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1. General theory

• Cochrane, J., and Saá Requejo, J. “Beyond
arbitrage: Good-deal asset price bounds in
incomplete markets”. Journal of Political Economy

108 (2000), 79–119.

• Björk, T., and Slinko, I. “Towards a general
theory of good deal bounds”. Review of Finance

10 , (2006), 221-260.
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Basic Framework

Exogenously Given:

• An underlying incomplete market.

• A contingent T -claim Z.

Recall: The arbitrage free price of Z is given by

Π(t, Z) = EP

[

DT

Dt

· Z
∣

∣

∣

∣

Ft

]

= EQ
[

e−
R T
t rudu · Z

∣

∣

∣
Ft

]

where D is the stochastic discount factor (SDF)

Dt = e−
R t
0 ruduLt, Lt =

dQ

dP
, on Ft

However:

• Incomplete market ⇒ D and Q are not unique.

• Thus no unique price process Π(t, Z).
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How can we price in this incomplete

setting?

Sad Fact:

The no arbitrage bounds are far to wide to be useful.

Some standard techniques:

• Quadratic hedging.

• Utility indifference pricing.

• Minimize some distance between Q and P .

Our Goal:

• Find “reasonable” and tight no arbitrage bounds.

• Economic interpretation.

• Market data as input.

4



Cochrane and Saa-Requejo

• An arbitrage opportunity is a “ridiculously good
deal”.

• Thus, no arbitrage pricing is pricing subject to the
constraint of ruling out ridiculously good deals.

The CSR Idea:

Find pricing bounds by ruling out, not only ridiculously
good deals, but also “unreasonably good deals”.

How is this formalized?:

• Impose restrictions on the volatility of the SDF
(stochastic discount factor).

• Impose bounds on the Sharpe Ratio!
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Sharpe Ratio

The Sharpe Ratio for an asset price S is defined by

SR = risk premium per unit volatility

i.e.

SR =
µ − r

v
where

µ = mean rate of return

r = short rate

v = total volatility of S

i.e.

v2
t dt = V arP

[

dSt

St−

∣

∣

∣

∣

Ft−

]

Moral:

High Sharpe Ratio = unreasonbly good deal.
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Reasonable Values of the Sharp Ratio

• The market portfolio is not so dramatically
inefficient ⇒ we do not expect to see SR much
higher then historical market SR, which is about
0,5.

• Using utility function approach, unless we make
extreme assumptions about consumption volatility
and risk aversion it is difficult to generate SR higher
then 0,3.

• A hedge fund with a SR around 2 is doing extremely
well.
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CSR First Problem Formulation

Find upper and lower price bounds subject to a
constraint of the Sharpe Ratio, i.e. find

sup EP

[

DT

Dt

· Z
∣

∣

∣

∣

Ft

]

subject to
|SRt| ≤ B. for all t

However:

• Formulated this way, the problem is mathematically
intractable.

• Even if we have a bound on the SR for the Z
derivative, it may be possible to form portfolios (on
underklying and derivative) with very high Sharpe
ratios.
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Reformulating the Constraint

Recall:

In a Wiener driven world we have the

Hansen-Jagannathan inequality:

|SRt|2 ≤ ‖ht‖2
Rd

where

−ht = market price vector of W -risk

or in martingale language

dLt = LthtdWt, Lt =
dQ

dP
, on Ft

Idea:

Replace SR constraint with constraint on ‖ht‖
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Second CSR Problem Formulation

Find

sup
h

EP

[

DT

Dt

· Z
∣

∣

∣

∣

Ft

]

subject to

‖ht‖2
Rd ≤ B2 ∀t ∈ [0, T ].

CSR Results:

• Main analysis done in one-period framework.

• In continuous time, CSR derive a PDE for upper
and lower price bounds through (informal) dynamic
programming argument.

• Obtains nice numerical results.

• Surprisingly tight bounds.
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Limitations of CSR

sup
h

EP

[

DT

Dt

· Z
∣

∣

∣

∣

Ft

]

subject to

‖ht‖2
Rd ≤ B2 ∀t ∈ [0, T ].

• Only Wiener driven asset price processes.

• Analysis carried out entirely in terms of SDFs.

• Connection to martingale measures not clarified.

• CSR derive a HJB equation, but the precise
underlying control problem is never made precise.

• Some ad hoc assumptions on the upper an lower
bounds processes.
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Main Contributions of the Present Paper

• We focus on martingale measures rather than on
SDF, which is mathematically equivalent but

– allows to use the technical machinery of
martingale theory

– considerably streamlines the arguments - ”good-
deal” pricing problem can be formulated as a
standard stochastic control problem

• We do not assume the existence, nor do we make
assumptions about the explicit dynamics of the price
bounds

• We introduce a driving general marked point

process, thus allowing the possibility of jumps in the
random processes describing the financial markets.
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A Generic Example

The Merton model:

dSt = Stαdt + StσdWt + St−δtdNt

Here N is Poisson and δ lognormal at jumps.

• To obtain a unique derivatives pricing formula
Merton assumes zero market price of jump risk.

Can we do better?

13



The Model

• An n-dimensional traded asset price process S = (S1, . . . , Sn)

dSi
t = Si

tαi (St, Yt) dt + Si
tσi(St, Yt)dWt

+Si
t−

∫

X

δi(St−, Yt−, x)µ(dt, dx), i = 1, . . . , n

• A k-dimensional factor process Y = (Y 1, . . . , Y n)

dY j
t = aj (St, Yt) dt + bj(St, Yt)dWt

+

∫

X

cj(St−, Yt−, x)µ(dt, dx). j = 1, . . . , k
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Recap on Marked Point Processes

• µ(dt, dx) - number of events in (dt, dx) ∈ R+ × X

• Typically we assume that µ(dt, dx) has predictable
P -intensity measure process λ This essentially
means that

λt(dx)dt = EP [µ(dt, dx)|Ft−]

• λt(dx)- expected rate of events at time t with marks
in dx.

• For each x, the differential µ(dt, dx) − λt(dx)dt is
a P -martingale differential.

• λt(X)=global intensity (regardless of mark)

• The probability distribution of marks, given that
there is a jump at t is

1

λt(X)
· λt(dx)
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Assumptions

• The point process µ has a predictable P -intensity
measure λ, of the form

λt(dx) = λ(St−, Yt−, dx)dt.

• We assume the existence of a short rate r of the
form

rt = r(St, Yt).

• We assume that the model is free of arbitrage in the
sense that there exists a (not necessarily unique)
risk neutral martingale measure Q.

• δi(s, y, x) ≥ −1 ∀i and ∀(s, y, x)

• We consider claims of the form

Z = Φ(ST , YT )
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Girsanov for MPP and Wiener

Assume that µ(dt, dx) has predictable P -intensity
λt(dx) and that W is d-dimensional P -Wiener

• Choose predictable processes ht and ϕt(x) ≥ −1

• Define likelihood process L by

{

dLt = LthtdWt + Lt−

∫

X
ϕt(x)µ̃(dt, dx)

L0 = 1

µ̃(dt, dx) = µ(dt, dx) − λt(dx)dt

Then:

• µ(dt, dx) has Q-intensity

λQ
t (dx) = {1 + ϕt(x)}λt(dx)

• We have
dW = h?

t + dWQ
t
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Extended Hansen-Jagannathan Bounds

Proposition:

For all arbitrage free price processes S and for
all Girsanov kernels ht, ϕt(x), defining a martingale
measure, the following inequality holds

|SRt|2 ≤ ‖ht‖2
Rd +

∫

X

ϕ2
t (x)λt(dx)

or

|SRt|2 ≤ ‖ht‖2
Rd + ‖ϕt‖2

λt
,

where ‖ · ‖λt denotes the norm in the Hilbert space
L2 [X, λt(dx)].
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Good Deal Bounds

The upper good deal price bound process is defined
as the optimal value process for the following optimal
control problem.

V (t, s, y) = sup
h,ϕ

EQ
[

e−
R T
t ruduΦ (ST , YT )

∣

∣

∣
Ft

]

Q dynamics:

dSi
t = Si

t

{

rt −
∫

X

δi(x) {1 + ϕt(x)}λt(dx)

}

dt

+Si
tσidWQ

t + Si
t−

∫

X

δi(x)µ(dt, dx),

i = 1, . . . , n

dY j
t = {aj + bjht} dt + bjdWQ

t

+

∫

X

cj(x)µ(dt, dx). j = 1, . . . , k

Standard stochastic control problem
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Constraints on h and ϕ

• (Guarantees that Q is a martingale measure)

αi + σiht +

∫

X

δi(x) {1 + ϕt(x)}λt(dx) = rt, ∀i

• (Rules out ”good deals”)

‖ht‖2
Rd +

∫

X

ϕ2
t(x)λt(dx) ≤ B2,

• (Ensures that Q is a positive measure)

ϕt(x) ≥ −1, ∀t, x.
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HJB Equation

Theorem The upper good deal bound function is the solution V to the
following boundary value problem

∂V

∂t
(t, s, y) + sup

h,ϕ

Ah,ϕV (t, s, y) − r(s, y)V (t, s, y) = 0,

V (T, s, y) = Φ(s, y)

NB:

The embedded static problem

sup
h,ϕ

{

Ah,ϕV (t, s, y)
}

is a full fledged variational problem. For each (t, s, y) we have to determine
ϕ(t, s, y, ·) as a function of x.
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Ah,ϕV (t, s, y)

=
n

∑

i=1

∂V

∂si

si

{

r −
∫

X

δi(x) {1 + ϕ(x)}λt(dx)

}

+
k

∑

j=1

∂V

∂yj

{aj + bjh} +

∫

X

∆V (x) {1 + ϕ(x)}λt(dx)

+
1

2

n
∑

i,l=1

∂2V

∂si∂sl

sislσ
?
i σl +

1

2

k
∑

j,l=1

∂2V

∂yj∂yl

b?
jbl +

k
∑

i,j=1

∂2V

∂si∂yj

siσ
?
i bj

Here
∆V (x) = V (t, s(1 + δ(x)), y + c(x)) − V (t, s, y)
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Example: The Compound

Poisson-Wiener Model

Consider a financial market and a scalar price process
S satisfying the SDE

dSt = Stαdt + StσdWt + St−

∫

X

δ(x)µ(dt, dx).

The point process µ has a P -compensator of the form

νP (dt, dx) = λ(dx)dt

λ is a finite nonnegative measure on (X,X ).
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In this case the static problem has the following form

max
h,ϕ

∫

X

∆V (t, s, x)ϕ(t, s, x)λ(dx)

−sVs(t, s)

∫

X

δ(x)ϕ(t, s, x)λ(dx),

subject to

α + σh +

∫

X

δ(x)λ(dx) +

∫

X

δ(x)ϕ(x)λ(dx) = r,

h2 +

∫

X

ϕ2(x)λ(dx) ≤ B2,

ϕ(x) ≥ −1,

where, as before,

∆V (t, s, x) = V (t, s [1 + δ(x)]) − V (t, s).
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• The static problem has to be solved for every fixed
choice of (t, s, y) and the control variables are h
and ϕ

• For fixed (t, s, y) h is d-dimensional vector

• However, ϕ is a function of x and thus infinite-
dimensional control variable

• We are thus facing a variational problem inside the
HJB equation.

• We have to resort to numerical methods.
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Good deal pricing bounds
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The minimal martingale measure and the

Merton model
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Taylor Approximation

Disturbing Fact:

The bounds are computationally demanding.

Idea:

Write the upper bounds as V (t, s, B) and make a
Taylor expansion in B around B0, corresponding to
the MMM.

V (t, s, B) = V (t, s, B0)+(B−B0)
∂V

∂B
(t, s,B0)(t, s, B0)

However:
∂V

∂B
(t, s,B0) = +∞

Modified idea:

Do the expansion in the rescaled variable

√

B2V arP [
dS

S
] − R2

where R is the excess rate of return.
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Example: Wiener-Poisson
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Ongoing work...
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2. Vulnerable options

Murgoci, A. “Vulnerable Options and Good Deal
Bounds - A Structural Model”. Working paper.
Copenhagen Business School.

Murgoci, A. “Pricing Counter-Party Risk Using
Good Deal Bounds”. Working paper. Copenhagen
Business School.

30



Counter-party Risk

• Brought to the forefront by recent events

• Partly due to trading on OTC markets
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Model

• Traded stock S, with dynamics

dSt = αtStdt + StγtdW̃P
t ,

• Bank account with dynamics

dBt = rBtdt

• Default indicator Y .

Assumption. We assume that Y is a a counting
process. Two cases are considered.

• Constant intensity

• Stochastic intensity λt where

dλt = κ(θ − λt)dt + σ
√

λtdWP
t
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The Payoff Function

• Vulnerable European call

X =







max[ST − K, 0], if YT = 0,

R, if Yt > 0, for some 0 < t ≤ T
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The martingale measure Q

• Dynamics for the Radon-Nikodym derivative L = dQ/dP

dLt = LthtdW̃P
t + Ltgt

√
λdWP

t + Lt−ϕt(dNt − λtdt)

L0 = 1

• Positivity constraint: ϕt ≥ −1

• Martingale constraint: r = αt + γtht

• Good deal bound constraint

h2
t + g2

t λ + ϕ2
tλt ≤ C2
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The Lower Good Deal Bound Price

Optimal control problem:

min
h,g,ϕ

EQ
[

e−r(T−t)+
R T
t qλQ

u du · Φ(ST )
∣

∣

∣
Ft

]

dSt = rStdt + StγtdW̃t

dλt = κ (θ − λt + gtσλt) dt + σ
√

λtdWt

λQ
t = λt(1 + ϕt)

αt + γtht = r

ϕt ≥ −1

h2
t + g2

t λ + ϕ2
tλt ≤ C2
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Hamilton Jacobi Bellman Equation

∂V

∂t
(t, s, y, λ) + inf

h,g,ϕ
Ah,g,ϕV (t, s, y, λ) − rV (t, s, y, λ) = 0

V (T, s, 0, λ) = max[ST − K, 0]

V (t, s, 1, λ) = R

• Solving for each t, s, y, λ the embedded static problem
→ we obtain the Girsanov Kernel

• Solving the PDE
→ we obtain the price of the vulnerable option
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GDB for different GDB constraints
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3. Regime switching models

Donnelly, C. “Good-deal bounds in a regime
switching market”. Working paper. ETH, Zurich.
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Model

Random sources:

Wt = Standard Wiener process

αt = Continuous time Markov chain on {1, 2, . . . , d}
G = Intensity matrix for α

.

Price dynamics:

dSt = Stµ(αt)dt + Stσ(αt)dWt,

dBt = r (αt) Btdt

Claim to be priced:

X = Φ(ST , αT )

Highly incomplete market
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Girsanov for α

We define the counting process N ij by

N ij
t =

∑

0≤s≤t

I {αs− = i, αs = j} , i 6= j

Intensity process for N ij
t

λij
t = gijI {αt− = i}

Corresponding martingale:

M ij
t = N ij

t −
∫ t

0

λij
s ds
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Girsanov Theorem for α

• Define L by

{

dLt = Lt−htdWt + Lt−

∑

i6=j ϕij
t dM ij

t

L0 = 1

where ϕij > −1.

• Define Q by Lt = dQ
dP

, on Ft

Then:

• The intensity of N ij under Q is given by

λ̃ij
t = λij

t

(

1 + ϕij
t

)

• We have
dWt = htdt + dWQ

t

where WQ is Q-Wiener.
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Admissible kernels

A Girsanov kernel (h, ϕ) is admissible if Q is a
martingale measure for all traded assets, underlying
and derivative, in the market.

Hansen-Jagannathan: For every admissible Girsanov
kernel process (h, ϕ) and for every asset in the market
we have

(SR)2t ≤ h2
t +

∑

i6=j

|ϕij
t |2λij

t .
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Martingale condition

Recall price dynamics

dSt = Stµtdt + StσtdWt

A Girsanov kernel (h, ϕ) satisfies the martingale
condition iff

µt + σtht = rt

The Girsanov kernel h is uniquely determined, but we
have no restriction on ϕ.
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The GDB problem

For a contingent claim Z = Φ(S(T ), α(T )), the upper
good deal price process V is the optimal value process
for the control problem

sup
h,ϕ

EQ
[

e−
R T

t rsdsΦ(ST , αT )
∣

∣

∣
Ft

]

where the predictable processes (h, ϕ) are subject to
the constraints

ht =
rt − µt

σt

,

ϕij
t ≥ −1,

h2
t +

∑

i6=j

|ϕij
t |2λij

t ≤ B2.
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The HJB eqn

Assume
ht = h(t, St, αt−) ϕij

t = ϕij(t, St, αt−)

The HJB eqn for the optimal value function V is given by

∂V

∂t
(t, x, i) + sup

(h,ϕ)

Ah,ϕV (t, x, i) − r(t, x, i)V (t, x, i) = 0

V (T, x, i) = Φ(x, i)

System of PIDEs.
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The infinitesimal operator

Ah,ϕV (t, x, i) = r(t, x, i)xVx(t, x, i) + 1
2σ

2(t, x, i)x2Vxx(t, x, i)

+
∑

j gij

(

1 + ϕij
t

)

{V (t, x, j) − V (t, x, i)}

46



Numerical Example

Regime switching models with two regimes.

Market parameters based on Hardy (2001):

i r(i) µ(i) σ(i)

1 0.06 0.15 0.12

2 0.06 −0.22 0.26

Generator

G =

(

g11 g12

g21 g22

)

=

(

−0.5 0.5
5 −5

)

.
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Further research areas

• GDB pricing for credit risk models where the credit
rating evolves as a Markov chain. This would be an
interesting application of Donnelly’s technique.

• Does there exist a theory for good deal hedging?

50


