température de l’air

▪ Précipitation

19Données climatiques

Fichier climat 
Aigle 2019
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Intervalle 
tri-horaire

Importance des features

MAE [Wh/m2] MAPE [%]

36.7 2.65 * 103

Performance
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21Prédictions vs Mesures

Energie tri-horaire prédite [Wh]
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22Visualisation spatiale

1er janvier 2019

Intervalle 
tri-horaire
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Choix de la meilleure combinaison de paramètres du Random Forest

23Hyperparamètres

Source: towardsdatascience.com
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HyperparamètresPar défaut

MAE [Wh/m2]

4.86 * 103

MAE [Wh/m2]

4.21 * 103

Année
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25Visualisation spatiale

Wh/an

Année
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▪ MAE plus élevée dans le modèle tri-horaire

▪ Complexification d’un modèle n’implique pas nécessairement des 
meilleurs résultats

▪ Modèle tri-horaire reflète plus la réalité en terme de paramètres

26Comparaison des modèles
MAE tri horaire[Wh/m2/an] MAE annuel [Wh/m2/an]

1.07 * 105 4.21 * 103
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27Evaluation des modèles

Points forts Points faibles

▪ Modèles adaptables aux 
features

▪ Granularité temporelle 
facilement modulable

▪ Adapté à la structure 
EnergyADE (CityDB)

▪ Normalisation biaisée 
par la surface

▪ Ambiguïté autour de 0

▪ Nombre réduit d’entrées 
dans les modèles
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▪ Harmonisation de la base de données 

▪ Nettoyage des données 

▪ Feature engineering 

▪ Analyse spatiale plus approfondie

28Recommendations & 
améliorations
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Merci !
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