Linear-Rational Term-Structure Models

Anders Trolle (joint with Damir Filipović and Martin Larsson)

> Ecole Polytechnique Fédérale de Lausanne Swiss Finance Institute

AMaMeF and Swissquote Conference, September 9, 2015

Near-zero short-term interest rates

Contribution

- Existing models that respect zero lower bound (ZLB) on interest rates face limitations:
 - Shadow-rate models do not capture volatility dynamics
 - Multi-factor CIR and quadratic models do not easily accommodate unspanned factors and swaption pricing
- ▶ We develop a new class of **linear-rational** term structure models
 - Respects ZLB on interest rates
 - Easily accommodates unspanned factors affecting volatility and risk premia
 - Admits semi-analytical solutions to swaptions
- Extensive empirical analysis
 - Parsimonious model specification has very good fit to interest rate swaps and swaptions since 1997
 - Captures many features of term structure, volatility, and risk premia dynamics.

Contribution

- Existing models that respect zero lower bound (ZLB) on interest rates face limitations:
 - Shadow-rate models do not capture volatility dynamics
 - Multi-factor CIR and quadratic models do not easily accommodate unspanned factors and swaption pricing
- ▶ We develop a new class of **linear-rational** term structure models
 - Respects ZLB on interest rates
 - Easily accommodates unspanned factors affecting volatility and risk premia
 - Admits semi-analytical solutions to swaptions
- Extensive empirical analysis
 - Parsimonious model specification has very good fit to interest rate swaps and swaptions since 1997
 - Captures many features of term structure, volatility, and risk premia dynamics.

Contribution

- Existing models that respect zero lower bound (ZLB) on interest rates face limitations:
 - Shadow-rate models do not capture volatility dynamics
 - Multi-factor CIR and quadratic models do not easily accommodate unspanned factors and swaption pricing
- ▶ We develop a new class of **linear-rational** term structure models
 - Respects ZLB on interest rates
 - Easily accommodates unspanned factors affecting volatility and risk premia
 - Admits semi-analytical solutions to swaptions
- Extensive empirical analysis
 - Parsimonious model specification has very good fit to interest rate swaps and swaptions since 1997
 - Captures many features of term structure, volatility, and risk premia dynamics.

Outline

The linear-rational framework

The Linear-Rational Square-Root (LRSQ) model

Empirical analysis

Outline

The linear-rational framework

The Linear-Rational Square-Root (LRSQ) model

Empirical analysis

Linear-rational framework and bond pricing

▶ State-price density, ζ_t

$$\Pi(t,T) = \frac{1}{\zeta_t} \mathbb{E}_t[\zeta_T C_T]$$

ightharpoonup m-dimensional **factor process**, Z_t , with linear drift given by

$$\mathrm{d}Z_t = \kappa(\theta - Z_t)\mathrm{d}t + \mathrm{d}M_t,$$

for some $\kappa \in \mathbb{R}^{m \times m}$, $\theta \in \mathbb{R}^m$, and some martingale M_t

 $\triangleright \zeta_t$ given by

$$\zeta_t = e^{-\alpha t} \left(\phi + \psi^\top Z_t \right),$$

for some $\phi\in\mathbb{R}$ and $\psi\in\mathbb{R}^m$ such that $\phi+\psi^{ op}z>0$ for all $z\in E$, and some $lpha\in\mathbb{R}$

Conditional expectations:

$$\mathbb{E}_t[Z_T] = \theta + e^{-\kappa(T-t)}(Z_t - \theta)$$

Price of zero-coupon bond:

$$\Pr_{\text{The linear-rational framework}}(t,t+\tau) = \frac{(\phi+\psi^\top\theta)\mathrm{e}^{-\alpha\tau} + \psi^\top\mathrm{e}^{-(\alpha+\kappa)\tau}(Z_t-\theta)}{\phi+\psi^\top Z_t}$$

Linear-rational framework and bond pricing

▶ State-price density, ζ_t

$$\Pi(t,T) = \frac{1}{\zeta_t} \mathbb{E}_t[\zeta_T C_T]$$

 \blacktriangleright *m*-dimensional **factor process**, Z_t , with linear drift given by

$$\mathrm{d}Z_t = \kappa(\theta - Z_t)\mathrm{d}t + \mathrm{d}M_t,$$

for some $\kappa \in \mathbb{R}^{m \times m}$, $\theta \in \mathbb{R}^m$, and some martingale M_t

 $ightharpoonup \zeta_t$ given by

$$\zeta_t = e^{-\alpha t} \left(\phi + \psi^\top Z_t \right),\,$$

for some $\phi \in \mathbb{R}$ and $\psi \in \mathbb{R}^m$ such that $\phi + \psi^\top z > 0$ for all $z \in E$, and some $\alpha \in \mathbb{R}$

Conditional expectations:

$$\mathbb{E}_t[Z_T] = \theta + e^{-\kappa(T-t)}(Z_t - \theta)$$

Price of zero-coupon bond:

$$\Pr_{\text{The linear-rational framework}}(t, t + \tau) = \frac{(\phi + \psi^{\top}\theta)e^{-\alpha\tau} + \psi^{\top}e^{-(\alpha + \kappa)\tau}(Z_t - \theta)}{\phi + \psi^{\top}Z_t}$$

Linear-rational framework and bond pricing

▶ State-price density, ζ_t

$$\Pi(t,T) = \frac{1}{\zeta_t} \mathbb{E}_t[\zeta_T C_T]$$

▶ m-dimensional **factor process**, Z_t , with linear drift given by

$$\mathrm{d}Z_t = \kappa(\theta - Z_t)\mathrm{d}t + \mathrm{d}M_t,$$

for some $\kappa \in \mathbb{R}^{m \times m}$, $\theta \in \mathbb{R}^m$, and some martingale M_t

 $ightharpoonup \zeta_t$ given by

$$\zeta_t = e^{-\alpha t} \left(\phi + \psi^\top Z_t \right),$$

for some $\phi \in \mathbb{R}$ and $\psi \in \mathbb{R}^m$ such that $\phi + \psi^\top z > 0$ for all $z \in E$, and some $\alpha \in \mathbb{R}$

Conditional expectations:

$$\mathbb{E}_t[Z_T] = \theta + e^{-\kappa(T-t)}(Z_t - \theta)$$

Price of zero-coupon bond:

$$\Pr_{\text{The linear-rational framework}} P(t, t + \tau) = \frac{(\phi + \psi^\top \theta) \mathrm{e}^{-\alpha \tau} + \psi^\top \mathrm{e}^{-(\alpha + \kappa)\tau} (Z_t - \theta)}{\phi + \psi^\top Z_t}$$

Interest rates and the zero lower bound

Short rate:

$$r_t = -\partial_T \log P(t, T)|_{T=t} = \alpha - \frac{\psi^\top \kappa(\theta - Z_t)}{\phi + \psi^\top Z_t}$$

Define

$$\alpha^* = \sup_{z} \frac{\psi^\top \kappa(\theta - z)}{\phi + \psi^\top z}$$
 and $\alpha_* = \inf_{z} \frac{\psi^\top \kappa(\theta - z)}{\phi + \psi^\top z}$

▶ Set $\alpha = \alpha^*$ so that

$$r_t \in [0, \alpha^* - \alpha_*]$$

- $lacktriangledown^*$ and $lpha_*$ are finite if $z \in \mathbb{R}^d_+$ and all components of ψ are strictly positive
- ▶ Range is parameter dependent, verify that range is wide enough
- ▶ If eigenvalues of κ have nonnegative real part then α is the infinite-maturity ZCB yield The linear-rational framework

Interest rates and the zero lower bound

Short rate:

$$r_t = -\partial_T \log P(t, T)|_{T=t} = \alpha - \frac{\psi^\top \kappa(\theta - Z_t)}{\phi + \psi^\top Z_t}$$

Define

$$\alpha^* = \sup_{\mathbf{z}} \frac{\psi^\top \kappa(\theta - \mathbf{z})}{\phi + \psi^\top \mathbf{z}}$$
 and $\alpha_* = \inf_{\mathbf{z}} \frac{\psi^\top \kappa(\theta - \mathbf{z})}{\phi + \psi^\top \mathbf{z}}$

▶ Set $\alpha = \alpha^*$ so that

$$r_t \in [0, \alpha^* - \alpha_*]$$

- $lacktriangledown^*$ and $lpha_*$ are finite if $z \in \mathbb{R}^d_+$ and all components of ψ are strictly positive
- ► Range is parameter dependent, verify that range is wide enough
- ▶ If eigenvalues of κ have nonnegative real part then α is the infinite-maturity ZCB yield The linear-rational framework

Interest rates and the zero lower bound

Short rate:

$$r_t = -\partial_T \log P(t, T)|_{T=t} = \alpha - \frac{\psi^\top \kappa(\theta - Z_t)}{\phi + \psi^\top Z_t}$$

Define

$$\alpha^* = \sup_{\mathbf{z}} \frac{\psi^\top \kappa(\theta - \mathbf{z})}{\phi + \psi^\top \mathbf{z}}$$
 and $\alpha_* = \inf_{\mathbf{z}} \frac{\psi^\top \kappa(\theta - \mathbf{z})}{\phi + \psi^\top \mathbf{z}}$

▶ Set $\alpha = \alpha^*$ so that

$$r_t \in [0, \alpha^* - \alpha_*]$$

- α^* and α_* are finite if $z \in \mathbb{R}^d_+$ and all components of ψ are strictly positive
- ► Range is parameter dependent, verify that range is wide enough
- If eigenvalues of κ have nonnegative real part then α is the infinite-maturity ZCB yield

Interest rate swaps

- Exchange a stream of fixed-rate for floating-rate payments
- Consider a tenor structure

$$T_0 < T_1 < \cdots < T_n, \quad T_i - T_{i-1} \equiv \Delta$$

- ▶ At T_i , i = 1 ... n:
 - ▶ pay Δk , for fixed rate k
 - receive floating LIBOR $\Delta L(T_{i-1}, T_i) = \frac{1}{P(T_{i-1}, T_i)} 1$
- ▶ Value of **payer swap** at $t \le T_0$

$$\Pi_t^{\text{swap}} = \underbrace{P(t, T_0) - P(t, T_n)}_{\text{floating leg}} - \underbrace{\Delta k \sum_{i=1}^n P(t, T_i)}_{\text{fixed leg}}$$

► Forward swap rate $S_t = \frac{P(t,T_0) - P(t,T_n)}{\Delta \sum_{i=1}^n P(t,T_i)}$

Swaptions

- ▶ Payer swaption = option to enter the swap at T₀ paying fixed, receiving floating
- ▶ Payoff at expiry T₀ of the form

$$C_{T_0} = \left(\Pi_{T_0}^{\text{swap}}\right)^+ = \left(\sum_{i=0}^n c_i P(T_0, T_i)\right)^+ = \frac{1}{\zeta_{T_0}} p_{\text{swap}} (Z_{T_0})^+$$

for the explicit linear function

$$p_{\text{swap}}(z) = \sum_{i=0}^{n} c_i e^{-\alpha T_i} \left(\phi + \psi^{\top} \theta + \psi^{\top} e^{-\kappa (T_i - T_0)} (z - \theta) \right)$$

▶ Swaption price at $t \le T_0$ is given by

$$\Pi_t^{\text{swaption}} = \frac{1}{\zeta_t} \mathbb{E}[\zeta_{T_0} C_{T_0} \mid \mathcal{F}_t] = \frac{1}{\zeta_t} \mathbb{E}_t \left[p_{\text{swap}} (Z_{T_0})^+ \right]$$

► Efficient swaption pricing via Fourier transform . . .! The linear-rational framework

Swaptions

- ▶ Payer swaption = option to enter the swap at T₀ paying fixed, receiving floating
- ▶ Payoff at expiry T₀ of the form

$$C_{T_0} = \left(\Pi_{T_0}^{\text{swap}}\right)^+ = \left(\sum_{i=0}^n c_i P(T_0, T_i)\right)^+ = \frac{1}{\zeta_{T_0}} p_{\text{swap}} (Z_{T_0})^+$$

for the explicit linear function

$$p_{\text{swap}}(z) = \sum_{i=0}^{n} c_i e^{-\alpha T_i} \left(\phi + \psi^{\top} \theta + \psi^{\top} e^{-\kappa (T_i - T_0)} (z - \theta) \right)$$

▶ Swaption price at $t \le T_0$ is given by

$$\Pi_t^{\text{swaption}} = \frac{1}{\zeta_t} \mathbb{E}[\zeta_{T_0} C_{T_0} \mid \mathcal{F}_t] = \frac{1}{\zeta_t} \mathbb{E}_t \left[\rho_{\text{swap}} (Z_{T_0})^+ \right]$$

Efficient swaption pricing via Fourier transform . . . !

Fourier transform

Define

$$\widehat{q}(x) = \mathbb{E}_t \left[\exp \left(x \, p_{\text{swap}}(Z_{T_0}) \right) \right]$$

for every $x \in \mathbb{C}$ such that the conditional expectation is well-defined

► Then

$$\Pi_t^{\mathrm{swaption}} = \frac{1}{\zeta_t \pi} \int_0^\infty \mathrm{Re} \left[\frac{\widehat{q}(\mu + \mathrm{i} \lambda)}{(\mu + \mathrm{i} \lambda)^2} \right] d\lambda$$

for any $\mu>0$ with $\widehat{q}(\mu)<\infty$

 $ightharpoonup \widehat{q}(x)$ has semi-analytical solution in LRSQ model

Outline

The linear-rational framework

The Linear-Rational Square-Root (LRSQ) model

Empirical analysis

Linear-Rational Square-Root (LRSQ) model

- ▶ Objective: A model with joint factor process (Z_t, U_t) , where
 - \triangleright Z_t : m term structure factors
 - ▶ U_t : $n \le m$ USV factors
- Denoted LRSQ(m,n)
- ▶ Based on a (m+n)-dimensional square-root diffusion process X_t taking values in \mathbb{R}_+^{m+n} of the form

$$\mathrm{d}X_t = (b-\beta X_t)\,\mathrm{d}t + \mathsf{Diag}\left(\sigma_1\sqrt{X_{1t}},\ldots,\sigma_{m+n}\sqrt{X_{m+n,t}}\right)\mathrm{d}B_t,$$

- ▶ Define $(Z_t, U_t) = SX_t$ as linear transform of X_t with state space $\mathcal{E} = S(\mathbb{R}^{m+n}_+)$
- ▶ Need to specify a $(m+n) \times (m+n)$ -matrix S such that
 - the implied term structure state space is $E = \mathbb{R}^m_+$
 - ▶ the drift of Z_t does not depend on U_t , while U_t feeds into the martingale part of Z_t

Linear-Rational Square-Root (LRSQ) model (cont.)

▶ *S* given by

$$S = \left(\begin{array}{cc} \operatorname{Id}_m & A \\ 0 & \operatorname{Id}_n \end{array} \right) \quad \text{with } A = \left(\begin{array}{c} \operatorname{Id}_n \\ 0 \end{array} \right).$$

 \blacktriangleright β chosen upper block-triangular of the form

$$\beta = S^{-1} \begin{pmatrix} \kappa & 0 \\ 0 & A^{\top} \kappa A \end{pmatrix} S = \begin{pmatrix} \kappa & \kappa A - A A^{\top} \kappa A \\ 0 & A^{\top} \kappa A \end{pmatrix}$$

for some $\kappa \in \mathbb{R}^{m \times m}$

b given by

$$b = \beta S^{-1} \begin{pmatrix} \theta \\ \theta_U \end{pmatrix} = \begin{pmatrix} \kappa \theta - A A^{\top} \kappa A \theta_U \\ A^{\top} \kappa A \theta_U \end{pmatrix}$$

for some $\theta \in \mathbb{R}^m$ and $\theta_U \in \mathbb{R}^n$.

Linear-Rational Square-Root (LRSQ) model (cont.)

▶ Resulting joint factor process (Z_t, U_t) :

$$\begin{split} \mathrm{d} Z_t &= \kappa \left(\theta - Z_t\right) \mathrm{d} t + \sigma(Z_t, U_t) \mathrm{d} B_t \\ \mathrm{d} U_t &= A^\top \kappa A \left(\theta_U - U_t\right) \mathrm{d} t + \mathsf{Diag} \left(\sigma_{m+1} \sqrt{U_{1t}} \, \mathrm{d} B_{m+1,t}, \ldots, \sigma_{m+n} \sqrt{U_{nt}} \, \mathrm{d} B_{m+n,t}\right), \\ \text{with dispersion function of } Z_t \text{ given by} \\ \sigma(z,u) &= \left(\mathrm{Id}_m, A\right) \mathsf{Diag} \left(\sigma_1 \sqrt{z_1 - u_1}, \ldots, \sigma_{m+n} \sqrt{u_n}\right). \end{split}$$

ightharpoonup Example: LRSQ(1,1)

$$dZ_{1t} = \kappa_{11} (\theta_1 + \theta_2 - Z_{1t}) dt + \sigma_1 \sqrt{Z_{1t} - U_{1t}} dB_{1t} + \sigma_2 \sqrt{U_{1t}} dB_{2t}$$

$$dU_{1t} = \kappa_{22} (\theta_2 - U_{1t}) dt + \sigma_2 \sqrt{U_{1t}} dB_{2t}$$

Linear-rational vs. exponential-affine framework

	Exponential-affine	Linear-rational	
Short rate	affine	LR	
ZCB price	exponential-affine	LR	
ZCB yield	affine	log of LR	
Coupon bond price	sum of exponential-affines	LR	
Swap rate	ratio of sums of exponential-affines	$_{ m LR}$	
ZLB	(✓)	✓	
USV	(√)	✓	
Cap/floor valuation	semi-analytical	semi-analytical	
Swaption valuation	approximate	semi-analytical	
Linear state inversion	ZCB yields	bond prices or swap rates	

Outline

The linear-rational framework

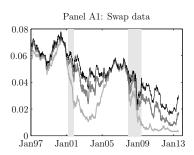
The Linear-Rational Square-Root (LRSQ) mode

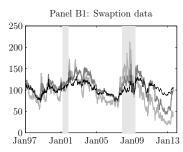
Empirical analysis

Empirical analysis 16/23

Data and estimation approach

- Panel data set of swaps and swaptions
- Swap maturities: 1Y, 2Y, 3Y, 5Y, 7Y, 10Y
- Swaptions expiries: 3M, 1Y, 2Y, 5Y
- 866 weekly observations, Jan 29, 1997 Aug 28, 2013
- Estimation approach: Quasi-maximum likelihood in conjunction with the unscented Kalman Filter





Empirical analysis 17/2

Model specifications

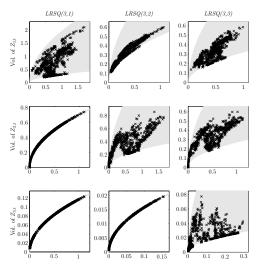
- Model specifications (always 3 term structure factors)
 - ▶ LRSQ(3,1): volatility of Z_{1t} containing an unspanned component
 - ▶ LRSQ(3,2): volatility of Z_{1t} and Z_{2t} containing unspanned components
 - ► *LRSQ(3,3)*: volatility of term structure factors containing unspanned components
- $\alpha = \alpha^*$ and range of r_t :

	LRSQ(3,1)	LRSQ(3,2)	LRSQ(3,3)
Long ZCB yield α	7.46%	6.88%	5.66%
Upper bound on r_t	20%	146%	72%

Empirical analysis 18/2:

Level-dependence in factor volatilities

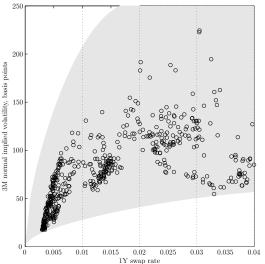
- ▶ Volatility of Z_{it} with USV: $\sqrt{\sigma_i^2 Z_{it} + (\sigma_{i+3}^2 \sigma_i^2) U_{it}}$
- Volatility of Z_{it} without USV: $\sigma_i \sqrt{Z_{it}}$



Empirical analysis

Volatility dynamics near the ZLB

► Level-dependence in volatility, 3M/1Y swaption IV vs. 1Y swap rate



Empirical analysis 20/23

Level-dependence in volatility

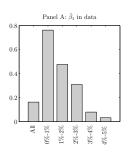
Regress weekly changes in the 3M swaption IV on weekly changes in the underlying swap rate

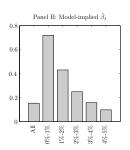
$$\Delta \sigma_{N,t} = \beta_0 + \beta_1 \Delta S_t + \epsilon_t$$

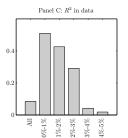
	1 yr	2 yrs	3 yrs	5 yrs	7 yrs	10 yrs	Mean
Panel A.	β_1						
All	0.18** (2.38)	0.16*** (2.88)	0.16*** (3.31)	0.16*** (4.12)	0.16*** (4.59)	0.16*** (4.97)	0.16
0%-1%	1.20*** (8.03)	0.74*** (8.79)	0.62*** (8.19)	0.48*** (7.83)			0.76
1%-2%	0.54*** (2.70)	0.64*** (6.21)	0.46*** (6.77)	0.52*** (5.02)	0.45*** (5.23)	0.26*** (8.24)	0.48
2%-3%	0.28***	0.11** (1.97)	0.30***	0.36*** (5.08)	0.40*** (5.62)	0.40*** (4.93)	0.31
3%-4%	-0.02 (-0.22)	0.11 (1.21)	0.06 (0.92)	0.05 (0.80)	0.11^* (1.82)	0.17^* (1.96)	0.08
4%-5%	0.04 (0.31)	-0.07 (-0.82)	0.01 (0.08)	0.08 (1.59)	0.07^* (1.76)	0.07^* (1.65)	0.03
$Panel\ B.$	R^2						
All	0.05	0.06	0.08	0.10	0.11	0.10	0.08
0%-1%	0.52	0.54	0.54	0.44			0.51
1%-2%	0.25	0.49	0.45	0.55	0.55	0.27	0.43
2% - 3%	0.16	0.06	0.28	0.37	0.44	0.45	0.29
3%-4%	0.00	0.03	0.01	0.01	0.07	0.12	0.04
4%-5%	0.00	0.01	0.00	0.03	0.03	0.03	0.02

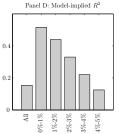
Empirical analysis 21/2

Level-dependence in volatility, LRSQ(3,3)









Empirical analysis 22/23

Conclusion

- Key features of framework:
 - Respects ZLB on interest rates
 - Easily accommodates unspanned factors affecting volatility and risk premia
 - Admits semi-analytical solutions to swaptions
- Extensive empirical analysis:
 - Parsimonious model specification has very good fit to interest rate swaps and swaptions since 1997
 - Captures many features of term structure, volatility, and risk premia dynamics.

onclusion 23/23