Swissquote Conference 2012 on Liquidity and Systemic Risk

Discussion of

"A Theoretical and Empirical Comparison of Systemic Risk Measures" By S. Benoit, G. Colletaz, C. Hurlin, C. Perignon

Antonio Mele Swiss Finance Institute & University of Lugano

November 9, 2012

Overview

- Systemic risk—Let me try to define it:
 - The impact that the failure of a bank can have on the global financial system and wider economy rather than the risk that a failure can occur
- Thought-provoking paper
- Existing systemic risk measures might disagree
 - Identifying Systemically Important Financial Institutions (SIFI) based on these measures might be problematic
 - Empirically, the instances where these measures lead to comparable rankings are too few
- Sometimes, they trivially relate to firms' exposure to market risk

Contributions

- This paper's contributions
 - Theoretical part—relies on a one-factor model
 - * Main conclusion: ranking through betas the same as ranking by some systemic measures—with some nuances
 - Empirical part
 - * Applying existing systemic risk measures to data leads to diverse results

Comments

- I would expect *more* from an innovative paper on systemic risk measures
 - Lacks originality
 - * Didn't see any new risk-measure, only a study of existing ones
 - Analytical details are mechanical
 - Empirical findings might not be so surprising either
 - * Do the measures studied in this paper really capture systemic risk in the first place
 - * I am left with no guidance on further directions
- I'm not saying the paper isn't useful, however, nothing in it strikes me as truly innovative

Model's review, queries, suggestions

Model

"Linear market model,"

$$\begin{cases} r_{it} = \sigma_{it} \left(\rho_{it} \epsilon_{mt} + \sqrt{1 - \rho_{it}^2} \xi_{it} \right) \\ r_{mt} = \sigma_{mt} \epsilon_{mt} \end{cases}$$

where ϵ_{mt} and ξ_{it} are i.i.d. with zero mean and unit variance

• Btw, shouldn't we also have that

$$r_{mt} = \int w_{it} r_{it} di,$$

for some weighting w_{it} ?

• After all, the interpretation of some of the measures you study (MES, see below) relies on the sensitivity of the market index wrt to the weight of any firm i_0 (say). Define:

$$\operatorname{ES}_{mt}\left(C\right) \ \equiv \ E\left(r_{mt}|\,r_{mt} < C\right) = \int w_{it}E\left(r_{it}|\,r_{mt} < C\right)di,$$
 such that,
$$\operatorname{MES}_{i_0t}\left(C\right) \ \equiv \ \int \left(\hat{w}_{it}\left(i_0\right) - w_{it}\right)E\left(r_{it}|\,r_{mt} < C\right)di,$$

where for instance, $\hat{w}_{it}\left(i_{0}\right)=\frac{1}{2}\left(w_{it}+\delta\left(i-i_{0}\right)\right)$, such that,

$$MES_{i_0t}(C) = \frac{1}{2} [E(r_{i_0t}|r_{mt} < C) - ES_{mt}(C)]$$

• Naturally, it's only an example, which shows that you might want to consider "cross-equation restrictions" anyway

Measures

Given the previous "linear market model," the paper aims to find closed-form expressions to the following three measures of systemic risk,

Marginal expected shortfall (MES),

$$MES_{it}(C) \equiv E_{t-1}(r_{it}|r_{mt} < C)$$

• Systemic risk measure (SRISK),

$$SRISK_{it}(C) \equiv \max \{0, Capital shortfall_i(C)\},\$$

where, assuming that debt cannot be renegotiated in case of market distress,

Capital shortfall_i (C)
$$\equiv E_{t-1}$$
 (-Capital buffer_i| $r_{mt} < C$)

$$\equiv -E_{t-1} \left(W_{it} - \kappa \left(D_{it} + W_{it} \right) | r_{mt} < C \right)$$

$$= \kappa E_{t-1} \left(D_{it} | r_{mt} < C \right) - (1 - \kappa) E_{t-1} \left(W_{it} | r_{mt} < C \right)$$

$$= \kappa D_{it} - (1 - \kappa) W_{it} \left(1 - \text{MES}_{it} \left(C \right) \right),$$

and κ is a regulatory capital buffer ratio

 \bullet Δ Conditional VaR (Δ CoVaR)—wrt to the firm being or not in financial distress,

$$\Delta \text{CoVaR}_{it}(\alpha) \equiv \text{CoVaR}_t^{m|r_{it}=\text{VaR}(\alpha)} - \text{CoVaR}_t^{m|r_{it}=\text{median}}$$

where,

$$\operatorname{CoVaR}_{t}^{m|r_{it}=\operatorname{VaR}(\alpha)}: P\left(r_{m} \leq \operatorname{CoVaR}_{t}^{m|r_{it}=\operatorname{VaR}(\alpha)} \middle| r_{it} = \operatorname{VaR}\left(\alpha\right)\right) = \alpha$$

Closed-form expressions

- They're in the paper—No point repeating them here
- All in all,
 - MES and SRISK link to firm's co-movements with the market
 - * SRISK obviously also links to leverage
 - ΔCoVaR_{it} proportional to VaR_{it}
 - * Cross-sectional variation (i for given t)
 - * Time-series dependence (t for given i)
 - Confirmed, empirically
 - Ranking through SRISK vs Δ CoVaR: anything goes

Extensions

• What happens to your analytical results, once we replace your "linear market model" with a standard factor model,

$$r_{it} = r_{\rm free} + \sum_{k=1}^K \beta_{ik} \lambda_k + \sum_{k=1}^K \beta_{ik} f_{kt} + \epsilon_{mt},$$
 where f_{kt} are zero-mean factors

- Note, the "linear market model" you have is pretty poor
 - How come then your empirical findings are somewhat in line with your theoretical predictions
 - Simple, you're using fitted measures of risk, obtained while imposing as a data generating process your "linear market model"
 - * Would be surprised to see empirical results diverging from your theoretical analysis

Empirical part

- Evidence that the systemic risk measures diverge
- Strong statistical links between MES and firms betas
- SRISK links to betas, but also to leverage

A final reflection

What do these "systemic risk measures" fail to measure

- Consider, for example, SRISK—the measure that makes the most economic sense to me
 - It's increasing in leverage, however, leverage per se doesn't tell us many things

Short-run aggregate market effects and feedbacks are a tiny part of the story. These measures miss obvious dimensions

- Interconnectedness—it's obiously not just "beta"
- Cross-jurisdictional activity
- *Complexity*—fixed income & other OTC products

Backtesting: I

- You might want to backtest your findings & run horse races
- Natural benchmark is the official list of the Global Systemically Important Banks (G-SIB), as understood by the Basel Committee on Banking Supervision
 - We all make reference to it
 - The list might actually affect market behavior

Global Systemically Important Banks, as of November 2012

—List prepared by the Financial Stability Board (G-SIBs in alphabetical order within each bucket)

Bucket 5	(3.5%)
----------	--------

(Empty)

Bucket 4 (2.5%)

Citigroup

Deutsche Bank

HSBC

JP Morgan Chase

Bucket 3 (2.0%)

Barclays BNP Paribas

Bucket 2 (1.5%)

Bank of America

Bank of New York Mellon

Credit Suisse

Goldman Sachs

Mitsubishi UFJ FG

Morgan Stanley

Royal Bank of Scotland

UBS

Bucket 1 (1.0%)

Bank of China

BBVA

Groupe BPCE

Group Crédit Agricole

ING Bank

Mizuho FG

Nordea

Santander

Société Générale

Standard Chartered

State Street

Sumitomo Mitsui FG

Unicredit Group

Wells Fargo

Backtesting: II

- The measures you study might perhaps be relevant for timing reasons
 - The official list receives low frequency updates
 - The three systemic risk measures can be updated at high frequency
 - Do these measures help predict G-SIB in the list?
- How do your results compare with this list
 - Forecasting
 - Nowcasting

Conclusion

- Much is still needed to assess the measures of systemic risk you study
 - Change framework of analysis for the purpose of comparison—factor models
 - Add systemic dimensions such as network effects, scope, complexity of business models, messy books, etc.
- Help supervisors, through horse races & backtests against "official lists"