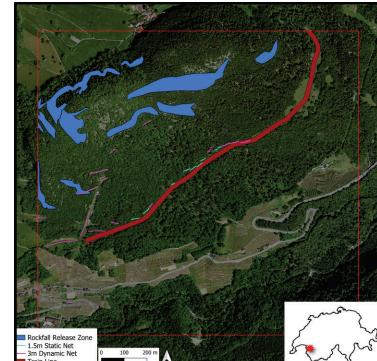


Rejuvenation of the Efflot de Veyges Rockfall Protection Forest

Students: Camille Masanet,
William Browne


Supervisors: Aline Sciacca - DGE- FORET
Christoph Bachofen - EPFL ENAC IIE PERL

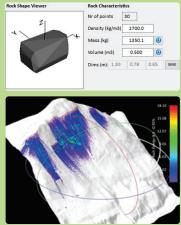
CONTEXT

In the European Alps, **rockfall** presents a persistent threat to settlements, infrastructure, and ecosystems. Rockfall protection forests (RPFs) offer a natural and cost-effective defense by reducing the **kinetic energy** and **runout distance** of falling rocks [1]. Their effectiveness depends on forest structure, species composition, and regeneration, all of which can be compromised by environmental stressors and disturbance events [2]. The **Efflot de Veyges forest** near Aigle, Switzerland, currently protects a train line from rockfall, but as an aging forest suffering from **wild ungulate grazing**, it requires a targeted rejuvenation strategy to restore its protective function without increasing rockfall risk during regeneration.

GOAL: maximum rejuvenation while maintaining rockfall protection

How will the Efflot de Veyges forest be rejuvenated?

The rejuvenation process consists of:


- adding **nets around a 10x10m area** to protect juvenile trees from being **grazed**
- **removing 30 % of canopy cover** to allow more light in the rejuvenation cells

OBJECTIVES

- Define the **optimal placement for rejuvenation cells** based on terrain characteristics and produce cell placement scenarios
- **Simulate rockfall events for each cell opening scenarios** and evaluate associated **rockfall hazards for the train line for a 30 year return period**
- Present **two rejuvenation cell strategies** and their **implementation protocol** for the next 90 years

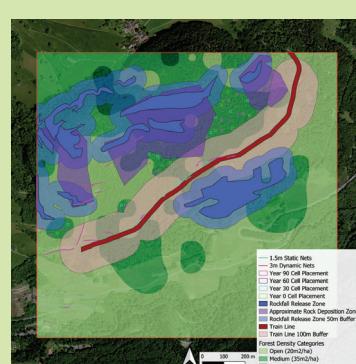
METHODOLOGY

1. Identify **main terrain characteristics favorable for tree growth and survival**. Place rejuvenation cells and create cell opening scenarios every 30 years.

2. Simulate rockfall events on the software RAMMS::Rockfall. Provide input for **local terrain characteristics**: rockfall starting zones, forest density, terrain hardness, topography, protective nets and rock volume. And analyze model outputs: **rock trajectory, and kinetic energy**.

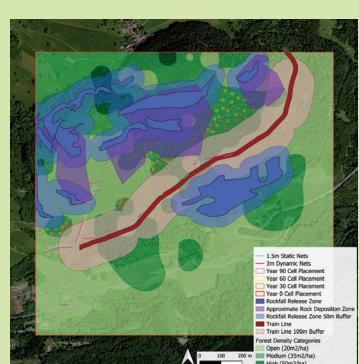
3. Determine **risk for damage on the train line** and propose **two cell opening protocols with associated risk statistics**. Define the cell placement for the next 90 years and provide **insightful data for cell placement opportunities on the hillslope**.

RESULTS


Simulation scenario	Max KE at trainline (kJ)	% increase in max KE	Danger category
No cells	290		Medium
Protection Year 0	265	-8.7172%	Medium
Protection Year 30	270	-6.7276%	Medium
Protection Year 60	318	9.8172%	High
Protection Year 90	307	5.8448%	High
Rejuvenation Year 0	291	0.3448%	Medium
Rejuvenation Year 30	347	19.6552%	High
Rejuvenation Year 60	401	38.2759%	High
Rejuvenation Year 90	504	73.7931%	High

CDN impact intensity categories for a 30 year return period:
Low = $0 < KE \leq 30 \text{ kJ}$
Medium = $30 < KE \leq 300 \text{ kJ}$
High = $KE > 300 \text{ kJ}$

high intensity events on a 30 year return period


Protection-oriented scenario

- Opening of **8 cells** every 30 years
- Slighter increase in KE of rocks after opening
- Higher increase in rocks reaching the trainline

Rejuvenation-oriented scenario

- Opening of **16 cells** every 30 years
- Higher increase in KE of rocks after opening
- Lower increase in rocks reaching the trainline

Hazards associated to the kinetic energy of rocks reaching the train line

highest % increase in rocks reaching the train line

chance for a 500 L boulder to reach the train line once every 30 years

Simulation scenario	# rocks reaching train line	Increase in # rocks reaching train line	% increase in rocks reaching the train line	Reach probability
No cells	20			0.022%
Protection Year 0	31	11	55.00%	0.034%
Protection Year 30	23	3	15.00%	0.026%
Protection Year 60	29	9	45.00%	0.032%
Protection Year 90	32	12	60.00%	0.036%
Rejuvenation Year 0	20	0	0.00%	0.022%
Rejuvenation Year 30	27	7	35.00%	0.030%
Rejuvenation Year 60	30	10	50.00%	0.033%
Rejuvenation Year 90	28	8	40.00%	0.031%

Hazards associated to the number of rocks reaching the train line

- Opening rejuvenation cells **slightly increases reach probability** but **greatly increases maximum kinetic energy of rocks** traveling downhill
- Doubling the number of cells opened in preferred areas does not substantially increase reach probability
- Overall, reach probability increases from **1/4500** rocks reaching the train line to **1/2800** rocks after cell opening
- **5 cell opening scenarios out of 8 increase the hazard intensity category** (from Medium to High) of the area on a 30-year return period

These results will be used to **inform forest management decisions** to protect the train line running through the Efflot de Veyges forest from rockfall.

CONCLUSION