(Almost) Model-Free Recovery

Paul Schneider and Fabio Trojani

Università della Svizzera Italiana, University of Geneva, Boston University and SFI

9 September 2015

Amamef

Lausanne

Motivation and Intuition

- ▶ No-arbitrage (NA) reasonable model for financial markets
- Breeden and Litzenberger (1978): relation between derivatives of option prices and forward-neutral density under NA
- ▶ No such model-free result for conditional physical probability measure
- Evidence only from
 - Parametric models (for example affine or polynomial)
 - Assumptions on classes of processes
 - Diffusion processes
 - (Stationary) Markov processes
- ► *Trading Strategies:* What information do signs of expected profits carry under risk aversion?

In a Nutshell

- ▶ Bound expected market returns with observed option prices
 ⇒ Upper and lower bounds on conditional physical moments
- Moment bounds parameterize family of feasible physical probability measures through truncated moment problem
- ▶ Projection of pricing kernel on market return in \mathcal{L}^2 space weighted with physical probability measure developed in terms of moments
- ▶ Minimum variance such projection identifies set of moments ⇒ "Recovers" feasible set of physical probability measures
- ► (Almost) Model-free: no assumption on underlying stochastic process ⇒ No misspecification error
- ▶ No time series estimation: No parameter uncertainty

Literature

- ► (Semi-(Non))Parametric projections
 - ▶ Jackwerth (2000)
 - Gagliardini, Gourieroux, and Renault (2011)
- ▶ Non-parametric conditional pricing kernel projections using asympt.
 - Chapman (1997)
 - Aït-Sahalia and Lo (1998)
 - Aït-Sahalia and Duarte (2003)
- Empirical Likelihood with pricing constraints
 - ▶ Julliard and Gosh (2012)
 - Almeida and Garcia (2015)
- ▶ (Non) *Recovery* of conditional physical measure
 - Carr and Yu (2012)
 - ▶ Borovička, Hansen, and Scheinkman (2014)
 - Ross (2015)

Notation

- ► We assume that markets are arbitrage-free in the sense of Acciaio et al. (2013)
- \blacktriangleright Spot market means the S&P 500 index supported on compact state space $\mathcal D$
- ▶ Forward price of S&P 500 at time t for delivery at T is $F_{t,T}$
- ▶ European SPX call and put options with prices $C_{t,T}(K)$ and $P_{t,T}(K)$ at strikes K > 0
- lacktriangle Zero-coupon bond for delivery of one unit currency at time T is $p_{t,T}$
- ▶ Power divergence function in terms of market gross returns $R := \frac{F_{T,T}}{F_{t,T}}$

$$D_p(R) := \frac{R^p - pR + p - 1}{p^2 - p},$$
 $D_1(R) := R \log(R) - R + 1, \text{ and } D_0(R) := R - \log(R) - 1,$

Notation II

▶ True and unobserved forward pricing kernel $\mathcal{M}_{\mathbb{P}}:=rac{d\mathbb{Q}_{T}}{d\mathbb{P}}$ satisfies for any traded $g(F_{T,T})$

$$F_{t,T}(g(F_{T,T})) = \mathbb{E}_t^{\mathbb{P}} \left[\mathcal{M}_{\mathbb{P}} \cdot g(F_{T,T}) \right] = \mathbb{E}_t^{\mathbb{Q}_T} \left[g(F_{T,T}) \right], \tag{1}$$

in particular $F_{t,T} = F_{t,T}(F_{T,T}) = \mathbb{E}_t^{\mathbb{Q}_T}[F_{T,T}]$

▶ Expectation of kernel conditional on (time *T*-measurable) $R = \frac{F_{T,T}}{F_{t,T}}$

$$\mathcal{M}_{\mathbb{P}}(R) := \mathbb{E}^{\mathbb{P}} \left[\mathcal{M} \mid R \right],$$

- $ightharpoonup \mathcal{M}_{\mathbb{P}}(R)$ is our object of interest
- Along with the conditional moments

$$\mu_{t,n}^{\mathbb{P}} := \mathbb{E}_t^{\mathbb{P}} \left[R^n \right]$$

Options and Nonlinear Payoffs

▶ To accommodate nonlinear payoffs we define a linearization operator \mathcal{J}_t for f twice continuously differentiable

$$\mathcal{J}_{t}f(R) := \int_{a_{t}}^{1} f''(K)(K - R)^{+} dK + \int_{1}^{b_{t}} f''(K)(R - K)^{+} dK
= \begin{cases} f(a_{t}) + f'(a_{t})(R - a_{t}) & R < a_{t} \\ f(R) & a_{t} \leq R \leq b_{t} \\ f(b_{t}) + f'(b_{t})(R - b_{t}) & R > b_{t}. \end{cases}$$
(2)

We get forward prices of nonlinear corridor payoffs as

$$\mathbb{E}_{t}^{\mathbb{Q}_{T}}\left[\mathcal{J}_{t}f(R)\right] = \frac{1}{p_{t,T}}\left(\int_{a_{t}}^{1}f''(K)P_{t,T}(K)dK + \int_{1}^{b_{t}}f''(K)C_{t,T}(K)dK\right)$$

Upper Bounds on Physical Polynomial Moments of the Market

Assumption (Negative Divergence Premium (NDP))

We define the negative n-power divergence premium NDP(p,n) assumption of orders p and n as

$$-\operatorname{Cov}_{t}^{\mathbb{P}}\left[\mathcal{M}, D_{\rho}(R^{n})\right] = -\operatorname{Cov}_{t}^{\mathbb{P}}\left[\mathcal{M}(R), D_{\rho}(R^{n})\right] \leq 0. \tag{4}$$

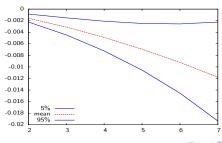
Proposition (Upper Bounds on Conditional P Moments)

Suppose that NDP(p, n) holds, then

$$S(\mathcal{J}_t D_p(R^n)) := \mathbb{E}_t^{\mathbb{Q}_T} \left[\mathcal{J}_t D_p(R^n) \right] \ge \mathcal{J}_t D_p(\mathbb{E}_t^{\mathbb{P}} \left[R^n \right])$$
 (5)

Does the NDP Hold?

- It holds in any model that exhibits first-order risk (uncertainty) aversion
- ► There is a trading strategy swapping implied for realized divergence
- ▶ Below picture shows average trading profits (for p = 1/2 in picture below)



Lower Bounds on Physical Polynomial Moments of the Market

Assumption (Negative Covariance Condition (NCC))

For $p,q\in\mathbb{R}$ we define the negative covariance condition $\mathit{NCC}(p,q)$ as the inequality

$$-\operatorname{Cov}_{t}^{\mathbb{P}}\left[\mathcal{M}R^{q},R^{p}\right] = \mathbb{E}_{t}^{\mathbb{Q}_{T}}\left[R^{q}\right]\mathbb{E}_{t}^{\mathbb{P}}\left[R^{p}\right] - \mathbb{E}_{t}^{\mathbb{Q}_{T}}\left[R^{p+q}\right] \geq 0. \tag{6}$$

Proposition (Lower Bounds on Conditional P Moments)

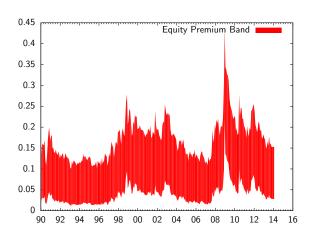
Suppose NCC(1, q) holds for $q \in (0,1]$, then for $p \ge 1$

$$L(1,q)^{p} := \left(\frac{\mathbb{E}_{t}^{\mathbb{Q}_{T}}\left[\mathcal{J}_{t}R^{1+q}\right]}{\mathbb{E}_{t}^{\mathbb{Q}_{T}}\left[\mathcal{J}_{t}R^{q}\right]}\right)^{p} \leq \mathbb{E}_{t}^{\mathbb{P}}\left[R^{p}\right]$$
(7)

Does the NCC Hold?

- ▶ Like the NDP, the NCC holds in benchmark economies with risk-averse agents (expected utility $\gamma \geq 1$)
- ▶ The smaller q in L(1,q) the more conservative is the bound
- ▶ Nests the Martin (2015) bound as most *un-conservative case*
- ▶ Martin (2015) performs a battery of empirical tests on the validity of the *NCC*(1,1) and finds that *it holds*
- ▶ If the NCC(1,1) holds then
 - ▶ NCC(1, q), 0 < q < 1 holds $\Rightarrow L(1, q) < L(1, 1)$
 - $L(1,q)^p \leq \mathbb{E}_t^\mathbb{P}[R^p]$ any p>1
- ightharpoonup NCC(1,0) means the equity premium is positive!
- Next slide shows the equity premium band implied from NCC(1,1) and NDP(2,1)

Locking in the Annual Equity Premium



Moments

▶ There are upper and lower bounds for conditional moments on R

$$\mu_{t,i}^{\mathbb{P} \text{lower}} \leq \mu_i^{\mathbb{M}} \leq \mu_{t,i}^{\mathbb{P} \text{upper}},$$

- Which moments within the bounds?
- Must maintain
 - Cauchy-Schwartz inequality
 - Moment monotonicity
 - **.** . . .
- ▶ Moments $\mu_i^{\mathbb{M}}$ must be supported from *distribution*
- ightharpoonup For compact state space \mathcal{D} : Hausdorff Truncated Moment Problem
- ▶ Denote set of distributions supporting $\mu_i^{\mathbb{M}}$ by \mathbb{H}
- Ill is very big. Which moments to take?

Definitions and Properties

Conditional Expectation in Weighted Hilbert Space

Assumption (Finite Pricing Kernel Variance)

For given probability measure \mathbb{M}

$$\mathbb{E}^{\mathbb{M}}\left[\mathcal{M}_{\mathbb{M}}^{2}(R)\right]<\infty$$

▶ Then $\mathcal{M}^2_{\mathbb{M}}(R) \in \mathcal{L}^2_{\mathbb{M}}$ with inner product

$$\langle f, g \rangle_{\mathcal{L}^2_{\mathbb{M}}} := \int_{\mathcal{D}} f(R)g(R)d\mathbb{M}(R), \text{ for } f, g \in \mathcal{L}^2_{\mathbb{M}}$$
 (8)

lacktriangle Denote by $\{H_0,H_1,\ldots\}$ orthonormal polynomial basis of $\mathcal{L}^2_{\mathbb{M}}$

Polynomial Expansions and Conditional Expectations

▶ We can write

$$\mathcal{M}_{\mathbb{M}}(R) = \mathbb{E}^{\mathbb{M}} \left[\mathcal{M}_{\mathbb{M}} \mid R \right] \stackrel{\mathcal{L}^2_{\mathbb{M}}}{=} 1 + \sum_{i=1}^{\infty} c_i H_i(R),$$

with

$$c_i := \langle \mathcal{M}_{\mathbb{M}}(R), H_i(R) \rangle_{\mathcal{L}^2_{\mathbb{M}}}$$
 (9)

- lacktriangle Coefficients c and polynomials H nonlinear functions of $\mu_{t,n}^{\mathbb{Q}_T}$ and $\mu_{t,n}^{\mathbb{M}}$
- ► Functional form of c_iH_i known in closed-form
- ► Given a *generic* measure M

Definitions and Properties

Truncated Projection

► Truncated projection

$$\mathcal{M}^{(J)}_{\mathbb{M}}(R):=1+\sum_{i=1}^J c_i H_i(R)$$

- $ightharpoonup \mathcal{M}_{\mathbb{M}}^{(\infty)}(R) = \mathbb{E}^{\mathbb{M}}\left[\mathcal{M}_{\mathbb{M}} \mid R\right]$
- ▶ For any $J \ge 0$

$$\mathbb{E}_t^{\mathbb{M}}\left[\mathcal{M}_{\mathbb{M}}^{(J)}(R)
ight]=1$$

▶ For any $n \le J$

$$\mathbb{E}_t^{\mathbb{M}}\left[\mathcal{M}_{\mathbb{M}}^{(J)}(R)\cdot R^n\right]=\mu_{t,n}^{\mathbb{Q}_T}$$

▶ If $\mathcal{M}^{(J)}_{\mathbb{M}}(R) > 0$ M-almost surely, it is a valid pricing kernel

Example: Linear Projection

► Consider a linear projection (truncating the sum at order 1)

$$\mathcal{M}_{\mathbb{M}}^{(1)}(R) = \frac{\mu_{t,1}^{\mathbb{M}} \mu_{t,1}^{\mathbb{Q}_{T}} - \mu_{t,2}^{\mathbb{M}}}{(\mu_{t,1}^{\mathbb{M}})^{2} - \mu_{t,2}^{\mathbb{M}}} + \frac{\mu_{t,1}^{\mathbb{M}} - \mu_{t,1}^{\mathbb{Q}_{T}}}{(\mu_{t,1}^{\mathbb{M}})^{2} - \mu_{t,2}^{\mathbb{M}}} R$$

▶ Its second moment under M is

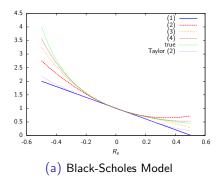
$$\mathbb{E}_{t}^{\mathbb{M}}\left[\mathcal{M}_{\mathbb{M}}^{(1)}(R)^{2}\right] = -\frac{-2\mu_{t,1}^{\mathbb{M}}\mu_{t,1}^{\mathbb{Q}_{T}} + \mu_{t,2}^{\mathbb{M}} + (\mu_{t,1}^{\mathbb{Q}_{T}})^{2}}{(\mu_{t,1}^{\mathbb{M}})^{2} - \mu_{t,2}^{\mathbb{M}}}.$$

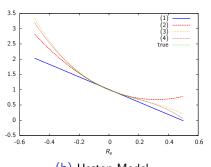
• Remember that $\mu_{t,1}^{\mathbb{M}} = 1$, hence

$$\mathbb{E}_{t}^{\mathbb{M}}\left[\mathcal{M}_{\mathbb{M}}^{(1)}(R)^{2}\right] = \frac{\mu_{t,2}^{\mathbb{M}} - 2\mu_{t,1}^{\mathbb{M}} + 1}{\mu_{t,2}^{\mathbb{M}} - (\mu_{t,1}^{\mathbb{M}})^{2}} > 1$$

Black-Scholes and Heston Kernels

- $ightharpoonup R_e := R 1$
- ▶ Projection in Black-Scholes model is closed-form
- ▶ True projection in Heston model is simulation-based





Identification of Moments

Define the set

$$\overline{\mathbb{M}}_t(J) := \left\{ \mathbb{M} \mid i = 1, \dots, 2J; \mu_{t,i}^{\mathbb{P}\mathsf{lower}} \leq \mu_i^{\mathbb{M}} \leq \mu_{t,i}^{\mathbb{P}\mathsf{upper}}, \mathbb{M} \in \mathbb{H} \right\}.$$

Solve

$$egin{aligned} \min_{\mu_1^{\mathbb{M}}, \dots, \mu_{2J}^{\mathbb{M}}} \mathbb{E}_t^{\mathbb{M}} \left[\mathcal{M}_{\mathbb{M}}^{(J)}(R)^2
ight] & ext{subject to } i = 1, \dots, J \ - \mathit{Cov}_t^{\mathbb{M}} \left[\mathcal{M}_{\mathbb{M}}^{(J)}(R), D_{1/2}(R^{2i})
ight] \leq 0, & ext{and } \mathbb{M} \in \overline{\mathbb{M}}_t(J) \end{aligned}$$

- ▶ *Intuition*: Making the conditional variance as small as possible makes the Hansen-Jagannathan bound as tight as possible
- ► Condition on return-variance of trading strategies in the economy

Properties of Second Moments of Projections

▶ For any candidate measure M

$$\mathbb{E}_t^{\mathbb{M}}\left[\mathcal{M}_{\mathbb{M}}^{(J)}(R)^2
ight]>1$$

► The second moment of the *J*—order projection with the optimal moments

$$\mathbb{E}^{\mathbb{M}^{\star}}\left[\mathcal{M}_{\mathbb{M}^{\star}}^{(J)}(R)^{2}\right]$$

gives the option-implied conditional Hansen-Jagannathan bound

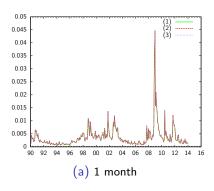
- ► For any higher-order projection we have a generalization of the Hansen-Jagannathan result
- ▶ We can *trade* on the bound with semi-static strategies

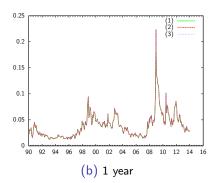
Data and Empirical Strategy

- European options on SPX
- ▶ Data set from January 1990 to January 2014.
- Options on the SPX subject to standard no-arbitrage filters
 - Negative bid ask spreads
 - ▶ Implied vol < 0.001 or greater than 9
 - Convexity
 - **.** . . .
- Forwards implied from options
- ► Solve Optimization Program every third Friday of the month in gross returns *R*
- ▶ Produce results in $R_e := R 1$
- Sometimes program has no solution

First Moment Risk Premia $\mathbb{E}_t^{\mathbb{P}}\left[R_e\right] - \mathbb{E}_t^{\mathbb{Q}_T}\left[R_e\right]$

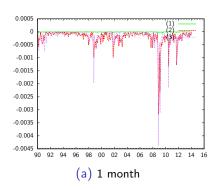
(J) refers to moment implied by projection $\mathcal{M}_{\mathbb{M}^{\star}}^{(J)}(R)$

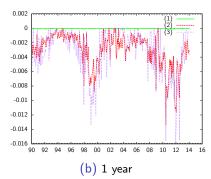




Second Moment Risk Premia $\mathbb{E}_t^{\mathbb{P}}\left[R_e^2\right] - \mathbb{E}_t^{\mathbb{Q}_T}\left[R_e^2\right]$

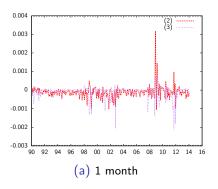
(J) refers to moment implied by projection $\mathcal{M}^{(J)}_{\mathbb{M}^{\star}}(R)$

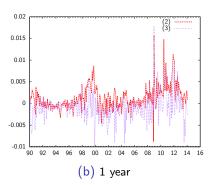




Third Moment Risk Premia $\mathbb{E}_t^{\mathbb{P}}\left[R_e^3\right] - \mathbb{E}_t^{\mathbb{Q}_T}\left[R_e^3\right]$

(J) refers to moment implied by projection $\mathcal{M}^{(J)}_{\mathbb{M}^{\star}}(R)$



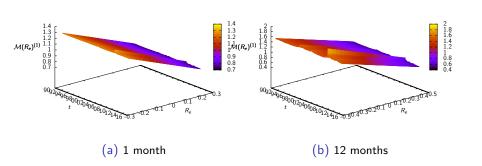


Do Conditional Moments Predict Realizations?

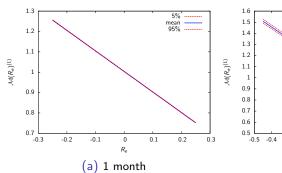
- ► Numbers are out-of-sample R²
- Column headers refer to the power of the moment

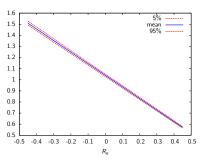
1 m	1	2	3	4	5	6
J=1	0.019	-0.33				
J=2	0.019	-0.24	-0.42	-97.50		
J=3	0.019	-0.27	-0.86	-72.65	-13517.75	-3948843.88
3 m	1	2	3	4	5	6
J=1	0.013	-0.42				
J=2	0.013	-0.32	-0.12	-4.41		
J=3	0.013	-0.33	-0.24	-5.56	-246.67	-21622.46
6 m	1	2	3	4	5	6
J=1	0.029	-0.082				
J=2	0.029	-0.019	-0.081	-2.69		
J=3	0.029	-0.011	-0.17	-2.99	-141.39	-13257.74
12 m	1	2	3	4	5	6
J=1	0.0034	0.076				
J=2	0.0033	0.12	0.0067	-1.05		
J=3	0.0041	0.13	-0.02	-1.88	-105.28	-9829.60

Linear Projection

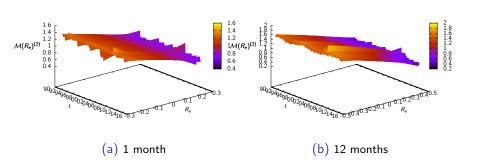


Unconditional Linear Projection

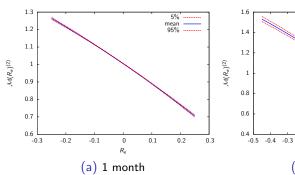


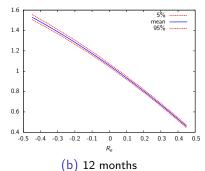


Quadratic Projection

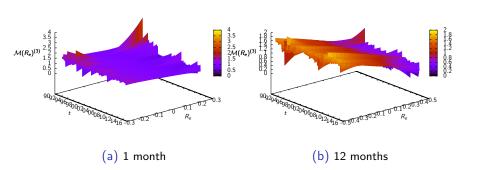


Unconditional Quadratic Projection

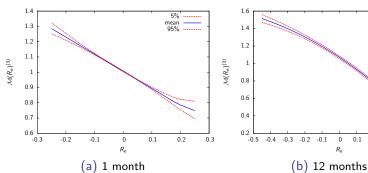


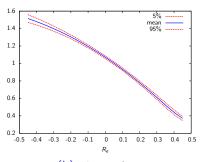


Cubic Projection

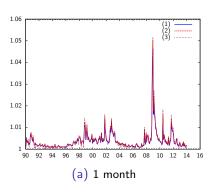


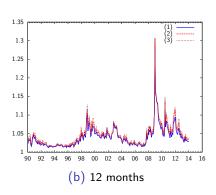
Unconditional Cubic Projection





The Time-Varying Hansen-Jagannathan Bound





Trading on the Hansen-Jagannathan Bound

- ► Trade is on the "bad" asset pricing bound
- Risk Premium is minus the conditional variance of the kernel
- Sharpe ratios from trading order (J) projection

Order	1	2	3
1 month	-0.13	-0.12	-0.067
3 months	-0.22	-0.20	-0.064
6 months	-0.31	-0.31	-0.29
12 months	-0.38	-0.38	-0.38

Interlude: Expected Utility Theory

- ► Representative agent with Von-Neumann/Morgenstern utility
- Expected Utility Theory tells us

$$\mathcal{M}^{EU} = \frac{U'(W_{t+1})}{U'(W_t)} \tag{10}$$

• Expanding in W_t we have $(R_e := R - 1)$

$$\mathcal{M}^{EU} = 1 + W_t \frac{U''(W_t)}{U'(W_t)} R_e^{EU} + W_t^2 \frac{U'''(W_t)}{U'(W_t)} \left(R_e^{EU} \right)^2 + O\left(R_e^{EU} \right)^3$$
(11)

- Alternating sign of coefficients on R
 - $\frac{U''(W_t)}{U'(W_t)} < 0$: risk aversion

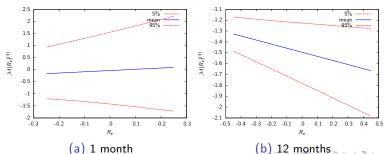
 - $ightharpoonup \frac{U'''(W_t)}{U'(W_t)} < 0$: temperance

Projected Utility

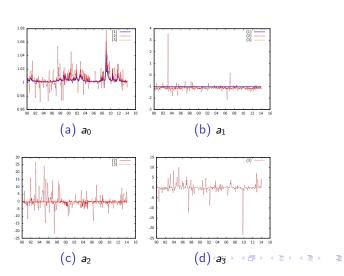
▶ Collect coefficients $a_{t,i}^{(J)}$ on i - th power of $R_e := R - 1$

$$\mathcal{M}_{\mathbb{M}^{\star}}^{(J)}(R_{e}) = a_{t,0}^{(J)} + a_{t,1}^{(J)}R_{e} + a_{t,2}^{(J)}R_{e}^{2} + \dots + a_{t,J}^{(J)}R_{e}^{J}$$

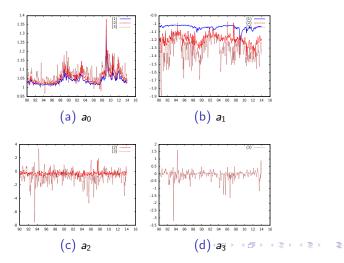
► Figure shows second derivative of projection



Coefficients Over Time (1 month Maturity)



Coefficients Over Time (12 month Maturity)



Conclusion

- Asset pricing bounds on polynomial market returns under mild economic assumptions
- Model-free pricing kernel projection
- Set of conditional physical moments
- Physical moments parameterize physical probability measure
- ► New evidence on
 - predictability
 - Hansen-Jagannathan type asset pricing bounds
 - option trading
 - aggregate risk aversion