Design Project 2021

Analysis of the environmental impact of air traffic on the perimeter of Basel-Mulhouse Airport

Students:

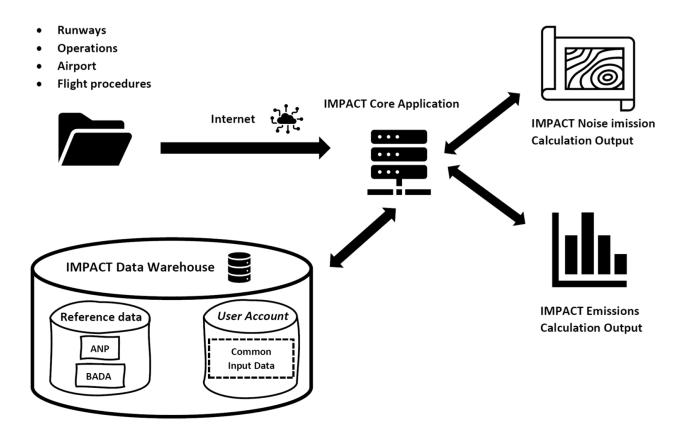
Buchs Guillaume, Bugnard Alexandre

EuroAirport team:

Bach Roland, Robra Jan Philipp, Unternährer Jérémy

EPFL supervisor:

Nenes Athanasios

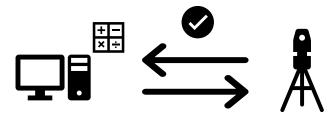


Introduction

 Simulation of noise and pollution impacts (using IMPACT web application)

 Analysis of sensitivity for noise and pollution reduction based on different scenarios

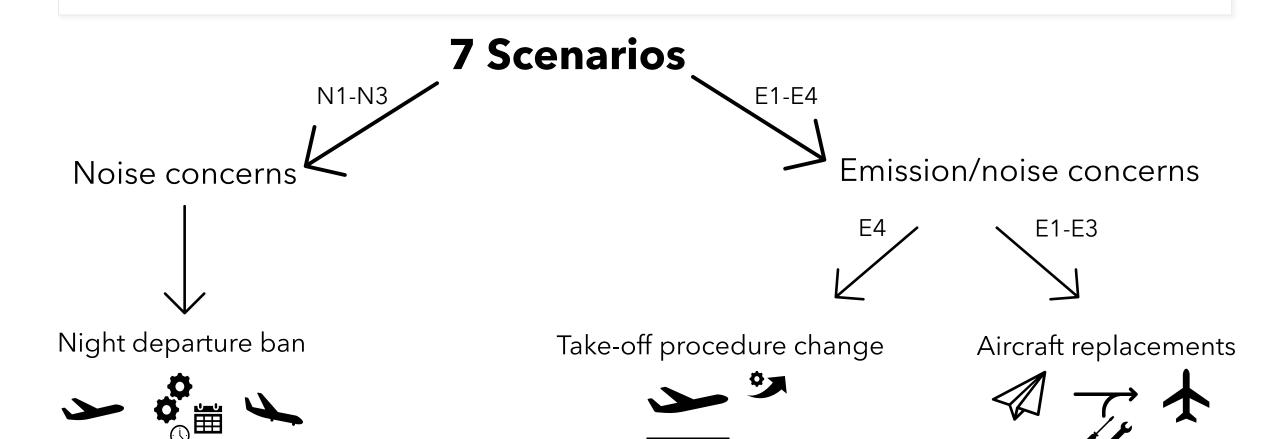
Definition of the study parameters




- Noise → immissions
 - Metrics
 - LA_{eq} the constant noise level that would have been produced with the same energy as the noise actually existing during a given period.
 - Scenario noise population count (SNPC): number of people exposed to a particular noise level. It is computed by performing the intersection between a noise contour layout and the reference density map, contained in a raster file
- Pollutants → emissions
 - Inventory of 25 different pollutants
 - Focus on: CO₂, NO_X, PM_{TOTAL} and CO
 - Emitted under 3000 [ft]

Validation of noise simulation

- Noise calculation for reference year 2018
- Comparison with in-situ measurements
 - 9 stations placed according to the main airplane's trajectories



Comparison between IMPACT simulation and noise measurments 2018 for the first night hour (22h-23h)

Sensitivity analysis

Departure ban between 23h-24h

• **Scenario N1**: (extreme scenario): 100% moved to the first night hour (22h-23h).

• Scenario N2: (optimal scenario): 100% moved to daytime hours (6h-22h).

• **Scenario N3:** (half-half scenario): 50% moved to first night hour and 50% to daytime hours

Time slot		Impact threshold (Laeq)	Population count
Daytime	06h-22h	60 db	131
First night hour	22h-23h	55 db	1504
Second night hour	23h-24h	50 db	4200

de la Hardt Sud Rheinweiler Welmlingen Monnac Laeq = 47db - 2018Schlierbach \blacksquare Laeq = 50db - 2018 Geispitzen : = 47db - Scenario 1-2-3 Laeq = 50db - Scenario 1-2-3 Waltenheim. Laeq = 55db - Scenario 1-2-3 ~ Kætzingue Bartenheim: Blotzheim: Attenschwiller

N1-N2-N3 second night hour noise

Effect of scenarios N1-N3

Effect on other time slots

- Negligible on daytime (less than 10% increase)
- More problematic during first night hour

Noise population count between 22h-23h (55dB)			
Scenario N1 (100% of D)	+93.3%		
Scenario N3 (50% of D)	+28.9%		

Is the ban a good solution?

- Depends on exact rescheduling ratio day/night
- Depends on inhabitants feeling

Scenario E1 ★→★

*represents 20% of the total airport movements

 CO_2

(-4.3%)

 PM_{tot}

(-4.3%)

CO

(-2.5%)

 NO_X

(+6.8%)

Noise

06h-22h >57 [dB] (-15%) 22h-23h >50 [dB] (+2%) × >55 [dB] (-10.9%) 23h-24h >47 [dB] (+1.3%) ×

- Bigger jet engines
- More fuel efficient
- Increased NO_x production
- Noise reduction during daytime

Scenario E2

*represents 30% of the total airport movements

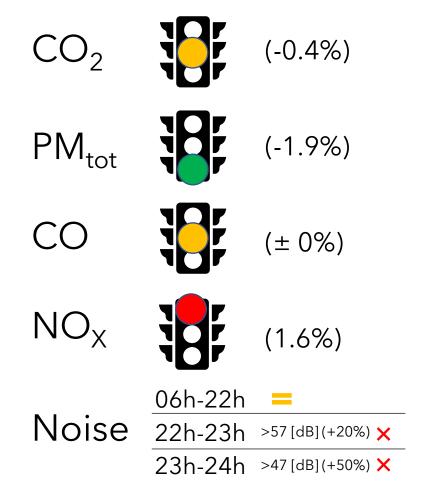
(-8.5%)

(-30.7%)

(+0.7%)

Noise

06h-22h >57 [dB](-33%) ✓ 22h-23h >55 [dB](-20%) 23h-24h > 47 [dB](-5%)


- Very beneficial in terms of pollutants emissions
- NO_x are also reduced unlike in scenario E1
- Net noise decrease for all the time-slots

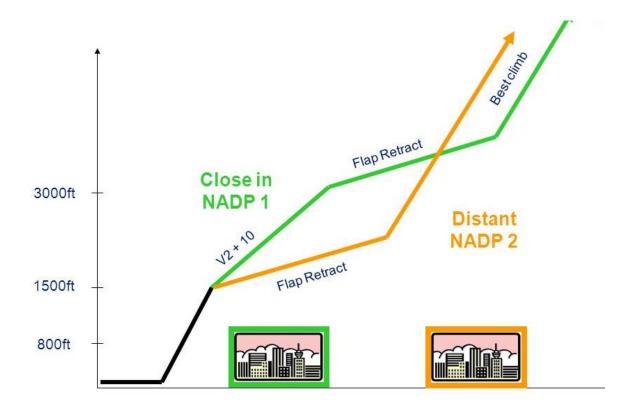
Replacement of old freight (25-30 years) aircraft by more recent ones (10-15 years)

Scenario E3

*represents 3.8% of the total airport movements

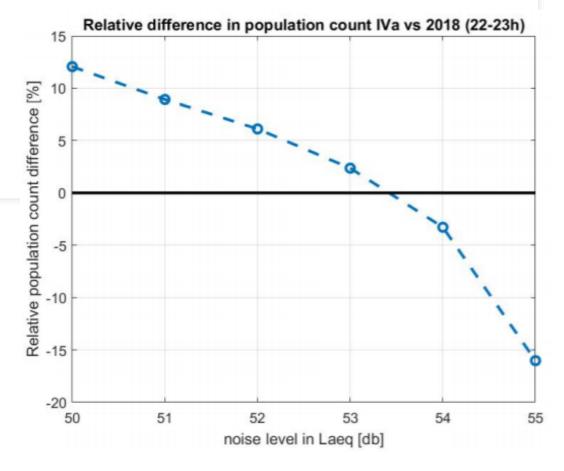
- Emissions reduction not very important
- NO_X increase as before due to higher combustion temperature
- Very negative effects on some pollutants such as acetaldehyde, acrolein, benzene
- Important increase in noise during night hours

Scenario E4



Airbus + Boeing NADP1
Airbus + Boeing NADP2

*represents 60% of the total airport movements


Take-off procedures for noise reduction

- NADP1 = noise reduction near airport
- NADP2 = noise reduction further down

Scenario E4: results

NADP1 NADP2 (+2.7%) PM_{tot} (+0.1%) 06h-22h X 06h-22h ✓ Noise 22h-23h X 22h-23h 🗸 23h-24h X 23h-24h 🗸

- NADP 1 increases the pollution whereas NADP2 decreases it
- Decreasing noise somewhere implies increase somewhere else
- NADP 1 tends to smooth the noise over the territory
- NADP 2 negative effect for all the time slots and limit values.

Conclusion

- Difficult to reduce both noise and emissions
- Difficult to reduce NO_x and CO_2 emissions

• Scenario E^{*}: decreasing noise without increasing too much air pollution

CO₂: -10 % NO_x: -12 % **PM**_{TOTAL}: -12% CO: -2%

> 06h-22h >57 [dB](-56%) 22h-23h >55 [dB](+20%) X 23h-24h >47 [dB](-96%)

Thanks for listening!

Feel free to ask questions!

Contact

