

EPFL: Athanasios Nenes

Todd Harris, Adrien Berteaux

MeteoSwiss: Laurent Vuilleumier Unisanté: David Vernez

UV irradiance maps to support skin cancer research and prevention

Introduction

Problem... Switzerland has the highest skin cancer rate in Europe:

lack of public awareness about dangers of UV

Need... simple and clear representations of risk to support public health decision making

Need... Accurate data for individual & population risk for **research**

Goals

- Improve ease of access and portability of massive UV dataset
- Develop tools providing:
 - ✓ Straightforward analysis capabilities and outputs for non-experts
 - ✓ Flexibility with a range of different user input
 - ✓ Further applicability to different datasets (e.g. pollutants)

Solution: We developed **UV-TAMER** (Toolkit for Analysis and Maps of Exposure Risk), a software suite to address these needs.

Chronic exposure

- Long-term (i.e. chronic) exposure to UV is known to damage skin and cause basal cell carcinoma and squamous cell carcinoma (cancers)
- Maps of average UV irradiance show where chronic effects are greatest

Problem...

• Dataset **not portable** (336GB)

Solution...

➤ Take mean & standard deviation (SD) of each hour in each month for summary data files

UV-MM (Map Maker)

- Simple tool to view and compare data, find average irradiance patterns
- Option for user-defined units e.g. non-linear, piecewise etc.
- Can make many maps in one run \rightarrow animation option in development

Daily Dose

- Cumulative daily UV exposure is the best indicator for chronic effects
- **Problem...** Some people work outdoors, some in offices etc.

How to account for different activities?

Solution... We developed an **exposure schedule** system

UV-CAT (Chronic Analysis Tool)

Compare scenarios

- Work life in Lausanne (Jun)
- Skiing in Crans-Montana (Feb)
- Swimming at Saint-Sulpice (Jun)
- Swimming with skin type IV (vs I)

Determine chronic exposure risk

- Schedules can account for shade, skin colour, clothing, posture, sunscreen application...
 - ...highly extendible
- Applicable for occupational cancer, health insurance, epidemiology, person use - are your habits risky?

Acute exposure

• Short-term high intensity UV exposure (i.e. acute) events are known to cause **melanoma** (cancer)

Problem...

• Need to determine **probability** of acute exposure

Solution...

Construct UV histograms

- Generate summary data as above Histograms in place of mean, SD
- Obtain the probability of exceedance of a user-defined threshold
- 0 1 2 3 4 5 6 7 8 9
- Combine probability with population distribution
 e.g. residents, employees, specific occupations, etc.
- Multiply population by probability to give population risk
- Find regions with the most individual acute exposure events

> primary targets for public awareness

UV-PRAE (Population Risk of Acute Exposure)

Conclusion

- **UV-TAMER** includes easy-to-use tools for assessing exposure danger
- Chronic and acute exposure risk of UV, pollutants, or other data...
- Simple representations of risk + accurate data for research
- Suitable for government, epidemiology, public use (web integration)