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Abstract. This paper discusses separable term structure diffusion models in
an arbitrage-free environment. Using general consistency results we exploit the
interplay between the diffusion coefficients and the functions determining the
forward curve. We introduce the particular class of polynomial term structure
models. We formulate the appropriate conditions under which the diffusion
for a quadratic term structure model is necessarily an Ornstein-Uhlenbeck
type process. Finally, we explore the maximal degree problem and show that
basically any consistent polynomial term structure model is of degree two or
less.

1. Introduction

This paper discusses arbitrage-free separable term structure (STS) models

r(t, x) =
n∑

i=1

gi(x)φi(Zt). (1)

Here {r(t, x) | x ∈ R+} denotes the time t forward rate curve, Z is an m-dimensional
diffusion process, and g = (g1, . . . , gn) and φ = (φ1, . . . , φn) are deterministic func-
tions, for some m,n ∈ N. Using general consistency results from Filipović (2001a),
we exploit the interplay between the diffusion coefficients and the functions g and φ.
As a byproduct we derive that the forward curve x 7→ r(t, x) is necessarily analytic.

Then we focus on the subclass of polynomial term structure (PTS) models

r(t, x) =
n∑

|i|=0

gi(x) (Zt)i, (2)

where we use the multi-index notation i = (i1, . . . , im), |i| = i1 + · · · + im and
zi = zi1

1 · · · zim
m . Here n denotes the degree of the PTS; that is, there exists an index

i with |i| = n and gi 6= 0.
For n = 1 the PTS model (2) is actually an affine term structure (ATS) model .

ATS models have been intensively studied by many authors. We refer to Duffie
et al. (1996, 2000, 2001) (see also references therein) and Section 3.1 in Filipović
(2001a) . It is well known by now that, under the appropriate technical assumptions,
Z is necessarily a square-root process.

The next interesting case is n = 2: quadratic term structure (QTS) models.
There has recently been both theoretical and empirical interest in QTS models, see
Boyle and Tian (1999), Leippold and Wu (2002) and Gombani and Runggaldier
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(2000). We formulate the appropriate conditions under which Z is necessarily an
Ornstein-Uhlenbeck type process.

Finally, we explore a problem regarding the maximal degree n of a PTS model.
We show that, under mild technical assumptions, n has to be less than or equal 2.
ATS and QTS models are, roughly speaking, the only consistent PTS models.

The outline of the paper is as follows. In Section 2 we provide the stochastic
setup for Z and prove general consistency results for STS models. Section 3 spe-
cializes these results for PTS models and exploits the maximal degree problem. We
conclude by Section 4.

2. Separable Term Structures

Let (Ω,F , (Ft)t∈R+ ,Q) denote a filtered complete probability space, satisfying the
usual conditions, and let W be a standard d-dimensional (Ft)-Brownian motion,
d ∈ N. Fix a closed set Z ⊆ Rm with non-empty interior, m ∈ N, and denote by
b and σ two continuous mappings from Z into Rm and Rm×d, respectively. We
assume that for every z0 ∈ Z there exists a unique continuous Z-valued strong
solution Z = Zz0 of

dZt = b(Zt) dt + σ(Zt) dWt

Z0 = z0.

Remark 2.1. Notice that b and σ may be time varying, by setting Z1
t = t.

We shall first discuss the general STS model (1), where g ∈ C0(R+;Rn) and
φ ∈ C2(Z;Rn), for some n ∈ N. We say that Q is a local martingale measure for
z0 ∈ Z if all discounted bond price processes

(
e−
R t
0 r(s,0) ds e−

R T−t
0 r(t,x) dx

)
t∈[0,T ]

, T ∈ R+,

are Q-local martingales for Z = Zz0 . We introduce the consistency condition

(C): Q is a local martingale measure for every z0 ∈ Z.

It is standard to consider (C) as a necessary condition for the absence of arbitrage.
Under (C) there is a functional interplay between g, φ, b and σ. Write

G(x) :=
∫ x

0

g(y) dy (3)

and define

Γk(x, z) :=
n∑

i=1

Gi(x)
∂φi(z)
∂zk

(4)

Λkl(x, z) = Λlk(x, z) :=
n∑

i=1

Gi(x)
∂2φi(z)
∂zk∂zl

. (5)

The following theorem is a restatement of the general consistency results in Filipović
(2001a). It is a particular form of the Heath–Jarrow–Morton drift condition (Heath
et al. (1992)). We denote by a := σσ∗ the diffusion function of Z.
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Theorem 2.2. Under the above assumptions, (C) holds if and only if
n∑

i=1

(gi(x)− gi(0)) φi(z) =
m∑

k=1

bk(z)Γk(x, z)

+
1
2

m∑

k,l=1

akl(z) (Λkl(x, z)− Γk(x, z)Γl(x, z)) ,

(6)

for all (x, z) ∈ R+ ×Z.

From now on we assume that (C) is satisfied.

Of course, any STS model (1) can be considered as an ATS model with n factors
yi = φi(z) (albeit the state space φ(Z) can have empty interior). But an ATS
model cannot in general be realized in the form (1) for a given φ. This can be seen
from the following example, where m = 1, n = 2 and φ(z) = (z, z2). Set g1(x) ≡ 1
and g2(x) = x. It is shown in Filipović (2001b) that there exists a consistent ATS
model

r(t, x) = Y 1
t + xY 2

t ,

where Y = (Y 1, Y 2) is a non-degenerate diffusion. It is impossible, however, to
have Y 1

t = Zt and Y 2
t = (Zt)2 for a real-valued diffusion Z. Indeed, (6) yields for

φ1(z) = z and φ2(z) = z2

xz2 = b(z)
(
x + x2z

)− 1
2
a(z)

(
2x3z + x4z2

)
,

which implies b = a = 0.
The preceding example shows that b and a may be completely determined by g

and φ. Pretending that g and φ are known, we now want to invert equation (6) for
b and a. Moreover, we want to infer from (6) as much structural information on b
and a in terms of g and φ as possible, and vice versa.

Proposition 2.3. Suppose that the functions

Γk(·, z) and Λkl(·, z)− Γk(·, z)Γl(·, z), 1 ≤ k ≤ l ≤ m,

are linearly independent, for all z ∈ D, where D is a dense subset of Z. Then b
and a are uniquely determined by g and φ.

Proof. Set M = m+m(m+1)/2, the number of unknown functions bk and akl = alk.
Let z ∈ D. Then there exists a sequence 0 ≤ x1 < · · · < xM such that the M ×M -
matrix with i-th row vector built by Γk(xi, z) and Λkl(xi, z) − Γk(xi, z)Γl(xi, z),
1 ≤ k ≤ l ≤ m, is invertible. Thus, b(z) and a(z) are uniquely determined by (6).
This holds for each z ∈ D. By continuity of b and a hence for all z ∈ Z. ¤

Remark 2.4. Suppose that the STS (1) is used for daily estimation of the for-
ward curve in terms of the state variable z. Then Proposition 2.3 tells us that,
under the stated assumptions, any Q-diffusion model Z for z is already determined
by the choice of the functions g and φ. If Ft = FW

t is the Brownian filtration,
then the diffusion coefficient of Z is not affected by any Girsanov transformation.
Consequently, statistical calibration is only possible for the drift of the model (or
equivalently, for the market price of risk), since the observations of z are made un-
der the objective measure P ∼ Q, where dQ/dP is left unspecified by our consistency
considerations.
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Define

Bi(z) :=
m∑

k=1

bk(z)
∂φi(z)
∂zk

+
1
2

m∑

k,l=1

akl(z)
∂2φi(z)
∂zk∂zl

(7)

Aij(z) = Aji(z) :=
1
2

m∑

k,l=1

akl(z)
∂φi(z)
∂zk

∂φj(z)
∂zl

. (8)

and notice that the right hand side of (6) can be rewritten
n∑

i=1

(gi(x)− gi(0)) φi(z) =
n∑

i=1

Gi(x)Bi(z)−
n∑

i,j=1

Gi(x)Gj(x)Aij(z). (9)

Proposition 2.5. If the functions Gi and GiGj, 1 ≤ i ≤ j ≤ n, are linearly
independent, then each Bi and Aij can be expressed as a linear combination of
φ1, . . . , φn.

Proof. Set N = n + n(n + 1)/2, the number of unknown functions Bi and Aij .
There exists a sequence 0 ≤ x1 < · · · < xN such that the N ×N -matrix with k-th
row vector built by Gi(xk) and Gi(xk)Gj(xk), 1 ≤ i ≤ j ≤ n, is invertible. In view
of (9), the proposition follows. ¤

Remark 2.6. In general, Proposition 2.5 fails without the linear independence
assumption on G, see the example in Filipović (2001b).

Finally, we have the following regularity result.

Proposition 2.7. Suppose that the functions φ1, . . . , φn are linearly independent.
Then the Gis solve a system of Riccati equations. That is, for each i ∈ {1, . . . , n}
there exists a polynomial of the form

Ri(λ) = γi + 〈βi, λ〉 − 〈αiλ, λ〉, λ ∈ Rn,

where γi = gi(0), βi ∈ Rn and αi is a symmetric n× n-matrix, such that

dGi(x)
dx

= Ri(G(x)). (10)

Consequently, g is analytic and uniquely determined by φ, b and a.

Proof. Choose mutually distinct points z1, . . . , zn ∈ Z such that the n× n-matrix
(φi(zj)) is regular. Now invert equation (9). This yields (10). Since the Ris are
analytic functions, the second statement follows as well. ¤

Corollary 2.8. Any STS model yields analytic forward curves.

Proof. We can always choose a collection I = {φi1 , . . . , φip}, p ≤ n, which is linearly
independent, such that any φi can be expressed as a linear combination of I. But
then (1) can be rewritten

r(t, x) =
p∑

j=1

g̃j(x)φij (Zt),

for some continuous functions g̃j . Now Proposition 2.7 yields the result. ¤
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3. The Maximal Degree Problem

In this section we focus on the subclass of PTS models (2). To avoid trivialities we
assume from now on that n ≥ 1, since n = 0 yields r(t, x) ≡ const, see (6). For
simplicity we consider only the time homogeneous case—the generalization of the
subsequent results to time varying coefficients is straightforward. As before, g, b
and σ are continuous.

First we shall prove a stronger version of Proposition 2.3. Recall Remark 2.4.

Proposition 3.1 (PTS). If m = 1 then b and a are uniquely determined by g.

Proof. In view of Proposition 2.3 we have to show that there exists a dense subset
D of Z such that Γ(·, z) and Λ(·, z) − Γ(·, z)2 are linearly independent functions,
for all z ∈ D.

Hence, suppose there exists a closed set N ⊂ Z with non-empty interior N 0,
such that

c(z)Γ(·, z) = γ(z)
(
Λ(·, z)− Γ(·, z)2

)
,

for some (c(z), γ(z)) ∈ R2 \ {(0, 0)}, for all z ∈ N . Fix x ∈ R+. Since Γ(x, z) is
analytic in z, without loss of generality Γ(x, z) 6= 0, for all z ∈ N 0. Hence γ does
not vanish on N 0, and we can set γ(z) ≡ 1. This implies

c(z) =
∑n

i=2 i(i− 1)Gi(x)zi−2

∑n
i=1 iGi(x)zi−1

−
n∑

i=1

iGi(x)zi−1, ∀z ∈ N 0, ∀x ∈ R+,

where c is an analytic function in N 0. Since the representation of the polynomial
on the right hand side is unique, we have that Gi(x) ≡ const = Gi(0) = 0, for all
1 ≤ i ≤ n. This implies gi = 0, for all 1 ≤ i ≤ n, a contradiction. ¤

We now shall show in two versions that, essentially, there exists no PTS model
of degree n > 2. The first version includes a result on the functional form of the
coefficients b and a.

We introduce the following notation: for µ ∈ {1, . . . , n} and k ∈ {1, . . . ,m}
write (µ)k for the multi-index with µ at the k-th position and zeros elsewhere. Let
i1, i2, . . . , iN be a numbering of the set of multi-indices I = {i = (i1, . . . , im) | |i| ≤
n}, where N := |I| = ∑n

|i|=0 1.

Theorem 3.2 (Maximal Degree Problem I). Suppose that Giµ and GiµGiν are
linearly independent functions, 1 ≤ µ ≤ ν ≤ N , and that σ 6≡ 0.

Then necessarily n ∈ {1, 2}. Moreover, b(z) and a(z) are polynomials in z with
deg b(z) ≤ 1 in any case (QTS and ATS), and deg a(z) = 0 if n = 2 (QTS) and
deg a(z) ≤ 1 if n = 1 (ATS).

Proof. Proposition 2.5 yields that each of the expressions Bi(z) and Aij(z) is a
polynomial in z of order less than or equal n, see (7) and (8). In particular, we
have

B(1)k
(z) = bk(z),

2A(1)k(1)l
(z) = akl(z), k, l ∈ {1, . . . , m}, (11)

hence b(z) and a(z) are polynomials in z with deg b(z), deg a(z) ≤ n. An easy
calculation shows that

2A(n)k(n)k
(z) = akk(z)n2z2n−2

k , k ∈ {1, . . . , m}. (12)
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We may assume that akk 6≡ 0, since σ 6≡ 0. But then the right hand side of (12)
cannot be a polynomial in z of order less than or equal n unless n ≤ 2. This proves
the first part of the theorem.

If n = 1 there is nothing more to prove. Now let n = 2. Notice that by definition

degµ akl(z) ≤ (degµ akk(z) + degµ all(z))/2,

where degµ denotes the degree of dependence on the single component zµ. Equa-
tion (12) yields degk akk(z) = 0. Hence degl akl(z) ≤ 1. Consider

2A(1)k+(1)l,(1)k+(1)l
(z) = akk(z)z2

l + 2akl(z)zkzl + all(z)z2
k, k, l ∈ {1, . . . ,m}.

From the preceding arguments it is now clear that also degl akk(z) = 0, and hence
deg a(z) = 0. We finally have

B(1)k+(1)l
(z) = bk(z)zl + bl(z)zk + akl(z), k, l ∈ {1, . . . , m},

from which we conclude that deg b(z) ≤ 1. ¤
Remark 3.3. The preceding result on QTS models has already been stated in Leip-
pold and Wu (2002). There, however, the precise conditions are left unspecified.

We can relax the hypothesis on G in Theorem 3.2 if from now on we make the
following standing assumptions: Z ⊂ Rm is a cone, and b and σ satisfy a linear
growth condition

‖b(z)‖+ ‖σ(z)‖ ≤ C(1 + ‖z‖), ∀z ∈ Z, (13)

for some constant C ∈ R+.

Theorem 3.4 (Maximal Degree Problem II). Suppose that

〈a(z)v, v〉 ≥ k(z)‖v‖2, ∀v ∈ Rm, (14)

for some function k : Z → R+ with

lim inf
z∈Z,‖z‖→∞

k(z) > 0. (15)

Then necessarily n ∈ {1, 2}.
Conditions (14) and (15) say that a(z) becomes uniformly elliptic for ‖z‖ large

enough.

Proof. We shall make use of the basic inequality

|zi| ≤ ‖z‖|i|, ∀z ∈ Rm. (16)

This is immediate, since

|zi|
‖z‖|i| =

(
z1

‖z‖
)i1

· · ·
(

zm

‖z‖
)im

≤ 1, ∀z ∈ Rm \ {0}.

Suppose now that n > 2. We have from (4)

Γk(x, z) =
∑

|i|=n

Gi(x)ikzi−(1)k + · · · =: Pk(x, z) + · · · ,

where Pk(x, z) is a homogeneous polynomial in z of order n − 1, and · · · stands
for lower order terms in z. By assumptions there exist x ∈ R+ and k ∈ {1, . . . ,m}
such that Pk(x, ·) 6= 0. Choose z∗ ∈ Z \ {0} with Pk(x, z∗) 6= 0 and set zα := αz∗,
for α > 0. Then we have zα ∈ Z and

Γk(x, zα) = αn−1Pk(x, z∗) + · · · ,
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where · · · denotes lower order terms in α. Consequently,

lim
α→∞

Γk(x, zα)
‖zα‖n−1

=
Pk(x, z∗)
‖z∗‖n−1

6= 0. (17)

Combining (14) and (15) with (17) we conclude that

L := lim inf
α→∞

1
‖zα‖2n−2

〈a(zα)Γ(x, zα),Γ(x, zα)〉 ≥ lim inf
α→∞

k(zα)
‖Γ(x, zα)‖2
‖zα‖2n−2

> 0.

(18)
On the other hand, by (6),

L ≤
n∑

|i|=0

|gi(x)− gi(0)| |zi
α|

‖zα‖2n−2
+
‖b(zα)‖
‖zα‖

‖Γ(x, zα)‖
‖zα‖2n−3

+
1
2
‖a(zα)‖
‖zα‖2

‖Λ(x, zα)‖
‖zα‖2n−4

,

for all α > 0. In view of (4), (5), (13) and (16), the right hand side converges to
zero for α →∞. This contradicts (18), hence n ≤ 2. ¤

Remark 3.5. Notice that the preceding setup (except of (13)) is always satisfied
for Gaussian models.

Finally, we consider a seemingly paradox example. It both clarifies the above
assumptions and exposes “pseudo” PTS models of higher order. Let (Rt) be the
short rate process

dRt =
√

Rt dWt, R0 ≥ 0,

where W is a real-valued Brownian motion. This is a simplified version of the Cox–
Ingersoll–Ross short rate model (Cox et al. (1985)), and it is well known that Rt is
nonnegative and yields an ATS of the form

r(t, x) = h(x)Rt

(for h see e.g. Section 7.4.1 in Filipović (2001a)). Now write Zt = (Rt)1/3. Then

r(t, x) = h(x)(Zt)3 (19)

is a consistent PTS model of degree 3. Does this contradict the preceding theorems?
The answer is of course no, and the reason is that the assumptions for both

Theorems 3.2 and 3.4 are not satisfied. First, notice that the full form of (19) reads

r(t, x) = g0(x) + g1(x)Zt + g2(x)(Zt)2 + g3(x)(Zt)3,

with g0 = g1 = g2 = 0 and g3 = h. But this means that the functions G0, . . . , G3,
see (3), are not linearly independent. Whence Theorem 3.2 does not apply. Second,
we have

dZt = − 1
9(Zt)2

dt +
1

3
√

Zt

dWt.

Hence the diffusion coefficient is a(z) = 1/(9z), which does not satisfy (14) and (15).

4. Conclusion

We have explored the interplay between the diffusion coefficients and the functions
determining the forward curve for an arbitrage-free STS model. For QTS models the
diffusion is, under the appropriate conditions, necessarily an Ornstein-Uhlenbeck
type process. We recaptured also the ATS models. Moreover, we have solved the
maximal degree problem: under reasonable conditions, the only consistent PTS
models are the ATS and QTS models.
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