Corporate bond liquidity before and after the onset of the subprime crisis

Jens Dick-Nielsen Peter Feldhütter David Lando

Copenhagen Business School

Swissquote Conference, Lausanne October 28-29, 2010

The problem

- Corporate bonds trade at smaller prices i.e. higher promised yield - than similar riskless bonds
- This is because of risk of default (default, loss, risk premium of default risk)
- Liquidity risk or better illiquidity risk also contributes to the spread
- But how do we measure this contribution? Can we disentangle credit and liquidity?

What we show

- The combination of
 - superior data quality of intra-day corporate bond prices using TRACE data
 - natural experiment provided by the onset of the subprime crisis
- help us
 - identifying a set of liquidity proxies which contribute to bond spreads across ratings, across maturity and pre-and post crisis
 - defining an equally weighted average of four standardized liquidity measures which consistently contributes to spreads across time and rating
 - providing new estimates for the liquidity component of corporate bond spreads
 - demonstrating liquidity effects from funding liquidity shocks to lead underwriters
 - defining a liquidity beta for corporate bonds

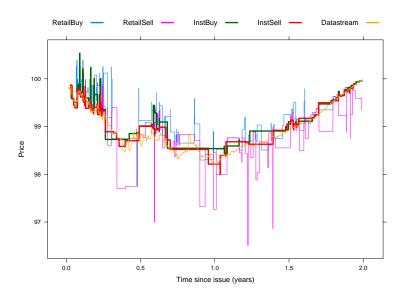
What we do

- Observe yields and yield spreads quarterly of bonds
- Use detailed TRACE data to compute a collection of liquidity proxies
- Use detailed firm-level information to control for credit risk
- Perform 'marginal' regressions introducing one liquidity at a time controlling for credit
- Extract a principal component of liquidity proxies which is a robust contributor to spreads
- Define an operational measure of liquidity risk
- Compute the contribution in the more liquid segment of corporate bonds to spreads across time, ratings and maturity
- Apply the measure to show the effects of funding shocks to lead underwriters
- Perform robustness checks

Some related papers

Related papers are (among others)

- ► Chen, Lesmond, and Wei (2007), Longstaff, Mithal, and Neis (2005), Huang and Huang (2005), Han and Zhou (2008)
- Goldstein, Hotchkiss, and Sirri (2007), Edwards, Harris, and Piwowar (2007), Bessembinder, Maxwell, and Venkararam (2006), Green, Hollifield and Schürhoff (2007)
- Ericsson and Renault (2006), Bao, Pan, and Wang (2008),
 Acharya and Pedersen (2005)
- ► Houweling, Mentink and Vorst (2005)
- Mahanti, Nashikkar, Subrahmaniam, Chacko, Malik (2008);
 Johnson (2008)


Transaction data from TRACE

- ▶ Transaction data from TRACE for the period (including quarters leading up to) January 1, 2005 - June 30, 2009
- Straight coupon bullet bonds
- ▶ No trades smaller than *USD*100,000
- ▶ Share prices for the issuing firms from CRSP
- Firm accounting figures from Bloomberg

Why we use large trades

- ▶ TRACE allows us to measure volumes of trade
- ▶ Truncate large trades at USD 5 million for investment grade and USD 1 million for speculative grade
- We can see very small trades
- We see a pattern of much larger (implied) bid-ask spreads and very large price differences in intraday trading
- This confirms that factors different from liquidity and credit are at play for small trades
- ▶ We therefore look at trades in excess of USD 100.000

Why we use large trades

Liquidity proxies

Transaction cost measures

- ▶ **Roll measure**: Roll (1984) find that (under certain assumptions) an estimate of the effective bid-ask is $2\sqrt{-cov(\Delta P_i, \Delta P_{i-1})}$
- ▶ Unique roundtrip costs (URC): If there are 2 (investor-dealer-investor) or 3 (investor-dealer-dealer-investor) trades with the same trading volume on a given day, they are (likely) part of a unique roundtrip. URC is the difference between the highest and lowest price (in percentage of price).

An illustration of URC

Issue: Description: NATIONAL ELECTRICITY COMPANY

EOC.MQ OF CHILE, INC.
Coupon Rate: Maturity Date: 08/01/2015

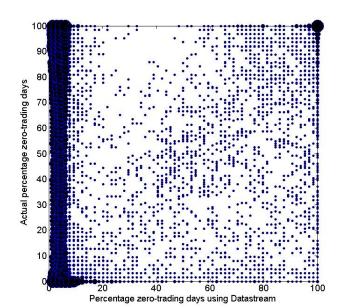
Execu	ition				
Date	Time	Status	Quantity	Price	Reporting Party Side
01/07/2009	12:57:48	Т	100000	109.510	S
01/07/2009	14:43:00	Т	250000	108.250	В
01/07/2009	14:43:00	Т	250000	108.750	S
01/14/2009	11:20:02	Т	30000	110.892	S
01/15/2009	15:49:00	Т	25000	109.237	В
01/15/2009	15:49:00	Т	25000	109.237	D
01/15/2009	15:55:52	Т	25000	111.237	S
01/16/2009	09:56:00	T	100000	108.615	D
01/16/2009	09:56:00	T	100000	108.615	В
01/16/2009	14:16:58	T	100000	109.500	S

Liquidity proxies

The Amihud price impact measure

► The Amihud (2002) measure estimates how much a trade of a given size moves prices:

$$Amihud_t = \frac{1}{N_t} \sum_{j=1}^{N_t} \frac{|\frac{P_j - P_{j-1}}{P_{j-1}}|}{Q_j}$$


Liquidity proxies

Trading frequency measures

- ► Turnover: quarterly trading volume amount outstanding
- ➤ **Zero-trading days**: The percentage number of days a bond does not trade (Chen, Lesmond, Wei (2007)). We include both **bond** ZTDs and **firm** ZTDs (percentage of days the issuing firm does not have a bond that is trading).

On measuring zero trading days

Datastream vs TRACE

Liquidity proxies

Liquidity risk measures

- ► Investors might require extra compensation for holding assets which are illiquid when asset returns are low
- ➤ This suggests adding a beta to our regressions measuring covariation between illiquidity costs and market returns
- Beta is linear in the standard deviation of illiquidity costs
- We include in our regressions the quarterly standard deviations of the daily Amihud measure and unique roundtrip costs.

The liquidity measures - summary stats

Ami 99th

0.0015

0.0003

0.29

0.12

0.06

0.57

0.14

-0.12

0.0

0.0

0.0

95th

75th

50th 0.00 25th

5th

1st 0.0000

URC risk

	Panel A: Summary statistics for liquidity proxies										
Amihud	Roll	firm zero	bond zero	turnover	URC	Amihud risk	URC risk				
0.0813	8.39	92.1	96.8	0.247	0.0156	0.1592	0.01702				
0.0427	3.16	76.2	93.5	0.136	0.0096	0.0792	0.00997				
0.0120	1.05	12.5	79.7	0.070	0.0041	0.0298	0.00427				
0.0044	0.53	0.0	60.7	0.045	0.0022	0.0147	0.00220				

0.028

0.012

0.005

-0.11

0.87

0.0012

0.0005

0.0002

0.0064

0.0011

0.0002

0.69

0.00102

0.00024

0.00003

	,	Donal	D. Carrolat	ion matrix	for liquidit	v provi	0.0	
	Amihud	Roll	firm zero					URC risk
Amihud	1.00							
Roll	0.16	1.00						
firm zero	-0.08	0.11	1.00					
bond zero	-0.08	0.18	0.46	1.00				
turnover	-0.20	0.04	0.03	0.04	1.00			
URC	0.72	0.20	-0.03	-0.03	-0.13	1.00		
Amihud risk	0.61	0.10	-0.12	-0.12	-0.11	0.69	1.00	

31.7

6.3

0.0

Table 1: Statistics for liquidity proxies. This table shows statistics for corporate bond liquidity proxies. The proxies are described in detail in Section 3 and are calculated quarterly from 2004:Q4 to 2009:Q2. Panel A shows quantiles for the proxies. Panel B shows correlations among the proxies.

-0.19

1.00

Regressions of spreads on single proxies

Control for credit risk

► For each rating class we run separate regressions using quarterly observations

$$\begin{split} \mathsf{Spread}_{it} &= \alpha + \gamma \ \mathsf{Liquidity}_{it} + \beta_1 \ \mathsf{Bond} \ \mathsf{Age}_{it} + \beta_2 \mathsf{Amount} \ \mathsf{Issued}_{it} \\ &+ \beta_3 \ \mathsf{Coupon}_{it} + \beta_4 \mathsf{Time-to-Maturity}_{it} + \beta_5 \ \mathsf{Eq.Vol}_{it} \\ &+ \beta_6 \ \mathsf{Operating}_{it} + \beta_7 \ \mathsf{Leverage} + \beta_8 \ \mathsf{Long} \ \mathsf{Debt}_{it} \\ &+ \beta_{9,pretax} \ \mathsf{Pretax} \ \mathsf{dummies}_{it} + \beta_{10} \mathsf{10} \ \mathsf{y} \ \mathsf{Swap}_t \\ &+ \beta_{11} (\mathsf{10y-2y}) \ \mathsf{Swap}_t + \beta_{12} \mathsf{forecast} \ \mathsf{dispersion}_{it} + \epsilon_{it} \end{split}$$

▶ i is bond issue, t is quarter, and Liquidity_{it} contains one of several liquidity proxies defined below

Which variables matter in marginal regressions?

- Significant in most rating categories pre and post crisis:
 - Amihud measure
 - Amihud measure risk
 - Roundtrip costs (URC)
 - ▶ URC risk
- ▶ The signs are consistent for these proxies
- Significance of other measures is more scattered, and signs vary

Marginal regressions of spreads on liquidity proxies

Panel A: Marginal liquidity regressions, pre-subprime (2004:Q4-2007:Q1)

	AAA	AA	A	BBB	spec
Amihud	1.15***	2.08***	4.14*** (3.18)	3.68 (1.52)	$\frac{14.12}{(1.63)}$
Roll	0.02*** (3.18)	0.02*** (3.48)	0.01 (1.48)	0.02	0.05 (1.26)
firm zero	$0.000 \\ (0.46)$	-0.001 (-1.42)	$0.000 \\ (0.74)$	-0.001^*	-0.005 (-1.60)
bond zero	-0.000	-0.000	$0.000 \\ (1.13)$	-0.003** (-2.22)	$-0.012** \\ (-2.33)$
$\operatorname{turnover}$	-0.27^{***}	-0.12	-0.03 (-0.31)	-0.03 (-0.18)	-0.05
URC	3.83**	7.11***	18.91***	47.47***	69.29**
Amihud risk	0.39*	0.55* (1.87)	1.43**	3.46***	9.48**
URC risk	2.08**	3.98* (1.95)	9.16**	25.99*** (3.18)	57.20*** (3.67)

Marginal regressions of spreads on liquidity proxies

Panel B: Marginal liquidity regressions, post-subprime (2007:Q2-2009:Q2)

	AAA	AA	A	BBB	spec
Amihud	2.93***	18.40***	6.80	21.94**	22.47
9237 (997)	(2.98)	(2.94)	(0.82)	(2.54)	(1.52)
Roll	0.04***	-0.02	0.04	0.19*	-0.73
	(2.58)	(-1.55)	(0.87)	(1.76)	(-1.47)
firm zero	-0.016	-0.000	-0.000	-0.023**	-0.047**
9 99	(-1.46)	(-0.03)	(-0.07)	(-2.22)	(-2.05)
bond zero	0.007***	0.002	0.013**	-0.016	-0.087
	(7.26)	(0.73)	(2.31)	(-0.53)	(-1.49)
turnover	-2.95***	-2.12	-0.74	-2.97	14.47
	(-11.87)	(-1.11)	(-0.31)	(-0.33)	(0.82)
$\overline{\mathrm{URC}}$	20.50***	191.63***	209.47***	212.15***	-143.70
	(2.88)	(3.08)	(4.74)	(2.96)	(-0.57)
Amihud risk	1.99	18.87***	20.66***	21.42**	24.11**
HDQ 11	(1.25)	(4.74)	(3.26)	(2.22)	(2.43)
URC risk	17.40**	167.60***	190.46***	270.28***	233.16**
	(2.07)	(3.71)	(4.03)	(4.23)	(2.13)

Principal component analysis of liquidity proxies

- ► Given the high level of correlation between our main measures, we choose to extract principal components
- The measures are of course on very different scales, so we extract PCs from the correlation matrix
- Principal component analysis reveals that PC1 loads mainly on the four measures
- This is true pre and post crisis and weights for the four are almost identical
- ▶ PC2 is related to zero trading days, PC3 is mainly turnover

Principal component loadings - before crisis

Panel A: Principal Component loadings, pre-subprime (2004:Q4-2007:Q1)										
	1PC	2PC	3PC	4PC	5PC	6PC	7PC	8PC		
Amihud	0.45	0.05	-0.12	-0.05	0.44	0.70	-0.12	0.28		
Roll	0.26	0.33	0.08	-0.86	-0.27	-0.06	0.06	0.02		
firm zero	-0.04	0.64	-0.02	0.39	-0.56	0.36	0.07	0.02		
bond zero	-0.00	0.67	-0.10	0.10	0.56	-0.45	0.05	0.11		
turnover	-0.02	0.07	0.98	0.07	0.15	0.08	0.01	0.03		
URC	0.52	0.06	0.03	0.15	0.00	-0.10	-0.39	-0.73		
Amihud risk	0.47	-0.11	0.01	0.16	-0.01	-0.09	0.85	-0.09		
URC risk	0.49	-0.12	0.06	0.21	-0.29	-0.40	-0.31	0.60		
cum. % explained	39%	59%	72%	81%	89%	94%	99%	100%		

Principal component loadings - after crisis

Panel B: Principal Component loadings, post-subprime (2007:Q2-2009:Q2)										
	1PC	2PC	3PC	4PC	5PC	6PC	7PC	8PC		
Amihud	0.46	0.04	-0.10	-0.10	-0.07	0.73	0.43	0.21		
Roll	0.06	0.47	0.35	-0.78	0.10	-0.02	-0.17	0.02		
firm zero	-0.11	0.59	-0.28	0.33	0.62	0.20	-0.17	0.00		
bond zero	-0.12	0.64	-0.07	0.21	-0.67	-0.16	0.21	0.12		
$\operatorname{turnover}$	-0.14	0.05	0.88	0.39	0.08	0.20	0.12	0.01		
URC	0.52	0.15	0.06	0.09	0.09	-0.26	0.28	-0.73		
Amihud risk	0.46	0.03	0.07	0.21	-0.30	0.19	-0.78	-0.04		
URC risk	0.51	0.02	0.09	0.13	0.23	-0.51	0.10	0.63		
cum. % explained	39%	58%	71%	81%	88%	94%	99%	100%		

Regressing spreads on the PCs Still controlling for credit

- ▶ We now regress spreads on the PCs
- We still control for credit
- ▶ PC1 is consistently significant and consistently with positive sign
- Not true of the others

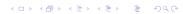
Regression of spreads on principal components (before)

Credit controls not shown

Panel A: Multivariate liquidity regressions, pre-subprime (2004:Q4-2007:Q1)

	AAA	AA	A	BBB	spec
intercept	-0.4	0.2	-0.5	2.2***	-0.1
25000000000	(-1.24)	(1.20)	(-1.62)	(2.84)	(-0.03)
1PCA	0.01***	0.02***	0.03***	0.05***	0.30***
	(3.22)	(12.31)	(3.28)	(2.88)	(5.65)
$_{ m 2PCA}$	0.01	-0.00	0.04***	-0.06	-0.19
	(0.58)	(-0.09)	(3.41)	(-1.30)	(-1.19)
3PCA	-0.014***	-0.006	0.018***	-0.005	0.093
	(-4.20)	(-0.72)	(2.66)	(-0.21)	(0.88)
4PCA	-0.020**	-0.022***	-0.002	-0.015	0.112^{*}
	(-2.32)	(-2.94)	(-0.18)	(-0.67)	(1.92)
5PCA	0.00	0.02***	0.03*	-0.05	-0.02
	(0.01)	(3.08)	(1.88)	(-1.22)	(-0.16)
6PCA	0.00	0.01	0.03***	0.03	0.24*
	(0.69)	(0.81)	(4.19)	(0.65)	(1.91)
7PCA	0.00	-0.00	-0.00	-0.02*	-0.10*
	(0.27)	(-0.28)	(-0.55)	(-1.70)	(-1.68)
8PCA	0.02***	0.02	-0.01	-0.23***	-0.17
	(3.07)	(1.43)	(-0.74)	(-2.58)	(-1.56)

Regression of spreads on principal components (after)


Credit controls not shown

Panel B: Multivariate liquidity regressions, post-subprime (2007:Q2-2009:Q2)

	AAA	AA	A	BBB	spec
intercept	-2.5**	-2.6	1.0***	24.9	30.2^*
100)	(-2.00)	(-1.00)	(2.66)	(1.42)	(1.65)
1PCA	0.05*	0.48***	0.45***	0.67***	1.16***
- B - C +	(1.91)	(4.50)	(4.64)	(3.18)	(4.33)
$_{ m 2PCA}$	-0.08	0.15	0.26**	-0.03	-0.73
V2000000000000000000000000000000000000	(-0.57)	(1.60)	(2.27)	(-0.05)	(-1.21)
3PCA	0.066	0.153***	0.146***	0.389*	0.349
	(1.21)	(2.96)	(3.27)	(1.75)	(0.90)
$_{ m 4PCA}$	-0.125	0.283***	0.267***	0.110^{*}	0.900
	(-1.35)	(5.14)	(4.07)	(1.81)	(1.40)
5PCA	-0.35***	-0.18	-0.17***	-0.46	0.52
	(-2.75)	(-1.17)	(-7.65)	(-0.90)	(0.97)
6PCA	-0.09*	-0.17	-0.41*	-0.30*	1.00**
	(-1.76)	(-1.30)	(-1.67)	(-1.70)	(2.57)
7PCA	0.07	-0.39*	-0.22	-0.44	-0.58**
	(0.68)	(-1.79)	(-1.24)	(-1.08)	(-1.98)
8PCA	0.12*	0.07	-0.29**	1.04	0.63
	(1.72)	(0.30)	(-2.14)	(1.11)	(0.54)

Our liquidity measure

- ▶ The loadings on the PC1 are very close to equal
- ▶ The significance of PC1 is robust
- We simply define a liquidity measure which is the equally weighted combination of these measures
- ▶ I.e. Let \mathcal{L}_{it}^{j} denote the type j liquidity measure of bond i in quarter t
- ▶ j is an index for the Amihud measure, Amihud measure risk, URC and URC risk
- Normalize by the mean and standard deviation of measure j across bonds and quarters, i.e. let $\tilde{L}^j_{it} = \frac{L^j_{it} \mu^j}{\sigma^j}$
- ▶ Define $\lambda_{it} = \sum_{j=1}^{4} \tilde{L}_{it}^{j}$
- ▶ We do the computations separately for the two regimes

Contribution to spreads from liquidity

- ightharpoonup Call our measure λ
- Let λ_{it} denote the value of the liquidity measure for bond i at date t
- Perform the regression for each rating class

$$spread_{it}^R = \alpha^R + \beta^R \lambda_{it} + credit risk controls_{it} + \epsilon_{it}$$

- Group bonds according to maturity also
- ▶ Within each category (rating, maturity), sort λ_{it} according to size
- ▶ Define 5% and 50% quantiles λ_5, λ_{50}
- Report $\beta^R(\lambda_{50} \lambda_5)$
- Bootstrap standard errors

Liquidity spread:

Difference between median and high liquidity level

Panel A: Liquidity component in basis points, pre-subprime (2004O4-2007:O1)

	(2001@12001.@1)									
	average	0-2y	2-5y	5-30y	N 0-2y	N 2-5y	N 5-30y			
AAA	0.8	0.6 (0.3;0.8)	0.9 $(0.5;1.3)$	1.1 $(0.6;1.5)$	162	178	193			
AA	1.0	0.7 (0.3;1.1)	$ \begin{array}{c} 1.0 \\ (0.4;1.7) \end{array} $	$\frac{1.3}{(0.5;2.2)}$	704	667	498			
A	2.4	1.5 (0.6;2.3)	2.5 (1.1;3.9)	3.2 (1.4;4.9)	1540	1346	1260			
BBB	3.9	2.8 (1.4;4.4)	4.0 (1.9;6.2)	4.7 (2.3;7.3)	517	270	553			
spec	57.6	45.0 (32.3;57.4)	44.0 $(31.5;56.0)$	83.9 (60.2;106.8)	270	324	480			

Liquidity spread:

Difference between median and high liquidity level

Panel B: Liquidity component in basis points, post-subprime

	(2007:Q2-2009:Q2)										
100	average	0-2y	2-5y	5-30y	N 0-2y	N 2-5y	N 5-30y				
AAA	4.9	2.5 (0.5;4.4)	4.5 (0.9;8.0)	7.9 $(1.7;14.1)$	110	149	155				
AA	41.8	23.5 (12.9;33.2)	37.1 $(20.3;52.4)$	64.7 $(35.5;91.4)$	493	572	483				
A	50.7	26.6 (15.3;39.2)	51.0 (29.3;75.1)	74.5 (42.9;109.7)	762	878	890				
BBB	92.7	64.3 (36.5;92.7)	115.6 $(65.6;166.6)$	98.1 (55.7;141.4)	123	159	256				
spec	196.8	123.6 (80.2;157.3)	$\underset{(145.3;285.1)}{224.0}$	242.7 $(157.4;308.8)$	133	129	201				

Contribution to spreads from liquidity - robustness

- We also try with higher liquidity measure
- ▶ Define 5% and 75% quantiles λ_5, λ_{75}
- ▶ Report $\beta^R(\lambda_{75} \lambda_5)$
- We try with swap rates instead of treasuries as benchmark riskless rate
- ► We perform matched regressions using pairs of bonds from same issuer with close to equal maturity
- Idea is that credit risk controls can now be replaced by a pair specific dummy variable

The maturity structure

- ▶ We also try to group by rating only (across maturities)
- ...and by maturity only (across ratings)

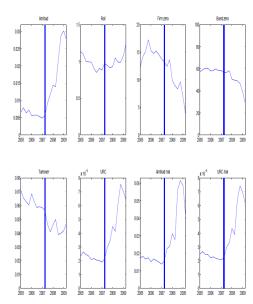
Maturity effects

Panel A: Liquidity component in fraction of spread, pre-subprime

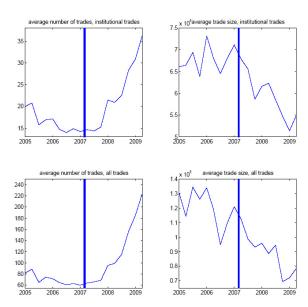
((2005:Q	1-2007	':Q1)		
rating	AAA	AA	Α	BBB	spec
fraction in pct	3 (2;5)	4 (2;7)	11 (5;18)	8 (3;12)	24 (18;30)
N	533	1869	4148	1340	1075

maturity	0-1y	1-2y	2-3y	3-4y	4-5y	5-8y	8-10y	10-30y
fraction in pct								
-	(2;4)	(4;9)	(8;17)	(8;18)	(8;17)	(7;15)	(5;11)	(7;14)
N	1596	1613	1241	891	641	1187	578	1218

Panel B: Liquidity component in fraction of spread, post-subprime (2007:O2-2009:O2)


(2007.Q2-2009.Q2)								
rating	AAA	AA	Α	BBB	spec			
fraction in pet	7 (1;12)	42 (23;60)	26 (14;39)	29 (16;41)	23 (16;30)			
N	414	1549	2533	539	464			

maturity	0-1y	1-2y	2-3y	3-4y	4-5y	5-8y	8-10y	10-30y
fraction in pct	11 (7;14)	20 (13;27)	23 (15;31)	27 (18;38)	31 (20;42)	44 (28;60)	33 (21;44)	43 (28;53)
N								598


Dynamic of key variables

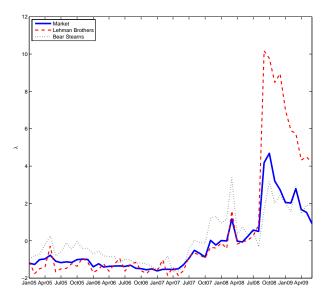
- ▶ Note distinct patterns in increase in our four variables
- Remarkable fact: Lower turnover but also fewer bond zero days after onset
- ▶ This can be explained by smaller trade sizes

Dynamics of liquidity proxies

On trading volume and size

Liquidity betas

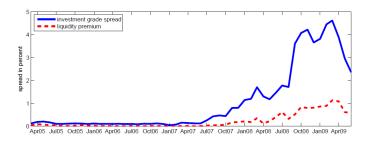
- Introduction of 'liquidity betas' as regressors measuring the extent to which the individual bond's liquidity varies with overall bond market liquidity
- We obtain bond-specific betas by regressing the bond specific measure λ_i (in quarters where it can be computed) on the average (weighted by amount outstanding) of all bond specific measures
- ▶ We have to use the entire sample period 2004Q4-2009Q2 to obtain these estimates, since subdividing into two periods gives noisy estimates
- We find that before the crisis, this beta does not contribute to spreads (except for AAA)
- After the crisis, the picture is the opposite and there is a contribution except for AAA
- Consistent with flight-to-quality

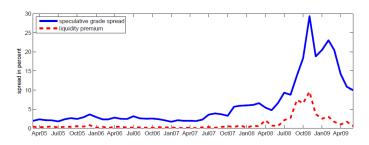

The effect of liquidity betas

	pre-sub	post-subprime		
	β	λ	β	λ
AAA	-0.0034		-0.0085	
	(-1.34)		(-0.84)	
	-0.0056***	0.0033***	0.0159	0.0234**
	(-3.26)	(2.65)	(1.26)	(2.38)
AA	0.0012		0.1823^*	
	(0.23)		(1.94)	
	0.0067	0.0017	0.1720**	0.1712***
	(1.06)	(0.60)	(2.14)	(3.82)
\mathbf{A}	-0.0004		0.2631**	
	(-0.14)		(2.22)	
	0.0021	0.0106**	0.2314**	0.1211**
	(0.65)	(2.57)	(2.15)	(2.03)
BBB	0.0044		0.2171***	
	(1.34)		(4.05)	
	0.0012	0.0254***	0.3187***	0.3242***
	(0.34)	(4.33)	(3.44)	(2.91)
spec	0.0102		1.3538***	
	(0.90)		(2.60)	
	0.0162	0.1502***	1.3140**	0.4155***
	(1.31)	(4.64)	(2.73)	(7.08)

Funding liquidity affects market liquidity

- Lead underwriters typically maintain a market-maker role in secondary market
- ► Funding liquidity of market-maker may affect ability to provide liquidity (see for example Brunnemeier and Pedersen (2009))
- ► We can compare corporate bonds underwritten by distressed firms with the overall sample and we find a clear effect of stress to funding liquidity


The effect of lead underwriter



Liquidity contribution over time

- ► We can also use our measure to look at the liquidity contribution to spreads over time
- ▶ We show result for investment grade and speculative grade
- Overall conclusion is that the illiquidity premium has returned to pre-crisis level in the speculative grade segment, but remains higher in the investment-grade segment

Decomposition over time

Summary of main points

- TRACE data and onset of crisis provide new insights into liquidity proxies
- ▶ Based on a principal component analysis we propose a simple equally weighted average of four liquidity measures
- ► This measure consistently (across ratings, in different regimes) is a significant determinant of credit spreads in corporate bonds
- ► Larger liquidity components after the onset of the crisis (both in levels of component and in regression coefficient response)
- Premiums seem to have returned to pre-crisis levels for speculative grade but remain higher for investment-grade
- ► Higher components for lower credit quality, and mostly increasing with maturity
- ► Confirm effect of funding liquidity on market liquidity

Supplementary tables

Liquidity spread:

Difference between low (75% quantile) and high liquidity level

Panel A: Liquidity component in basis points, pre-subprime

(2004Q4-2007:Q1)							
	average	0-2y	2-5y	5-30y	N 0-2y	N 2-5y	N 5-30y
AAA	1.4	1.0 (0.5;1.3)	1.2 (0.7;1.7)	2.0 (1.1;2.8)	162	178	193
AA	1.7	1.1 (0.4;1.7)	$\frac{1.6}{(0.6;2.6)}$	$\frac{2.4}{(0.9;3.8)}$	704	667	498
A	4.4	2.8 (1.2;4.3)	4.3 (1.8;6.8)	6.1 (2.6;9.6)	1540	1346	1260
BBB	8.4	5.8 (2.4;9.1)	8.9 (3.6;13.9)	10.4 $(4.2;16.3)$	517	270	553
spec	117.1	81.5 (61.2;104.4)	$90.4 \atop (67.9;115.8)$	$\underset{\left(134.6;229.6\right)}{179.4}$	270	324	480

Liquidity spread:

Difference between low (75% quantile) and high liquidity level

Panel B: Liquidity component in basis points, post-subprime (2007:O2-2009:O2)

			(2001.002	2005.22)			
	average	0-2y	2-5y	5-30y	N 0-2y	N 2-5y	N 5-30y
AAA	9.2	4.4 (0.9;7.9)	8.0 (1.7;14.2)	15.2 $(3.2;27.3)$	110	149	155
AA	68.5	37.8 (21.2;53.4)	64.0 $(35.8;90.5)$	103.9 $(58.1;146.9)$	493	572	483
A	92.6	53.8 (29.4;78.8)	95.9 (52.5;140.6)	128.1 (70.1;187.7)	762	878	890
BBB	176.5	138.6 (76.0;203.3)	201.6 (110.5;295.6)	189.4 (103.8;277.8)	123	159	256
spec	420.5	294.0 (196.2;383.0)	390.5 (260.6;508.7)	577.1 (385.2;751.8)	133	129	201

Using Treasury instead of swap rates as riskless rate

Panel A: Liquidity component in basis points, pre-subprime

(2004Q4-2007:Q1)							
9	average	0-2y	2-5y	5-30y	N 0-2y	N 2-5y	N 5-30y
AAA	1.6	1.1 (0.8;1.4)	1.7 $(1.2;2.1)$	2.0 $(1.4;2.5)$	162	178	193
AA	1.7	1.1 (0.8;1.5)	$\frac{1.8}{(1.3;2.3)}$	$\begin{array}{c} 2.3 \\ (1.6;3.0) \end{array}$	704	667	498
Α	2.8	1.7 (0.9;2.6)	$\frac{2.9}{(1.5;4.3)}$	3.8 (1.9;5.5)	1540	1346	1260
BBB	4.0	2.9 (1.4;4.4)	4.1 $(1.9;6.2)$	4.9 $(2.3;7.3)$	517	270	553
spec	57.8	45.2 (33.9;57.4)	$44.1 \atop (33.1;56.0)$	84.2 (63.2;106.9)	270	324	480

Using Treasury instead of swap rates as riskless rate

Panel B: Liquidity component in basis points, post-subprime (2007:Q2-2009:Q2)

			\	• /			
	average	0-2y	2-5y	5-30y	N 0-2y	N 2-5y	N 5-30y
AAA	1.0	0.5 (0.3;5.4)	0.8 $(0.5;8.1)$	1.7 $(0.9;16.6)$	110	149	155
AA	40.6	22.9 (11.5;35.2)	36.1 $(18.2;55.5)$	63.0 (31.8;96.8)	493	572	483
A	47.6	25.0 (12.9;37.6)	47.9 (24.7;72.1)	70.0 (36.1;105.4)	762	878	890
BBB	94.0	65.2 (36.0;97.4)	117.2 $(64.8;175.1)$	99.5 (55.0;148.6)	123	159	256
spec	189.9	119.3 (79.4;154.9)	216.3 (144.0;280.9)	234.2 (156.0;304.2)	133	129	201

Matched regression

- What if we have not measured credit risk correctly?
- We pair bonds from the same firm with similar maturity
- We insist that they have the same regression coefficient on the liquidity variable but introduce a constant dummy for each bond
- ▶ This will capture any credit risk misspecification
- ▶ Due to reduction in data set, we perform this in larger buckets: investment grade and speculative grade
- $ightharpoonup \lambda$ again consistently significant
- ► We also perform Durbin-Wu-Hausman test for endogeneity using bond age as instrument

Robustness control for credit

	pre-subprime investment spec	post-subprime investment spec		
λ	0.04*** 0.46*** (4.93) (3.16)	0.70*** 2.60** (3.33) (2.25)		
Amihud	2.26*** 16.80*** (5.11) (3.51)	16.10^{***} 54.65 (3.04) (1.54)		
Roll	0.03^{***} 0.16^{**} (3.56) (2.54)	0.05^{**} 0.39 (2.14) (1.44)		
bond zero	0.00*** 0.01** (5.85) (2.28)	$ \begin{array}{ccc} 0.00 & 0.03 \\ (0.78) & (1.12) \end{array} $		
turnover	0.11^* 1.48^* (1.87) (1.72)	-3.21 72.74 (-1.46) (1.63)		
URC	8.48*** 125.03** (3.72) (2.55)	$104.34^{**} -95.04$ $(2.43) (-0.58)$		
URC risk	$\begin{array}{ccc} 1.30 & 57.15^{**} \\ _{(0.69)} & (2.15) \end{array}$	39.09*** -103.42 (2.97) (-0.74)		
Amihud risk	0.64^{***} 9.44^{***} (4.21) (2.79)	6.56*** 39.63*** (3.19) (4.60)		