A Bayesian adaptive singular control problem arising from corporate finance

by

J.-P. Décamp and S. Villeneuve

discussant: H. Mete SONER,
Department of Mathematics ETH Zürich
Swiss Finance Institute

EPFL, November, 9 2012

Problem

This is the classical set-up with cash reserves

$$dX_t = \mu dt + \sigma dB_t - dL_t,$$

where B Brownian motion and L_t cumulative dividend process. L is the only control available and one wants to maximize

$$L \ ext{non-decreasing} \ \ o \ \ \mathbb{E}\left[\int_0^{ au} e^{-rt} dL_t
ight],$$

where τ is the time of bankruptcy. With μ and σ constant this is a simple singular control problem and can be solved explicitly. The new feature here is the uncertainty about the drift μ .

Bayesian framework

We assume that μ is a random variable independent of the Brownian motion with values $[\underline{y},\overline{y}]$, where $\underline{y}<0<\overline{y}$ are two known constants. Then, the probability distribution of this random variable given the observations of the cash reserves is a scalar quantity. One may use the following conditional expectation to track it,

$$Y_t := \mathbb{E} [\mu \mid \mathcal{F}_t],$$

where \mathcal{F} is the observed filtration, i.e., the one generated by X or equivalently by $dR = \mu dt + \sigma dB_t$.

Filtering

Recall

$$dX_t = \mu dt + \sigma dB_t - dL_t$$
, and $Y_t := \mathbb{E} [\mu \mid \mathcal{F}_t]$.

Also μ and B are independent. Then,

$$dX_t = Y_t dt + \sigma dW_t - dL_t$$

$$dY_t = \frac{1}{\sigma} (Y_t - \underline{y}) (\overline{y} - Y_t) dW_t,$$

where W is a Brownian motion in the observed filtration.

Control problem

$$V^*(x,y) := \sup_{L} \mathbb{E}\left[\int_0^{\tau} e^{-rt} dL_t\right],$$

$$dX_t = Y_t dt + \sigma dW_t - dL_t$$

$$dY_t = \frac{1}{\sigma} (Y_t - \underline{y})(\overline{y} - Y_t) dW_t =: \sigma F(Y_t) dW_t,$$

L is non-decreasing process, au is the bankruptcy time, W is a Brownian motion in the observed filtration \mathcal{F} , everything needs to be adapted to \mathcal{F} .

Dynamic Programming Equation

This is a singular, degenerate, two-dimensional optimal control problem : for x > 0 and $y \in (y, \overline{y})$,

$$\min \left\{ r V^*(x,y) - \mathcal{L} V^*(x,y) \; , \; V_x^*(x,y) - 1 \; \right\} = 0,$$

together with the boundary conditions, $V^*(0,y) = 0$, and the functions $V^*(x,\underline{y})$ and $V^*(x,\overline{y})$ are computed explicitly as the Y_t is a constant in each case. And

$$\mathcal{L}v(x,y) = yv_x + \frac{\sigma^2}{2} (v_{xx} + F^2(y)v_{yy} + 2F(y)v_{xy}).$$

An upper bound

$$dX_t = Y_t dt + \sigma dW_t - dL_t$$
 and $X_t \ge 0$,

imply that

$$\mathbb{E}\left[\int_{0}^{T} e^{-rt} dL_{t}\right] = \mathbb{E}\left[\int_{0}^{T} e^{-rt} Y_{t} dt\right] - \mathbb{E}\left[\int_{0}^{T} e^{-rt} dX_{t}\right]$$

$$\leq \mathbb{E}\left[\int_{0}^{T} e^{-rt} Y_{t} dt\right] + x.$$

So

$$V^*(x,y) \leq \hat{V}(x,y) := x + \sup_{\tau} \mathbb{E}\left[\int_0^{\tau} e^{-rt} Y_t dt\right].$$

Properties - threshold

The upper bound can be solved explicitly, in particular there exists a threshold $y^* \in (y, \overline{y})$ so that

$$\hat{V}(x,y) = x, \quad \forall y \le y^*.$$

Hence, if our estimate of the drift based on our observations is less than y^* , then the optimal strategy is to pay all cash reserves as dividend and go bankrupt.

Properties - concavity

$$x \to V^*(x,y)$$
, is concave, $y \to V^*(x,y)$, is convex.

Proofs are control theoretic.

Properties - explicit solution

In the symmetric case,

$$\underline{y}=-\overline{y},$$

 V^* is computed explicitly.

Properties - regularity / verification

- Under the assumption of regularity, the value function V^* is proved to be the unique classical solution of the dynamic programming equation.
- In fact, more is assumed and more is proved.
- I also think that V* is the unique viscosity solution among the class of continuous solutions that are convex in y and concave in x. This uniqueness would be important to ensure that the numerical studies are giving approximation soy the value function.

Concluding

- Uncertainty in the drift is a very appropriate extension of the previous theory.
- Addition of issuance would be quite interesting as the optimal issuance level could be non-zero for certain values of y.
- However, this would be hard to analyze explicitly. Instead one can do numerical studies.
- A study in this direction was done by Akyildirim, Güney,
 Rochet and Soner with uncertain interest rate with issuance.