Section Sciences et Ingénierie de l’environnement  
Design Project 2024 (semestre de printemps)  

Proposition n°5

**Generation, characterization, and traceability of inhalable microplastics**

**Partenaire externe ou laboratoire IIE**  
Prénom, Nom David Vernez  
Adresse courriel david.vernez@unisante.ch  
Téléphone 021 314 74 21

Prénom, Nom Myriam Borgatta  
Adresse courriel myriam.borgatta@unisante.ch  
Téléphone 021 314 74 36

Nom entreprise/administration/laboratoire Unisante-PMU – Département Santé au Travail et Environnement (DSTE)  
Taille de l’entreprise (nbre de collaborateurs) : Unisante : 1000 ; DSTE : 100  
Adresse Route de la Corniche 2, 1066 Epalinges  
Site Web https://unisante/unites/6863

**Encadrant EPFL**  
Athanasios Nenes  
Adresse courriel athanasios.nenes@epfl.ch  
Téléphone 021 693 80 31

Laboratoire des processus atmosphériques et leurs impacts  
Adresse EPFL ENAC IIE LAPI  
Site Web https://www.epfl.ch/labs/lapi/

**Descriptif du projet**

Plastics, characterized as synthetic persistent organic compounds, are considered as priority pollutants for the environment. Plastics are polymeric chemicals (>5000) intended for human purpose such as clothing, tires, vehicle interiors, toys, furniture, carpet, bags, bottles, and building materials. Over time and through usage, plastics undergo fragmentation, resulting in the generation of plastic residues that are released into the surrounding environment (outdoor/indoor air and dust). These plastic residues, commonly referred to as microplastics (MPs), exhibit a diverse range of properties, including differences in composition, shape, size, and surface characteristics, all of which play pivotal roles in influencing their potential toxicity. Little is known on the type of polymers, shape, size and concentration of microplastics that are chronically inhaled by humans. The kinetics of absorption and possible exposure-related effects in humans after inhalation exposure to microplastics are unknown. At Unisante, our toxicologists perform toxicological studies with healthy participants in controlled exposure conditions. To assess the toxicokinetics of microplastics, a device is
required to generate controlled concentrations of microplastics in the air. A device for emitting controlled concentrations of powders is already available in the Unisanté laboratory. This equipment will probably have to be modified for the emission of PMs.

Objectif et buts

The objective of this work is to design/adapt a device capable of generating controlled concentrations of microplastics (MPs) for human toxicology studies.

Descriptif tâches

- Characterize inhalable microplastics and explore methods for tracking their presence and behavior within the human body.

- Investigate existing devices and technologies and customize an aerosolization system for microplastics, taking into consideration factors such as particle size range, concentration range, and control mechanisms.

- Perform testing and calibration procedures to ensure the precise and consistent generation of controlled concentrations of microplastics.

- Establish safety protocols and measures to protect researchers and participants during experiments involving microplastic exposure.

Divers

Lab work will take place in Unisanté Lab. Rue du Bugnon 19, Lausanne (close the University Hospital)