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Non tradable assets

» An asset is non tradable if we cannot build a portfolio with it.

> Energy related examples: non-storable commodities, weather indices,
electricity...

> Interested in pricing forwards contracts on these assets.

» There is no buy and hold strategy = classical non-arbitrage
arguments break down.

» Any probability measure @ equivalent to the historical measure P is
a valid risk neutral pricing measure.

» The forward price with time to delivery 0 < T < T* at time
0 <t < Tisgiven by

Fo(t. T) = Eq[S(T)|Ft]

where F is the information in the market up to time t. Assuming
deterministic interest rates and r = 0.



Risk premium profile
» The risk premium for forward prices is defined by
RG(t. T) £ Eq[S(T)|Fe] - Ep[S(T)| Fel.

» Goal: To be able to obtain more realistic risk premium profiles. For
instance:
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where T = T — t is the time to delivery.



Mathematical model

> Let (O, F, {Ft}icpo,7+], P) be a filtered probability space satisfying
the usual hypothesis, where T* > 0 is a fixed finite time horizon.

> Consider a standard Brownian motion W and a pure jump Lévy
subordinator

L(t) = /Ot/Oooz/vL(ds, dz),t e [0, T,

where NL(ds, dz) is a Poisson random measure with Lévy measure £
satisfying fooo z{(dz) < 0.
> Let
k1 (6) 2 log Ep[e"-(V)],

and
O, 2 sup{f e Ry : Ep[e?t(M)] < 0}

» A minimal assumption is that @; > 0.



Mathematical model

> Consider the Ornstein-Uhlenbeck processes X with Barndorff-Nielsen
& Shephard stochastic volatility o

X(t) = X(0) —oc/OtX(s)ds—O—/Ot(f(s)W(t),
(1) = *(0) —p [ P (s))ds+ L(1)
:(72(0)+/()t(K'L(O) —pa2(s))ds+/Ot/OoozNL(ds,dz),
with t € [0, T*], &, p > 0, X(0) € R, ?(0) > 0 and
Nt (ds, dz) = Nt (ds, dz) — £(dz)ds.

» We model the spot price process by

S(t) = Agexp (X(t)), te[o,T".



The change of measure

> Let B = (B1,B2) €[0,1]> and § = (61,6,) € D, £ R x Dy, where
D/_ é (—OO, ®L/2)
» Consider the following family of kernels

Goyp: (1) 2071 (2) (1 +aprX(2)), te(0,T7],

Ho, p, (£, 2) £ %2 <1+ p(ﬁ;z)za (t— )) , te[0,T*], zeRs.

> Next, define the following family of Wiener and Poisson integrals

G91 /51 / G91 B1 S)dW( ) te [O, T*],

Flo, g, (t) // (Hoy o (5.2) — 1) WL (ds, dz), ¢ € [0, T,

associated to the kernels G(;l"Bl and Hp, g,, respectively.



The change of measure

» The family of measure changes is given by
Qs ~ P.pe0,1]%0 € Dy, with

2 E(G, py + Fo, p,) (1), €0, T,
Fi

where £(+) denotes the stochastic exponential.
» Recall that, if M is a semimartingale, the stochastic exponential of
M is the unique strong solution of

&

S

=
!

E(M)(t—)dM(t), tel0, T,

which is given by

E(M)(t) = exp (M(t) — %(/\/]C, MC>(t)> H (14 AM(s)) e—AM(s).



The change of measure

» Yor’'s Addition Formula: Let M; and M, two semimartingales
starting at 0. Then,

E(My + My + [My, b)) (t) = E(My) () E(Mo)(t), 0<t<TH,
where

[My, Mp](t) = (Mf, M5)(t) + ) AMy(s)AM(s).

s<t
> As [Go, p,. H, p,] = 0, we can write
5(691.[31 + ":I62,,32)(t) = 5(691,,51)(t)g(’:lfb,ﬁz)(t)' te [0' T*]'
» Conditioning on ]—"7L-*, we have

]EP[E(GGLﬁl + FI()Q,,BQ)(T*”
:]EP[IEP[5(691,/51)(T*)|~7:7L'*}5(H92,/32)(T*)}-

> Hence the problem is reduced to show that £(Gg, g,) and E(Hy, g,)
are true martingales with respect to appropriate filtrations.



Sketch of the proof that £(M) is a martingale

>
>
>
>

M can be Ggl’/gl or /:I92”B2.

Localize £(M) using a reducing sequence {Tp}p>1.

Check that 1 = limp e Ep[E(M)™ (T*)] = Ep[E(M)(TH)].
Test the uniform integrability of {E(M)™(T*)},>1 with
F(x) = xlog(x), i.e.

sup Ep[F(£(M)™(T7))] < co. (1)

Forany n > 1,{E(M)"(t)};c[o, 7+ is @ true martingale and induces
hange of 9| =emyme).
a change of measure | (M)™(t)

Condition (1) can be rewritten as
supEgn[log(E(M)™(T*))] < oo.
n
We can get rid of the ordinary exponential in E(M)™(T*).

The problem is reduced to find a uniform bound for the second
moment of X and ¢ under Q.



The dynamics under the new pricing measure

» By Girsanov's theorem for semimartingales, we can write
X(t) = X(0) + B, (¢ +/ 5)dWo, (1), t€ (0, T]",

7% (t) = 0?(0) + Bgm(t) +/0 /O zNéng(ds, dz), teo, T,

where

Bég,ﬁ(f) = /Ot(91 —a(l—p1)X(s))ds, tel0, T,

and



The dynamics under the new pricing measure

> The Q -compensator measure of 02 is given by

o2 = ¢ iz z — 1z
VQé,ﬁ<dt’ dz) = (1+ <7 (62) o (t )) 0(dz)dt.

» Using integration by parts, we get

X(T) = X(t)e-P(T=0) 4 O 4 —ali-pi)(T-1))

a(l—p1)
+/ “1-pT- 0 gwg, (u),
5 _ 2 —a(1-B) (T —t) KL(92) o —a(1-B)(T—1)
oo (T)=0(t)e 2 +7a(1—ﬁ2)(1 e 2 )

T (oo
—p(1=B2)(T—u) ; fiL
+/t /0 e Pli=p2 zNQé’E(du, dz),

where 0 <t < T < T*,



Moment condition under the historical measure

» A sufficient condition for S to have finite expectation under P is the
following:

Assumption (P)
We assume that o, p > 0 and © satisfy

1/ o\Tr
z(ﬁ) * =00

for some é > 0.

> If ©; = oo then assumption P is satisfied.

> If ®; < oo, then if we choose p close to zero the value of & must be
bounded away from zero, and vice versa, for assumption P to be
satisfied.



Forward price formula
Proposition
The forward price FngB(t, T) is given by

2(2x —p(1— B2

o [EO) (1T g1 e et
20(1— B2) 2

(2 —p(1—B2))
x b1 _ e t(1-p1)(T—1)
. p(ﬂt(lfﬁl)(l ))

—2aT T
exp(e 3 /t e2a—p(1-52)) (/ / eP(1-F2) zNL(du dz)) ds) _7-}]

In the particular case ng B = P, it holds that

—(2u—p(1— T—
= Ag(T)exp <x(t)e—a(1—ﬂ1)<T—t)+U2(t)e—p(1—ﬁz)(T—t)1_e (Gamet 52))()) ”)

X ]EQ@B

_ a—(2a—p)(T—-1)
Fp(t, T) = Ag(T)exp (x(r)ve) +a2(t)eP<Tf>1e“>

2(2a —p)
T—t 1 — e (2a—p)s
s~
><exp</0 KL<e 2026 p) )ds).



Affine transform formula

Theorem
Let B=(B1.B2) €[0,1]%,6 = (61,62) € D; and T > 0. Suppose there

. . 0.6 . . 1 . . .
exist functions ‘I’i .1 =0,1,2 belonging to C ([0 T], R), satisfying the
generalised Riccati equation

d90P (1) = 0,%0F (1) 4+ 1, (‘I’?‘ﬁ(t) + 92) — k. (6),
¥ ¥ ¥oP(1))2 ¥
F407(0) = —p¥7 P (0) + T s s (] (Y97 () +62) — [ (62)).

S5 (1) = —a(1 - p1)¥P (1),

with initial conditions ‘I’g’B (0) = ‘Y?’B(O) =0 and ‘I’g
Moreover, suppose that the integrability condition

Plo)=1.

sup ] (62 +‘Y§'B(t)> < oo,
te(0,T]

holds.



Affine transform formula

Theorem (Continue)
Then,

E g 5 [exp(X(T))| ]

=exp (Yo (T — ) +¥{P(T = ) (1) + 55 (T — )X (1)),

and

Rgg (t T) |ff

T—t 1 — e (2a—p)s

— — —ps—_- 0

{exp (‘I’O t) /0 9] (e 2020 —p) ) ds
— e (Qa—p)(T—1)
,p(T,t) 1 e 2
+<‘I’ 2025 = p) )a (1)

+ (‘I’ BT — o) *”‘(T*t)) X(t)) —1},

for t € [0, T].



Some remarks on the theorem

> The proof follows by applying a result by Kallsen and Muhle-Karbe
(2010).

» Limited applicability as it is stated.
» Reduction to a one dimensional non autonomous ODE.
> We have that for any Qg Dy, B € [0,1]?, the solution of the last
equation is given by ‘Pg'ﬁ(t) = exp(—a(l — B1)t).
> Plugging this solution to the first equation we get the following equation
to solve for lI’(iﬁ(t)

ef2a(lfﬁ1)t p‘Bz

0.8 N 0.8
‘Pl ( ) —‘D‘Y ( )+ 2 +K/L/(€2)

dt

with initial condition ¥"P(0) = 0.

> The equation for ‘I’g'ﬁ( t) is solved by integrating Ay’
ie.,

S
)
€
=
=
—~
~+
=
N D
>
—~
[
=
=

g
‘YO

Py = [1o0r3(s) + s (¥IP(5) 4.02) (02} 0
_ema(-pu)t
_p et T 1_1; +/ (k0 (F9P(s) + 602) — K, (62) ) .



Sufficient conditions for existence of global solutions
> Study of the equation %¥%22(t) = A%F2(§92:82), where

A (u) = —put %+ K,L‘,’f;Q) (k] (u+ 62) — K (62)):

> Let
Dy ={(62,B2) € Dy x(0,1): Ju € [0,0, — ;) s.t. A%2P2(u) <0}
Theorem 05 05
If (62, B2) € Dp and (01, p1) € R x [0,1) then ¥gP (1), ¥7P(t) and
‘I’g'ﬁ(t)) are C1([0, T];R) for any T > 0. Moreover,

0 — gyt (P9 1) e e e

(¥ (1), ¥9P (1)) — (0,0), t— oo,

and o o
t~Llog H(\f‘j'ﬁ(t),‘ygﬁ(t))H Syt oo,

for some negative constant y.



Risk premium analysis in the geometric BNS model

Lemma
lféQQ ,B2) € Dy and (61, B1) € R x [0, 1), the sign of the risk premium
Qug (t. T) is the same as the sign of the function

S0, T) 20T = 6) = ¥00(T — ¢) + (0P (T — 1) — 00T — 1)) (1)
P (T — 1) —wIO(T — )X (1).
Moreover,

lim (¢, T)

T—t—oo

(19_[31 //KL (A5 (5) +0,) dA¥}P (5)ds

1 — e—(2a—p)s 1 — e—(2a—p)s
K| e P ——— | dre P — (s,
/ / L ( 2(2a —p) > 2(2a — p)

d
TllrtTL ﬁZ(t T) =01 +aB1 X(t).

and

» Analysis of possible risk profiles in Benth and O.-L. (2015).



Conclusions

> A pricing measure for the BNS model for non-tradable assets with
mean reversion extending Esscher’s transform.

> Preserves affine structure of the model.
> Gives control on the speed and level of mean reversion.

> Provides more realistic risk premium profiles.

Further work

> Study the BNS model with jumps
X(t) :X(O)—zx/ ds+/ £) + L (1),
o (t) p/ s)ds+ L(t).

» Calibration.
> Pricing more complex derivatives.

» Other models with mean reversion.
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