LIBOR Market Models with Stochastic Basis

Swissquote Conference on Interest Rate and Credit Risk 28 October 2010, EPFL

Fabio Mercurio,

Discussant: Paul Schneider

28 October, 2010

Paper Overview

Paper Overview

Critique I

Critique II

Proposal

Caplets

Density Expansion

Accuracy

Conclusion

References

- Extension of LMM model accounting for spread-widening between discount rates and LIBOR rates
- Related papers
 - ☐ Schoenbucher (1999)
 - ☐ Mercurio (2009)
 - ☐ Mercurio (2010)
- Formulae for IRS, caps, swaptions and guideline modeling different tenors simultaneously
- Very tractable application using SABR and shifted Lognormal models
- Fit to data is extraordinarily good

Critique I

Paper Overview

Critique I

Critique II

Proposal

Caplets

Density Expansion

Accuracy

Conclusion

References

- The framework models OIS forward rates $F_k^x(t)$ and spreads $S_k^x(t) := L_k^x(t) F_k^x(t)$ as independent processes
- lacktriangle But F and S are dependent by construction
- Also conditional variance of the two is likely related

Paper Overview

Critique I

Critique II

Proposal

Caplets

Density Expansion

Accuracy

Conclusion

References

Density Expansion II

■ Linear dependence regression $\Delta F = \theta_0 + \theta_1 \Delta S + \varepsilon$

Coefficient	Est.	Prob.
$\widehat{ heta}_0$	-0.001	0.1672
$\widehat{\widehat{ heta}_1}$	-0.971	0.0000

 \blacksquare Variance dependence regression $\Delta F^2 = \eta_0 + \eta_1 \Delta S^2 + \varepsilon$

Coefficient	Est.	Prob.
$\widehat{\eta}_0$	10.4962	0.0000
$\widehat{\eta}_1$	-1.6587	0.0000

Model Proposal

Paper Overview

Critique I

Critique II

Proposal

Caplets

Density Expansion

Accuracy

Conclusion

References

Density Expansion II

lacktriangle Suppose that F and L are both driven by the same variance factor

$$d \ln F_k^x(t) = -\frac{1}{2} V_k(t) dt + \sqrt{V_k(t)} dZ_k^F(t)$$

$$d \ln S_k^x(t) = -\frac{1}{2} V_k(t) dt + \sqrt{V_k(t)} dZ_k^S(t)$$

$$dV_k(t) = (b + \beta V_k(t)) dt + \sqrt{\alpha V_k(t)} dZ_k^V(t).$$

They are instantaneously uncorrelated. For fixed time ${\cal T}>0$ correlation proportional to ${\cal V}$

Note that conditional on

$$IV_k(t,T) := \int_t^T V_k(s) ds$$

 $\log F_k^x(T_{k-1}^x) \mid IV_k(t,T_{k-1}^x)$ and $\log S_k^x(T_{k-1}^x) \mid IV_k(t,T_{k-1}^x)$ are independently normally distributed

Caplet Prices with Proposal Model

Paper Overview

Critique I

Critique II

Proposal

Caplets

Density Expansion

Accuracy

Conclusion

References

Density Expansion II

lacksquare Condition on $IV_k(t,T_{k-1}^x)$ instead of $S_k^x(T_{k-1}^x)$

$$\mathbf{Cplt}(t, K; T_{k-1}^x, T_k^x) = \tau_k^x P_D(t, T_k^x)$$

$$\cdot \mathbb{E}_D^{T_k^x} \left[\mathbb{E}_D^{T_k^x} \left[\left[L_k^x(T_{k-1}^x) - K \right]^+ \mid \mathcal{F}_t \vee IV_k(t, T_{k-1}^x) \right] \mid \mathcal{F}_t \right]$$

■ Inner expectation is an integration against Lognormal convolution

$$f(z) := \mathbb{E}_D^{T_k^x} \left[\left[L_k^x(T_{k-1}^x) - K \right]^+ \mid \mathcal{F}_t \vee IV_k(t, T_{k-1}^x) = z \right]$$

 \blacksquare Denote with g(z) the conditional density of $IV_k(t,T^x_{k-1})\mid V_k(t).$ We need to solve

$$\int_0^\infty f(z)g(z)dz$$

Closed-form Density Expansion

Paper Overview

Critique I

Critique II

Proposal

Caplets

Density Expansion

Accuracy

Conclusion

References

- Approximate the conditional density of $IV_k(T) \mid V_k(t)$ using Filipović, Mayerhofer, and Schneider (2010) likelihood expansions
- Generate affine Markov process through embedding $V_k(t) \rightarrow (V_k(t), \int_0^t V_k(s) ds) =: IV_k(t))$

$$dV_k(t) = (b + \beta V_k(t))dt + \sqrt{\alpha V_k(t)}dZ_k^V(t)$$
$$dIV_k(t) = V_k(t)dt$$

- This process is polynomial and polynomial moments can be computed in closed-form
- Approximate the marginal distribution of $IV_k(T) \mid V_k(t)$ through polynomial expansion in a weighted \mathcal{L}^2 space
- Expansion performs very accurately.

Accuracy of Correlated Spread Model

Paper Overview

Critique I

Critique II

Proposal

Caplets

Density Expansion

Accuracy

Conclusion

References

Density Expansion II

The Picture shows the percentage deviation of the conditional expectation obtained from true density (Fourier inversion) and Filipović, Mayerhofer, and Schneider (2010) expansion

Conclusion

Paper Overview

Critique I

Critique II

Proposal

Caplets

Density Expansion

Accuracy

Conclusion

References

Density Expansion II

Pr	a	ISE

- ☐ Easy to use LMM adapted to current economic environment
- ☐ Formulae for IRS, caps, swaptions
- ☐ Guideline for modeling different tenors simultaneously

■ Future Topics

- ☐ Where does the spread come from?
- How can we make the model more realistic while maintaining tractability?

References

Paper Overview

Critique I

Critique II

Proposal

Caplets

Density Expansion

Accuracy

Conclusion

References

- Filipović, D., Mayerhofer, E., and Schneider, P. (2010), Density Approximations for Multivariate Affine Jump-Diffusion Processes. working paper
- Mercurio, F. (2009), Interest Rates and The Credit Crunch: New Formulas and Market Models. working paper
- Mercurio, F. (2010), Modern Libor Market Models: Using Different Curves for Projecting Rates and for Discounting. *International Journal of Theoretical and Applied Finance*, 13(1):113-137
- Schoenbucher, F. (2000), A Libor Market Model with Default Risk. working paper

Proposal Model Revisited

Paper Overview

Critique I

Critique II

Proposal

Caplets

Density Expansion

Accuracy

Conclusion

References

Density Expansion II

Consider

$$d \ln F_k^x(t) = -\frac{1}{2} V_k(t) dt + \sqrt{V_k(t)} \left(\rho dZ_k^V(t) + \sqrt{1 - \rho^2} dZ_k^F(t) \right)$$

$$d \ln S_k^x(t) = -\frac{1}{2} V_k(t) dt + \sqrt{V_k(t)} \left(\eta dZ_k^V(t) + \sqrt{1 - \eta^2} dZ_k^S(t) \right)$$

$$dV_k(t) = (b + \beta V_k(t)) dt + \sqrt{\alpha V_k(t)} dZ_k^V(t).$$

Since

$$\int_{t}^{T} \sqrt{V_k(s)} dZ_k^V(s) = -\frac{b(T-t) + \beta I V_k(T) + V_k(t) - V_k(T)}{\sqrt{\alpha}},$$

$$\ln F(T) - \ln F(t) \mid V(T), IV(T)$$

$$\sim N\left(-\frac{1}{2}IV(T) + \rho \int_{t}^{T} \sqrt{V(s)} dZ^V(s), (1-\rho^2)IV(T)\right)$$

By approximating $V_k(T), IV_k(T) \mid V_k(t)$ we could also induce instantaneous correlation Paul Schneider – 11/11