Technology

Information security & digital trust
The goal of this course is to provide the students with a global knowledge on the principles of information security and privacy required to build digital trust. It includes the threats raised by information technologies and the methodology and tools to identify, analyze and address them. In addition, the students will be trained to adopt a “security mindset”, thus enabling them to automatically take information security and privacy into account when analyzing systems. By the end of the semester, the students will possess some technical and methodological skills to perform an information security and privacy-oriented analysis of a system and propose solutions to address potential threats.

Science of climate change
How much has global climate already warmed and how will temperature evolve in the future? What impacts other than warming come with climate change? How do scientists model climate change and how do we interpret the outcome to deduce policy action from it?” These and many other questions will be addressed in this course. Climate change is a “grand challenge”, meaning that it is global in scale and not easily solved by a small group of people. On the contrary, dealing with climate changes requires the imagination, energy and effort of a large number of people with a diverse set of skills. To equip students with the necessary knowledge and tools, this course will give insights into the workings of Earth’s components such as the atmosphere, ocean and cryosphere, and the basic physics and chemistry of the climate system. The course reviews past climate change to put the present-day human-made climate forcing into perspective. By hands-on work with emission and observational data, and simple climate models, students will interactively understand the drivers and consequences of climate change at the global scale, and for particular hot spot areas like the polar regions. Students will discuss in-depth the current assessment report by the International Panel on Climate Change as well as policy options for mitigation, adaptation and climate engineering.

Robotics & the future of manufacturing I / II
Robotics and manufacturing have a profound invisible and visible impact on our daily lives, businesses and future towards a more sustainable society. Both robotics and manufacturing are either undergoing profound evolutions or facing challenges that require disruption. These evolutions and disruptions can relate to technology, business models, sustainability or all of them. As part of an interdisciplinary master program, this course constitutes an ideal learning platform to address these topics. The theoretical basics of robotics are first introduced in the winter semester. The summer semester is then devoted to exploration projects of 5 to 6 students with interdisciplinary background to design new products and address new markets. Three specific topics will be considered: 1) open robotics 2) rehabilitation robotics and 3) transport. Each project will target the development of a solution/product. We will evaluate the technology, the choice of components and the associated business models as well as the envisioned solution, while assessing its sustainability, its disruption and the market acceptability. project examples such as a collaborative robot that assists operators to succeed in a watch’ assembly task, a robotic device to enable a post-stroke rehabilitation at home, or a drone-based framework as a corporate postal solution.

Data science and Machine Learning I
Machine learning deals with the creation of predictive models based on historical data. Today, because of the abundance of data, machine learning is one of the driving forces of the incredible tech-celebration that we have witnessed in the recent years. This class will give a hands-on introduction to several topics in machine learning, ranging from data acquisition and data cleaning, to regression, classification and clustering, up to neural networks. The students will be introduced to the Wolfram Language which is a terse coding language that incorporates code, curated data and natural language recognition into a single platform. During the class we will also learn how to deploy our code and projects on the cloud.
Data science and Machine Learning II
This course provides participants with a hands-on experience in machine learning. Students will analyze large data sets using the state-of-the-art integrated machine-learning capabilities of the Wolfram Language (“Mathematica”) with the objective to provide decision makers with relevant insights. The business applications will cover a variety of industries and pertain to different organizational functions such as finance, marketing, and operations management.

Causal inference
Students will learn the core concepts and techniques of network analysis with emphasis on causal inference. Theory and application will be balanced, with students working directly with network data throughout the course.

Energy supply, economics and transition
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how the transition to a renewable energy system can be fostered.

New tools & research strategies in personalized health
In this course, we will define the concept of personalized health, describe the underlying technologies, the technological, legal and ethical challenges that the field faces today, and how they are being met. In line with the Health 2030 Initiative (https://health2030.ch/), this course aims to be multidisciplinary, to tackle different aspects of personalized health. Under supervision of a PI to coach you, you will study a specific problem, evaluating its basis and proposing solutions. The output will be a short report and an oral defense of your interdisciplinary project.

Digitalization & sustainable logistics
In this course, we address quantitatively the operational aspects linked to the management of logistics systems, focusing notably on their environmental impact. More precisely, and addressing practical situations, the aim of this course is the optimization of logistics systems, in particular when the objective is to minimize their associated environmental footprint. At the end of the course, students are expected to be able to:
- Understand and differentiate the different components that are composing the supply chain, and be aware of logistics situations arising commonly.
- Perform to the mathematical modeling of typical situations arising in logistics systems.
- Solve these models by using various tools from operations research, ranging from exact methods to heuristics.
- Analyze the results and draw managerial insights accordingly.