Measuring Default Contagion and System Risk: insights from network models

Rama Cont, Amal Moussa and Andrea Minca

Discussion by Thorsten Schmidt

www.tu-chemnitz.de/mathematik/fima

Lausanne, October 2010

Main points of the paper

- How to measure stability of a financial system
- How to improve stability in an efficient way
- The authors work on a unique set of data (Brazil Banks, June 07 Dec 08).
- Different measures are developed and show intuitive results on this dataset.

On the methodological side, the goal is to represent the financial system as a network.

- n nodes; the exposure of node i to node j is E_{ij} .
- Node i has capital c_i and liquidity I_i.
- If $c_i = 0$ then the node *i defaults*.
- Contagion: If i defaults, then node j also defaults if

$$c_j<(1-R_i)E_{ji}.$$

Introduce stochastic market shocks:

- Consider $\epsilon_i, \ldots, \epsilon_n$ which reduce capital to $(c_i + \epsilon_i)_+$.
- If i defaults, then node j defaults if

$$(c_j + \epsilon_j)_+ < (1 - R_i)E_{ji}$$

or derivative payouts are larger than the liquidity

$$I_i + \sum_i \pi_{ij}(c + \epsilon, E) < 0.$$

This induces a default cascade: $D_0(A) \subset D_1(A) \subset \cdots \subset D_{n-1}(A)$.

- Static: Set $\epsilon = 0$. Leads to the default impact $DI(i, c + \epsilon)$ (loss by $D_{n-1}(\{i\})$).
- ullet Stochastic: Choose model for ϵ and define the contagion index

$$\mathbb{E}(DI(i,c+\epsilon)|c_i+\epsilon_i\leq 0).$$

For assising systemic risk the authors only consider a subset $\mathbb{C}\subset\{1,\ldots,n\}$ of all banks. Then they define analogously

- Static Set $\epsilon=0$ and define systemic risk index $I_{\mathbb C}$ as default index only of those nodes in $\mathbb C.$
- ullet Stochastic Choose model for ϵ and define the systemic risk index

$$\mathbb{E}(I_{\mathbb{C}}(i,c+\epsilon)|c_i+\epsilon_i\leq 0).$$

Main assumption

• Gaussian one-factor model, Z_0, Z_1, \ldots iid N(0, 1) and

$$\epsilon_i = \sqrt{\rho} Z_0 + \sqrt{1 - \rho} Z_i$$

• Heavy tailed factor model Z_0, Z_1, \ldots iid α -stable and

$$\epsilon_i = \rho^{\alpha} Z_0 + (1 - \rho)^{\alpha} Z_i$$

• c; are chosen such that the default probability is met.

Questions

- What are the requirements for a good distribution of ϵ_i ?
- What is the model risk?
- Should one incorporate feedback effects?

Target immunization

Susceptibility ratio:

$$\chi_i = \max_{j \neq i} \frac{E_{ij}}{c_i}$$

(maximal fraction of wiped out capital on default of node i)

- Capital requirement: Impose a cap on χ for the most systemic nodes.
- Are the results stable amongst distributions of ϵ ?
- Time between defaults is not taken into account.
- Relatively short interval of data (stability of the results/outcome)?
- The measures are estimates! Can you give confidence bounds?