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Basic Framework

Exogenously Given:

e An underlying incomplete market.

e A contingent T-claim Z.

Recall: The arbitrage free price of Z is given by

(¢, Z) = BT [% - Z‘ ]—"t] = B9 [em i e Z‘ 7|
t

where D is the stochastic discount factor (SDF)

t d
Dt —e fO TuduLt, Lt — d—g, on ft

However:
e Incomplete market = D and () are not unique.

e Thus no unique price process II(¢, Z).



How can we price in this incomplete
setting?

Sad Fact:
The no arbitrage bounds are far to wide to be useful.

Some standard techniques:

e Quadratic hedging.
e Utility indifference pricing.

e Minimize some distance between () and P.

Our Goal:

e Find “reasonable” and tight no arbitrage bounds.
e Economic interpretation.

e Market data as input.



Cochrane and Saa-Requejo

e An arbitrage opportunity is a “ridiculously good
deal”.

e Thus, no arbitrage pricing is pricing subject to the
constraint of ruling out ridiculously good deals.

The CSR ldea:

Find pricing bounds by ruling out, not only ridiculously
good deals, but also “unreasonably good deals”.

How is this formalized?:

e Impose restrictions on the volatility of the SDF
(stochastic discount factor).

e Impose bounds on the Sharpe Ratio!



Sharpe Ratio

The Sharpe Ratio for an asset price S is defined by

SR = risk premium per unit volatility

l.e.
SR=1""
v
where
{t = mean rate of return
r = short rate
v = total volatility of S
l.e. 19
vidt = Var® [—t ft_]
Si_
Moral:

High Sharpe Ratio = unreasonbly good deal.



Reasonable Values of the Sharp Ratio

e The market portfolio is not so dramatically
inefficient = we do not expect to see SR much
higher then historical market SR, which is about
0,5.

e Using utility function approach, unless we make
extreme assumptions about consumption volatility
and risk aversion it is difficult to generate SR higher
then 0,3.

e A hedge fund with a SR around 2 is doing extremely
well.



CSR First Problem Formulation

Find upper and lower price bounds subject to a
constraint of the Sharpe Ratio, i.e. find

D
sup EY [Ff : Z‘ .7-}]

subject to
ISR < B. forallt

However:

e Formulated this way, the problem is mathematically
Intractable.

e Even if we have a bound on the SR for the Z
derivative, it may be possible to form portfolios (on
underklying and derivative) with very high Sharpe
ratios.



Reformulating the Constraint

Recall:
In a Wiener driven world we have the

Hansen-Jagannathan inequality:

ISRy < [he|

where
—h; = market price vector of W-risk

or in martingale language

dQ

Ly = Lihid L
dLi = LihidWr, t= o

on F;

Idea:
Replace SR constraint with constraint on ||h||



Second CSR Problem Formulation

Find b
pP|ZL. 7
iy [Dt ‘}—t]
subject to
[hel|fa < B> VYt € [0,T).
CSR Results:

e Main analysis done in one-period framework.

e In continuous time, CSR derive a PDE for upper
and lower price bounds through (informal) dynamic
programming argument.

e Obtains nice numerical results.

e Surprisingly tight bounds.
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Limitations of CSR

subject to

[hel|fa < B> VYt €[0,T).

e Only Wiener driven asset price processes.
e Analysis carried out entirely in terms of SDFs.
e Connection to martingale measures not clarified.

e CSR derive a HJB equation, but the precise
underlying control problem is never made precise.

e Some ad hoc assumptions on the upper an lower
bounds processes.
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Main Contributions of the Present Paper

e We focus on martingale measures rather than on
SDF, which is mathematically equivalent but

— allows to wuse the technical machinery of
martingale theory

— considerably streamlines the arguments - " good-
deal” pricing problem can be formulated as a
standard stochastic control problem

e \We do not assume the existence, nor do we make
assumptions about the explicit dynamics of the price
bounds

e We introduce a driving general marked point
process, thus allowing the possibility of jumps in the
random processes describing the financial markets.
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A Generic Example

The Merton model:
dSt = StOédt + StO'th + St_(Stht
Here N is Poisson and ¢ lognormal at jumps.

e To obtain a unique derivatives pricing formula

Merton assumes zero market price of jump risk.

Can we do better?
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The Model

e An n-dimensional traded asset price process S = (S1,...,S")

+S§_/ 0;(St—, Vi, x)u(dt,dx), i=1,...,n
X

e A k-dimensional factor process Y = (Y1,...,Y™)
dY7 = a;(Sy,Y;)dt +b;(S,Y,)dW,

+/ Cj(St—aift—ax):u(dtv dZC) .]: 17"'7k
X
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Recap on Marked Point Processes

p(dt, dx) - number of events in (dt,dx) € Ry x X

Typically we assume that u(dt,dz) has predictable
P-intensity measure process A This essentially
means that

Me(dx)dt = EY [pu(dt, dz)| Fy_]

A¢(dx)- expected rate of events at time ¢ with marks
in dz.

For each z, the differential u(dt,dx) — A\¢(dx)dt is
a P-martingale differential.

A+(X)=global intensity (regardless of mark)

The probability distribution of marks, given that
there is a jump at ¢ is

) M)
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Assumptions

The point process i has a predictable P-intensity
measure )\, of the form

)\t(diU) — )\(St_, 1/75_, dac)dt

We assume the existence of a short rate r of the

form
Tt = T(Sta 1/75)

We assume that the model is free of arbitrage in the
sense that there exists a (not necessarily unique)
risk neutral martingale measure ().

di(s,y,x) > —1 Vi and V(s,y,x)
We consider claims of the form

Z =®(Sp,Yr)
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Girsanov for MPP and Wiener

Assume that pu(dt,dx) has predictable P-intensity
A¢(dx) and that W is d-dimensional P-Wiener

e Choose predictable processes h; and p:(x) > —1

e Define likelihood process L by

dL;
Lo

LihdWy + Ly [ ou(2)ji(dt, dz)
1

a(dt, dr) = p(dt, dr) — A\¢(dx)dt

Then:
e u(dt,dx) has Q-intensity

AP (dz) = {1+ ¢i(2)} Me(da)

e \We have
AW = hf 4+ dW2
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Extended Hansen-Jagannathan Bounds

Proposition:

For all arbitrage free price processes S and for
all Girsanov kernels h, p¢(x), defining a martingale
measure, the following inequality holds

SR < [|hel% + / S ()M (dz)
X

or

2
[SR|” < [[hellfa + llotll3,

where || - ||», denotes the norm in the Hilbert space
L? [ X, \(dx)].
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Good Deal Bounds

The upper good deal price bound process is defined
as the optimal value process for the following optimal
control problem.

V(t,s,y) = sup E9 [6_ )i rudu g (ST:YT)‘ ft}
h,e

Q dynamics:
ds! = S {rt - /X 0i(z) {1+ pe(x)} )\t(dac)} dt

+Sio; dWE + Sz_/ 0 (x)p(dt, dx),
X

1=1,...,n
dY; = {aj+bjh}dt +bdW
+/ cij(x)pu(dt,dx). j=1,...,k
X

Standard stochastic control problem
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Constraints on A and ¢

e (Guarantees that Q is a martingale measure)

o; + oihe + /X 0i(x) {1+ @(x) } Ae(dx) = 14,

e (Rules out "good deals”)

el + /X S(@)\(dz) < B?,

e (Ensures that ) is a positive measure)

Spt(x) 2 _17 \V/t,ZC

Vi

20



HJB Equation

Theorem The upper good deal bound function is the solution V' to the
following boundary value problem

oV
E(t,&y)JrshupAh"PV(t,syy)—T(S,y)V(t,&y) = 0,
»P

V(T,s,y) = ®(s,9)

NB:
The embedded static problem

sup {Ah"pV(t, S, y)}
h,e

is a full fledged variational problem. For each (¢, s,y) we have to determine
©(t, s,y,-) as a function of x.
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Here

APV (¢, 5, y)

Zn: gSVZSz {7“ — /X 0i(z) {1+ ¢(z)} )\t(dac)}

Z@V {a; +b; h}+/ AV (z) {1 4+ p(x)} Ae(dx)

1 n aQV k 82 k azv
5 bZb + 5,07,
2 Z 0s 88;8 iS00+ 5 Z Oy;0yr 7 l MZ:% 832-8%-8 i

Z,l:]. ,7 =1

AV(z) =V (t,s(14+6(z)),y+ c(x)) — V(t,s,y)

22



Example: The Compound
Poisson-Wiener Model

Consider a financial market and a scalar price process
S satisfying the SDE

dS; = Siadt + SiodWy + S — / O(x)u(dt, dz).
X

The point process 1 has a P-compensator of the form
VP (dt, dx) = \(dx)dt

A is a finite nonnegative measure on (X, X).
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In this case the static problem has the following form

max /X AV (t, s, x)p(t, s, z)A\(dx)

h,e

—sVs(t, s) /X(S(:E)go(t, s, x)A(dx),

subject to
oz+ah+/X5(:E))\(d:B)+/X5(:E)g0(:v))\(d$) = T,
h? + / O (x)\(dz) < B2,

where, as before,

AV (t,s,x) =V (t,s[1 +d(x)]) — V(¢ s).
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The static problem has to be solved for every fixed
choice of (t,s,y) and the control variables are h
and ¢

For fixed (t,s,y) h is d-dimensional vector

However, ¢ is a function of x and thus infinite-
dimensional control variable

We are thus facing a variational problem inside the
HJB equation.

We have to resort to numerical methods.
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Good deal pricing bounds

14 T T T T T
— upper&lower bounds L

= = upper&lower with constraint
-8- MinMartMeasure




The minimal martingale measure and the
Merton model

T
= = MinMartMeasure

= Mertonmodel
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Taylor Approximation

Disturbing Fact:
The bounds are computationally demanding.

Idea:

Write the upper bounds as V(¢,s, B) and make a
Taylor expansion in B around By, corresponding to
the MMM.

oV
Vi(t,s,B) =V(t,s, BO)+(B_BO)8_B(t’ s, Bo)(t, s, By)
However:
wever 8_V(t A
aB 787 0 — o0
Modified idea:

Do the expansion in the rescaled variable

\/BQVarp[%] — R?

where R is the excess rate of return.
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Example: Wiener-Poisson

25
¢ MM
Approxmax
20 = Approxmin
= = = PDEmax
= = = PDEmin

30 40 50 60 70 80 90 100

Ongoing work...



2. Vulnerable options

Murcoci, A. “Vulnerable Options and Good Deal
Bounds - A Structural Model’. Working paper.
Copenhagen Business School.

MuRrGoci, A. “Pricing Counter-Party Risk Using
Good Deal Bounds”. Working paper. Copenhagen
Business School.
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Counter-party Risk

e Brought to the forefront by recent events

e Partly due to trading on OTC markets
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Model

e Traded stock .S, with dynamics

dS; = o Sydt + SyydW [,

e Bank account with dynamics

dBt = TBtdt

e Default indicator Y.

Assumption. We assume that Y is a a counting
process. Two cases are considered.

e Constant intensity
e Stochastic intensity A\; where

d\; = k(0 — X\p)dt + o/ NdW
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The Payoff Function

e Vulnerable European call
max|[St — K,0], if Ypr=0,

R, if Y;>0, forsomeO0<t<T
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The martingale measure ()

Dynamics for the Radon-Nikodym derivative L = dQ/dP
dL; = LihdWE + LigeVAAWE + Li_ (AN, — Adt)
Lo = 1
Positivity constraint: ¢; > —1
Martingale constraint: r = a; + V¢hy
Good deal bound constraint

12+ g2\ + 9t < O
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The Lower Good Deal Bound Price

Optimal control problem:

min
h,g,o

o [ o8|

dS; = rSudt + Sy dW;

A = £(0 = M\ 4 geoXy) dt + o/ \dW,
AZ = M(1 4 @)

o +yihe =7

pr > —1

hi + gid + @i < C?
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Hamilton Jacobi Bellman Equation

oV
E(ta S, Y, )‘) + higlfgo Ah,g’wv(tv $,Y, )‘) T TV(t, S, Y, >‘) = 0

V(T,s,0,\) = max[Sr— K,0]
Vit,s,1,\) = R

e Solving for each t, s, y, A the embedded static problem
— we obtain the Girsanov Kernel

e Solving the PDE
— we obtain the price of the vulnerable option
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3. Regime switching models

DoNNELLY, C. "“Good-deal bounds in a regime
switching market”. Working paper. ETH, Zurich.
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Model

Random sources:

W; = Standard Wiener process
a; = Continuous time Markov chain on {1,2,..
G = Intensity matrix for «

Price dynamics:

dSt — Stu(ozt)dt + StO'(Oét)th,
dBt = T (Oét) Btdt

Claim to be priced:

X =o (ST, OéT)

Highly incomplete market

., d}
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Girsanov for o

We define the counting process N* by

Intensity process for N’

A = gl =i}
Corresponding martingale:

t
M;? = N7 — / A ds
0
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Girsanov Theorem for o

e Define L by

st — Lt_htth + Lt_ ZZ#] gOtdezj
Lo = 1
where ¥ > —1.

e Define Q by Lt dP’ on ft

Then:

e The intensity of N* under Q is given by
=7 (14 6t)

e \We have
AW, = hydt + dW 2

where W€ is Q-Wiener.
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Admissible kernels

A Girsanov kernel (h, ) is admissible if @ is a
martingale measure for all traded assets, underlying
and derivative, in the market.

Hansen-Jagannathan: For every admissible Girsanov

kernel process (h, ) and for every asset in the market
we have

(SR); < hi+ > [0 PA¢.
1#£]

42



Martingale condition

Recall price dynamics
dSt — St,LLtdt + StO'tth

A Girsanov kernel (h,y) satisfies the martingale
condition iff
pe + othy = 1y

The Girsanov kernel h is uniquely determined, but we
have no restriction on .
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The GDB problem

For a contingent claim Z = ®(S(T), a(T)), the upper
good deal price process V' is the optimal value process
for the control problem

sup F¢ [e_ I TstCI)(ST, ar) ‘ ft}
h,e

where the predictable processes (h, ) are subject to
the constraints

ht — y
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The HJB egn

Assume - -
ht — h(tv St7 Oét—) szj — SOZJ (ta St7 Oét—)

The HJB eqgn for the optimal value function V' is given by

a—v(t, r,i) + sup APV (¢, x, i) —r(t, z, )V (¢t x,0) =0
ot (h,)

V(T,x,i) = ®(x,1)

System of PIDEs.
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APV (¢ x,0)

The infinitesimal operator

= T(ty X, Z)x‘/x (ty X, Z) + %02(t7 L, ’L).TQV:E:U (t7 £, Z)

+5505 (1467 ) (V(t2,0) = V(E,2,0))
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Numerical Example

Regime switching models with two regimes.

Market parameters based on Hardy (2001):

1 0.06 0.15 0.12

2 0.06 —-0.22 0.26

Generator

G: (gll 912) _ <—O5 05) .
g21 922 5) -5
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Further research areas

e GDB pricing for credit risk models where the credit
rating evolves as a Markov chain. This would be an
interesting application of Donnelly’s technique.

e Does there exist a theory for good deal hedging?
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