

Re-use of Residual Hemp Biomass from Textile Production

Students: Chang Chun, Haohong Wang

Instructor EPFL: Prof. Ludwig, Christian

External Partner: Mr. Martin Kloeti, Mr. Erich Chiavi

Teaching Assistant: Dr. Bhavish Pate

Nutzhauf/Industriehan/landw. Nuleung Jorlen und Eigenschaften 2D. nues www.ihempforms.com

EU - fortentalalos: ländersperifische Webriles

Hand-FRÜCHTE (Nüsse, Samen)

reich an Omega 3-4.

6- Fell säuren

selv wertvoll

1 ~ 350 Like/ha

· Hanfsamen-Mehle

· Ildustrie - Öle

· Brennstok

· Farben, Lacke

·Kosmetik

· Duftôle

· Kreide · Brudemill

BLATTER am Stangel

· Tabalcersaty

· Tee

erlandt: (BD aus Mussen gewonnen:

Pulver Pillen/Kapseln

Nahrunperganzung Liquids für e-tigarda

- Kansumhi - Salban, Cremen

· Kosmetik

STANGEL

Fasern

· Textilien Kleider Dekorble

· techn. Tücker Seile, Schnur

· Isolationsmakrial, VIILLE

· Sanilär - Dichtungen } · Papiere, filler

Faser-/schabensemisch Press platen ("spanp!")

· Formteile Schäben

· Bausteine, Formsteine

PLUTEN ____

Hauf-

Heilmillel

· Offitiell eclaust and err 2 Epileptic Mechikamente
Die Arminnung von CBP
aus den Blinken
Lunksliegt strengen
Entschränhungen!

Staub

· Komport Gartenerde

> 1% THE STA

Gesetze beachten!

d

Introduction

und die Ell-heselse.

Materials

First class straw pure fiber

Second class straw coarse fiber

Third class straw 50% fiber + 50% wood

Chemical composition of hemp straws

Hemp Straw	Fiber part	Woody part
Cellulose (%)	73-77	48
Hemicellulose (%)	7-9	21-25
Lignin (%)	4-6	17-19

EPFL Applications

- quality papers
- technical fibre bundles
- textiles & tech-textiles
- composites, automotive

- construction materials
- paper
- animal bedding, absorbent, mulch
- energy
- biodiesel, biofuel
- environment

CNC₁₅

15

7

T-CMF

(2)

Potential Products

Traditional Products

Hemp Concrete

Hemp Paper

New Product

Hemp-based CNF

Hemp Concrete

Hemp Paper

Hemp -based CNF

Calculation

➤ Hemp Concrete

	Consumption (ton/ ton hemp)	Unit price (CHF/ ton)	Cost (CHF/ ton hemp)
Pozzolanic	0.4	40	16
Hydraulic binder	0.4	40	16
Calcium hydroxide	1.5	55	82.5
Water	3.2	0.5	1.6
total	-	-	116.1

> Hemp Paper

Item	Consumption (ton/ton hemp)	Unit price (CHF/ton)	Cost (CHF/ton hemp)
NaOH	0.48	300	144
Na_2S	0.48	300	144
Water	10	0.5	5
total	-	-	293

Design Project

Calculation

➤ Hemp-based CNF

Stage	Water (m ³)	NaOH (ton)	NaClO ₂ (ton)	$HAc (m^3)$
Pretreatment	6	0.24	-	-
Bleaching	6	0.054	0.036	0.15
Agitation	85	-	-	-
Defibrilation	85	-	-	
total	182	0.294	0.036	0.15

	Consumption (ton/ ton hemp)	Unit price (CHF/ ton)	Cost (CHF/ ton hemp)
Water	182	0.5	91
NaOH	0.294	300	88.2
NaClO ₂	0.036	2000	72
HAc	0.015	500	7.5
total	-	-	258.7

Identify Criteria

Standardization Scale

Extremely bad	Very bad	Bad	More or less bad	Moderate	More or less good	Good	Very good	Extremely good
1	2	3	4	5	6	7	8	9

Evaluation Matrix

Criteria		Goals Units -		Alternatives			
				CNF	Hemp concrete	Paper	
Environment	Energy consumption	ļ	MJ/ton	87000	40.98	12910	
Environment	CO_2 emissions	ļ	kg CO _{2,eq} /ton	790	-0.12	300	
Economic	Operation costs	ļ	CHF/ton	431.2	19	293	
	Value of products	1	CHF/ton	3000	92.2	840	
	Market demand	1	-	8	5	4	
Technology	Risks	\downarrow	-	8	2	5	
	Technology maturity	1	-	2	8	7	

- EnvironmentLCA from literature
- EconomicMass flow analysis
- Qualitative criteriaStandardized scale

Normalization Evaluation Matrix

Criteria			Alternatives			
		Goals	CNF	Hemp concrete	Paper	
Environment	Energy consumption	\downarrow	1	9	7	
	CO_2 emissions	\downarrow	1	9	5	
Economic	Operation costs	\downarrow	1	9	3	
	Value of products	↑	9	1	4	
	Market demand	↑	8	5	4	
Technology	Risks	\downarrow	8	2	5	
	Technology maturity	1	2	8	7	

- standardization scale
- linear regression

Weighted Matrix

Domain	Weight ₁	Criteria	Weight ₂	CNF	Hemp concrete	Paper		
Environment	0.4	Energy consumption	0.5	0.2	1.8	1.4		
Environment	0.1	CO ₂ emissions	0.5	0.2	0.2	1		
			Opera	Operation costs	0.4	0.16	0.16	0.48
Economic 0.4	0.4	Value of products	0.4	1.44	1.44	0.64		
		Market demand	0.2	0.32	0.32	0.2		
Technology		Risks	0.6	0.96	0.96	0.6		
	0.2	Technology maturity	0.4	0.16	0.16	0.56		
Total Score				3.44	4.56	4.88		

Weighted score = Score of normalized table * Weight1* Weight2

- Production of CNF performs worst
- high operation and energy cost
- high value
- emerging market, a promising pathway
- Producing concrete is simple and traditional
- low cost and environment impact
- little economic benefit
- Production of paper performs the best
- the most suitable pathway nowadays

Conclusion

