### **EPFL** kaemco

Unified
Representation of
Building Energy
Modeling Using
GIS Tools
Design Project

#### Students:

Mélanie Droogleever Fortuyn Charles Gan

#### In collaboration with:

Jérôme Kaempf from *kaemco* and Professor François Golay from EPFL



### Contents

- Objectives and Project Overview
- Data identification, collection and import
- Data storage structures
- Dataset connections
- Python Script
- Comparison of monitored and simulated results
- Discussion

## Objectives

The final completed objectives of this project include:



Gathering of data from RegBL, Swisstopo, and SATOM



Creation of a PostgreSQL database following 3DCityDB



Import of RegBL, Swisstopo, and SATOM data



Assignment of a common EGID identifier using Intersection



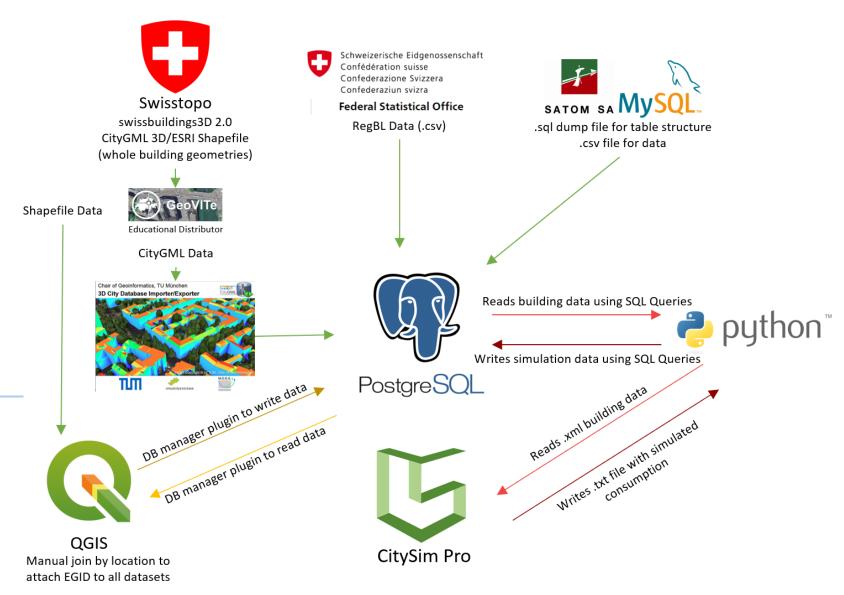
Python script to query data from database to create .xml file



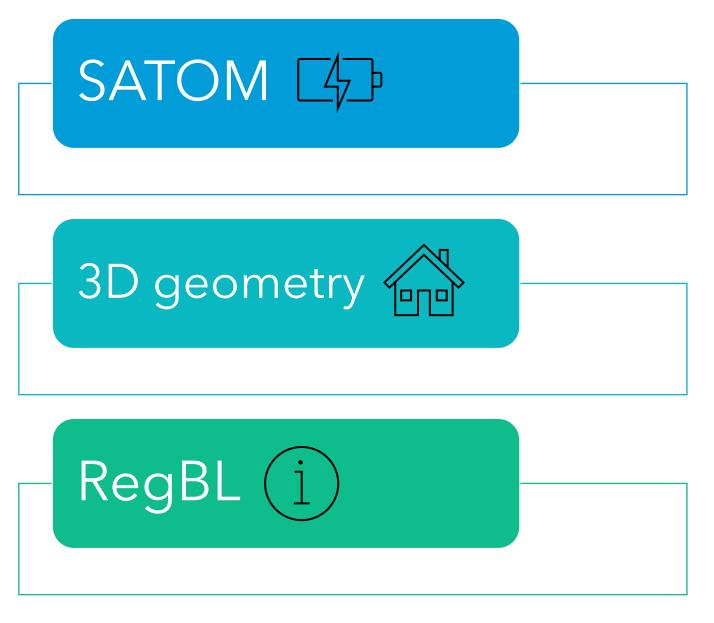
Running of .xml file in CitySim Pro for simulation results Future objectives of this project include the creation of:



Comparison of actual and simulated data using QGIS maps




MLA that uses difference maps to analyze gaps in the simulation




Use gaps to calibrate CitySim Profor better energy-use prediction

# Project Overview



Data identification, collection and import



# SATOM 4

### Collection

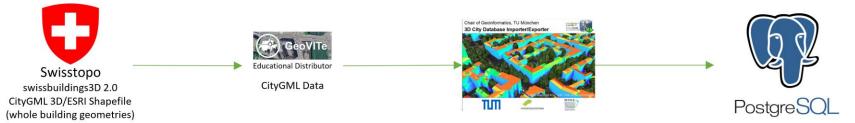
- Contains: building footprint, coverage, occupancy data, energy use
- Format: SQL Dump file
- Import



.csv files for data
.sql dump file for table
structure (solve syntax issues)

\*\*python possible for future




# 3D geometry



- Collection
  - Request from Swisstopo under Educational License
- .shp Import not semantically separated



.gml Import - semantically separated

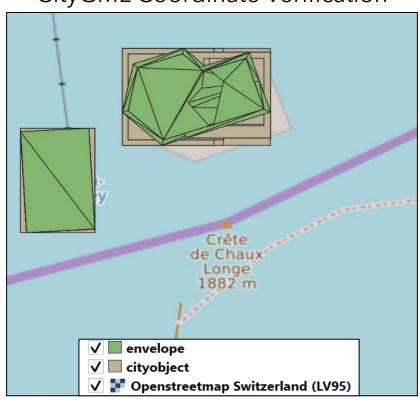


🦺 python'

Geometry

Processor

Reads multipolygons geometries


Writes roofs,

floors, and walls.


PostgreSQL

# Shape file Uses

CityGML Coordinate Verification



### Alternative to CityGML



# RegBL (i)

### Collection

- Request from Swiss Federal Office of Statistics under Educational License
- Contains: construction year, number of rooms, number of floors, EGID

### Import

- Format change: CSV to Database
- Syntax modification



### Data Storage Structures

Customized structure with Python Script

3DCityDB

SATOM

Occupancy Relation Table

RegBL

# Customized structure with Python Script

#### city.buildings

- geometry
- coverage
- ssid
- height
- egid
- altitude
- · infiltration rate
- construction year
- gross\_volume
- occupancytype
- n\_floors
- n\_people
- heating year
- max\_heating\_hour
- citysim\_kwh

#### city.envelope

- class\_id
- egid
- geometry
- glazing\_ratio
- · composite\_id

#### occupancy\_data.occupancy\_type

- occupancy\_type\_id
- surface personne
- equipment\_power
- lighting\_power
- ventilation rate day
- ventilation\_rate\_night
- · ventilation rate
- ventilation\_coeff
- nat\_ventilation\_coeff

#### climate.horizon

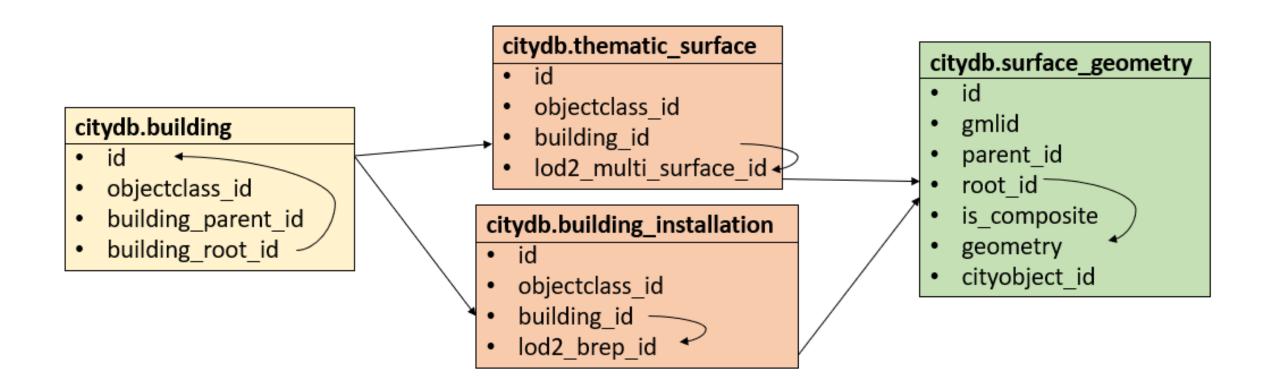
- phi
- theta

#### surfaces\_data.composites

- · composite id
- · composite\_name

#### surfaces\_data.glazing\_ratio

- index
- class id
- period start
- period end
- value


#### surfaces data.layers

- layer id
- composite\_id\_fk
- material id fk
- layer\_number
- thickness

#### surfaces\_data.materials

- material id
- · material name
- conductivity
- cp
- density

# 3DCityDB



### SATOM

### satom.batiments

- ogr\_fid
- shape
- client
- shape\_area

#### satom.mega

- megabatiment
- megaegid
- fake\_megacategorie
- sdbus

#### satom.tblcliendatathistory

- sdbus
- datetime\_time
- cnt1\_energy

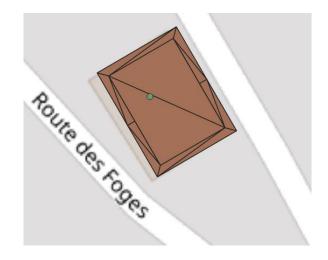
- 3-hour data
- Sdbus is a number labeling an energy consumption region
- Megabatiment and client are the same and make up one sdbus area
- Default occupancy types assigned in megacategorie
- Skewed footprints
- Partial EGIDs

# Occupancy Relation Table

| satomtype                                                 | occupancytype |
|-----------------------------------------------------------|---------------|
| Ecoles                                                    | 8             |
| Commerce                                                  | 4             |
| Piscines couvertes                                        | 3             |
| Commerce; Habitat Collectif; Restauration                 | 6             |
| Dépôts; Industrie                                         | 9             |
| Administration; Dépôts                                    | 2             |
| Administration; Commerce; Dépôts                          | 4             |
| Administration                                            | 2             |
| Commerce; Dépôts; Habitat collectif                       | 6             |
| Lieux de rassemblement                                    | 10            |
| Restauration                                              | 5             |
| Administration; Habitat collectif                         | 2             |
| Commerce; Habitat collectif                               | 4             |
| Habitat collectif; Restauration                           | 6             |
| Habitat collectif                                         | 1             |
| Habitat individuel                                        | 1             |
| Installations sportives                                   | 3             |
| Hôpitaux                                                  | 7             |
| Administration; Commerce; Habitat collectif; Restauration | 6             |
| Industrie                                                 | 9             |

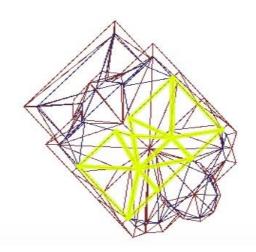
| Boghetti's Occupancy Number |
|-----------------------------|
| 1. Residential              |
| 2. Office                   |
| 3. Sport Center             |
| 4. Commercial               |
| 5. Restaurant               |
| 6. Hotel                    |
| 7. Hospital                 |
| 8. Education                |
| 9. Industrial               |
| 10. Other                   |

# RegBL


### city.regbl\_data

- egid
- construction\_year
- n\_pieces
- n\_floors

- Simple structure
- Limited data with many holes
- N\_pieces to N\_people (default of 3)
- Construction\_year default to 1979.9
- N\_floors default to 1

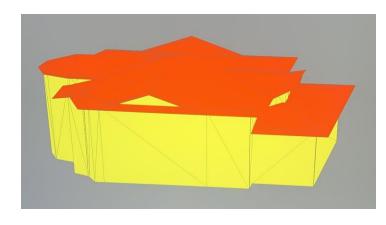

### **Dataset Connections**

- Spatial intersection with QGIS
- Cross-reference table
- Dissolve for missing building parts




### citydb.cross\_reference

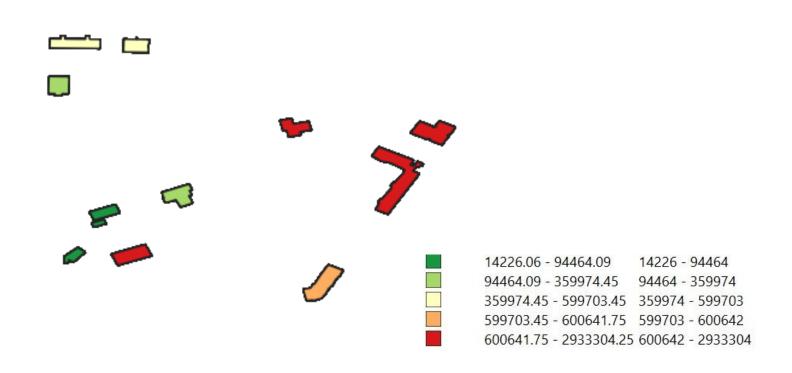
- building\_root\_id
- egid
- satom\_building\_id




# Python Script



JOIN citydb.cross\_reference cros on bat.ogr\_fid = cros.satom\_building\_id


RIGHT JOIN citydb.zone zone ON cros.egid = zone.egid LIMIT 25



17

```
SELECT ST_Transform(ST_SetSRID(ST_Translate(bat.shape,-0.00084328,-0.0012505) ,4326), 21781) AS geometry,
COALESCE(rbl.construction_year,1980.1) AS construction_year, bat.shape_area AS coverage,
COALESCE(rbl.fake_n_floors,1) AS n_floors, bat.ogr_fid AS ssid, zone.egid AS egid,
COALESCE(NULLIF(rbl.n_pieces,0),1) AS n_people, COALESCE(rbl.fake_n_floors*bat.shape_area*4,1*bat.shape_area*4) AS calc_vol,
COALESCE(ocr.occupancytype,1) AS occupancytype
FROM satom.batiments bat
LEFT JOIN satom.mega mega ON bat.client = mega.megabatiment "
LEFT JOIN city.occupancy_relation ocr ON ocr.satomtype = mega.fake_megacategorie
LEFT JOIN city.regbl_data rbl ON mega.megaegid = rbl.egid
```

## Comparison of monitored and simulated results



### Discussion



DATA QUALITY AND GAPS



PYTHON CODE PROCESSING TIME



3DCITYDB REQUIRES BETTER SCHEMA MANAGEMENT



MANUAL ACTIONS REQUIRED IF NO PLUGIN CREATED