

# Design Project - SIE 2019



**Students:** Leily Moser, Julie Reznicek Enoil Bioenergies: Hossein Madi **EPFL supervisor:** Christian Ludwig

# **Evaluation of heat sources** for the production of microalgae





#### Context

The company Enoil Bioenergies is a swiss biotechnology company. One of their activities is to study spirulina production in their research center in Geneva. The culture of this algae in a closed environment requires high heating needs. The willingness to upscale the production at a larger site in Charrat (VS) entails the need for suitable heat sources.

#### **Project purposes**

- $\rightarrow$  Determine the needs
- $\rightarrow$  Search for suitable heat sources for the site and find the appropriate devices
- $\rightarrow$  Evaluate these sources from an economic and environmental point of view
- → Set up preferential heating scenarios by contriving a scoring system

# Methodology

- Visit of the research center in Geneva
- Literature review
- Practical calculations
- Discussions with experts in the field
- Contacts with technology sellers and Charrat municipality

# Building

### Data

- 5 growth rooms of 3340 m<sup>3</sup>
- Total Volume : 16'700 m<sup>3</sup>
- 1500 batch reactors
- 1 drying room
- Assumed average temperature of 19°C in the rest of the building.
- Roof area :  $5236 \text{ m}^2$

## Needs

- Water temperature at 30 ° C  $\rightarrow$  air temperature at 34°C in the growth rooms
- Air compressor for the injection of a  $CO_2$ - $O_2$  mixture in the reactors
- Air temperature at 35°C in the drying room
- Estimated annual heating needs:
  - ~ 1'731'852 kWh





- Condensation fuel oil boiler
- Estimate: ~ 183'265 l/yr.
- big buried oil tank
  - CO<sub>2</sub> and particle emissions



- Estimate: ~ 168305 m<sup>3</sup>/yr. - CO<sub>2</sub> and particle emissions
- no gas network in Charrat

Condensation gas boiler



· **D** '

- Shredded wood boiler Estimate: ~ 1560 m<sup>3</sup>/yr.
- + neutral CO<sub>2</sub> balance
  - NOx, CO, VOCs emissions

**Geothermal** Ground-to-water heat pump

- efficient and constant all
- year long
  - building in "Au" zone ->
  - probes probably forbidden

#### **Photovoltaic**

**Energy sources** 

Annual production : ~10<sup>6</sup> kWh

- + no need for fuel
- + no emissions
- high investment
- depending on the weather

#### Annual production: ~716'000 kWh **Thermal solar**

- + no need for fuel
- + no emissions
- high investment
- depending on the weather



**Compressor** 

- Air-to-water heat pump power uptake: ~ 494'815 kWh/yr. no direct emission
- depending on the air temperature

Losses used to heat the air heat losses heating capacity < 1 growth room

- + limitation of energy losses
- + free energy
- decisive choice of the compressor

Gas



#### Overview of the future site (Charrat)



#### Assessment

|            | Storage<br>ease | Origin                            | CO2   | Ressource depletion | Smoke emission<br>quality | Global<br>ecology | Price | Subsidies | Weighted average |
|------------|-----------------|-----------------------------------|-------|---------------------|---------------------------|-------------------|-------|-----------|------------------|
| Scenario 1 | +               | abroad<br>(swiss finish)<br>++    | +     | +                   | ++                        | +                 | +     | 8-8       | +                |
| Scenario 2 | ++              | local<br>(forests)<br>+++         | +++++ | ++                  | +                         | +++               | +++   | -         | +++              |
| Scenario 3 | ++++            | local<br>(electricity mix)<br>+++ | +++   | ++++                | +++                       | +++               | ++    | ++        | ++               |
| Scenario 4 | ++++            | local<br>(on the roof)<br>++++    | ++++  | ++++                | ++++                      | ++++              | ++++  | ++++      | ++++             |
| Scenario 5 | ++++            | local<br>(on the roof)<br>++++    | +++++ | ++++                | ++++                      | +++++             | +++++ | ++++      | +++++            |

- The price includes the basic investment and functioning over 10 years.
- The given weights are : storage (5%), origin (5%), ecology (40%), price (45%) and subsidies (5%).

### Discussion

- Scenario 5 seems to be the best scenario given the chosen criteria.
- Wood heating can also be adapted to the context if the life of the plant is less than 10 years.
- The choice of important criteria is subjective and this scenario is "the best" only among the selected ones.
- As the building is not yet transformed, the study is based on many assumptions.
- There is a legal aspect that one has to take into account (subsidies, prohibitions).
- The options (in particular those of scenario 6 could be deeper explored with the use of building 3D modelling, simulation software and precise professional price quotes.

# Conclusions

- > The study shows that a heating design including an air-to-water heat pump, photovoltaic panels and recovery of compressor heat losses would be well suited to the context.
- > This work is a preliminary study that would be interesting to support later, including exploring the possibilities presented in scenario six.