

A pricing measure for non-tradable assets with mean-reverting dynamics

Salvador Ortiz-Latorre, UiO

joint work with Fred E. Benth

AMAMEF & Swiss Quote Conference
EPFL, Laussane
7-10 September 2015

Support from the projects EMMOS and MAWREM is gratefully acknowledged

Non tradable assets

- ▶ An asset is non tradable if we cannot build a portfolio with it.
- ▶ Energy related examples: non-storable commodities, weather indices, electricity...
- ▶ Interested in pricing forwards contracts on these assets.
- ▶ There is no buy and hold strategy \Rightarrow classical non-arbitrage arguments break down.
- ▶ Any probability measure Q equivalent to the historical measure P is a valid risk neutral pricing measure.
- ▶ The forward price with time to delivery $0 < T < T^*$ at time $0 < t < T$ is given by

$$F_Q(t, T) = \mathbb{E}_Q[S(T)|\mathcal{F}_t]$$

where \mathcal{F}_t is the information in the market up to time t . Assuming deterministic interest rates and $r = 0$.

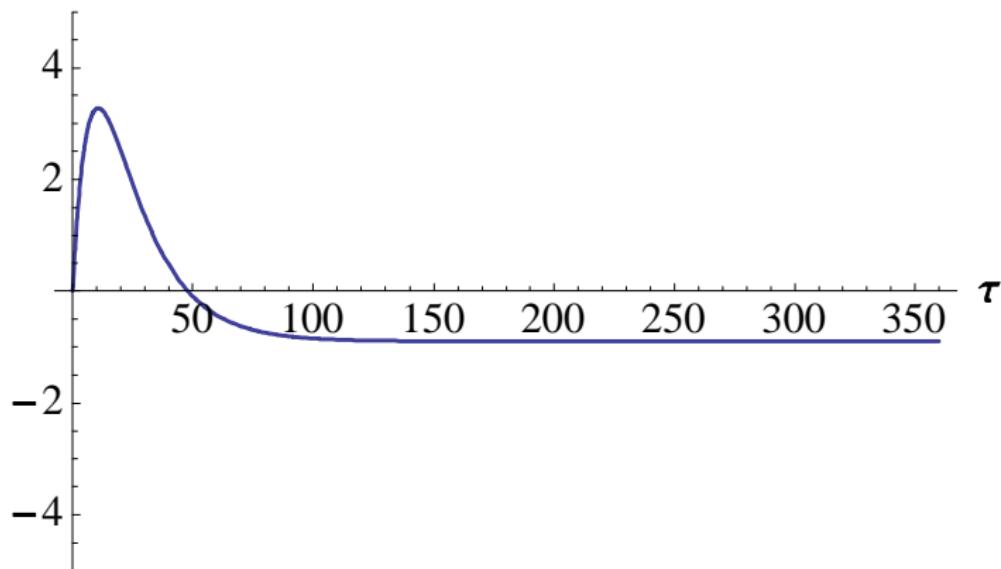
Risk premium profile

- ▶ The risk premium for forward prices is defined by

$$R_Q^F(t, T) \triangleq \mathbb{E}_Q[S(T)|\mathcal{F}_t] - \mathbb{E}_P[S(T)|\mathcal{F}_t].$$

- ▶ **Goal:** To be able to obtain more realistic risk premium profiles. For instance:

$R(\tau)$



where $\tau = T - t$ is the time to delivery.

Mathematical model

- ▶ Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \in [0, T^*]}, P)$ be a filtered probability space satisfying the usual hypothesis, where $T^* > 0$ is a fixed finite time horizon.
- ▶ Consider a standard Brownian motion W and a pure jump Lévy subordinator

$$L(t) = \int_0^t \int_0^\infty z N^L(ds, dz), \quad t \in [0, T^*],$$

where $N^L(ds, dz)$ is a Poisson random measure with Lévy measure ℓ satisfying $\int_0^\infty z \ell(dz) < \infty$.

- ▶ Let

$$\kappa_L(\theta) \triangleq \log \mathbb{E}_P[e^{\theta L(1)}],$$

and

$$\Theta_L \triangleq \sup\{\theta \in \mathbb{R}_+ : \mathbb{E}_P[e^{\theta L(1)}] < \infty\}.$$

- ▶ A minimal assumption is that $\Theta_L > 0$.

Mathematical model

- ▶ Consider the Ornstein-Uhlenbeck processes X with Barndorff-Nielsen & Shephard stochastic volatility σ

$$X(t) = X(0) - \alpha \int_0^t X(s) ds + \int_0^t \sigma(s) W(s),$$

$$\begin{aligned}\sigma^2(t) &= \sigma^2(0) - \rho \int_0^t \sigma^2(s) ds + L(t) \\ &= \sigma^2(0) + \int_0^t (\kappa'_L(0) - \rho \sigma^2(s)) ds + \int_0^t \int_0^\infty z \tilde{N}^L(ds, dz),\end{aligned}$$

with $t \in [0, T^*]$, $\alpha, \rho > 0$, $X(0) \in \mathbb{R}$, $\sigma^2(0) > 0$ and

$$\tilde{N}^L(ds, dz) = N^L(ds, dz) - \ell(dz) ds.$$

- ▶ We model the spot price process by

$$S(t) = \Lambda_g \exp(X(t)), \quad t \in [0, T^*].$$

The change of measure

- ▶ Let $\bar{\beta} = (\beta_1, \beta_2) \in [0, 1]^2$ and $\bar{\theta} = (\theta_1, \theta_2) \in \bar{D}_L \triangleq \mathbb{R} \times D_L$, where $D_L \triangleq (-\infty, \Theta_L/2)$.
- ▶ Consider the following family of kernels

$$G_{\theta_1, \beta_1}(t) \triangleq \sigma^{-1}(t) (\theta_1 + \alpha \beta_1 X(t)), \quad t \in [0, T^*],$$

$$H_{\theta_2, \beta_2}(t, z) \triangleq e^{\theta_2 z} \left(1 + \frac{\rho \beta_2}{\kappa_L''(\theta_2)} z \sigma^2(t-) \right), \quad t \in [0, T^*], z \in \mathbb{R}_+.$$

- ▶ Next, define the following family of Wiener and Poisson integrals

$$\tilde{G}_{\theta_1, \beta_1}(t) \triangleq \int_0^t G_{\theta_1, \beta_1}(s) dW(s), \quad t \in [0, T^*],$$

$$\tilde{H}_{\theta_2, \beta_2}(t) \triangleq \int_0^t \int_0^\infty (H_{\theta_2, \beta_2}(s, z) - 1) \tilde{N}^L(ds, dz), \quad t \in [0, T^*],$$

associated to the kernels G_{θ_1, β_1} and H_{θ_2, β_2} , respectively.

The change of measure

- The family of measure changes is given by

$$Q_{\bar{\theta}, \bar{\beta}} \sim P, \bar{\beta} \in [0, 1]^2, \bar{\theta} \in \bar{D}_L, \text{ with}$$

$$\left. \frac{dQ_{\bar{\theta}, \bar{\beta}}}{dP} \right|_{\mathcal{F}_t} \triangleq \mathcal{E}(\tilde{G}_{\theta_1, \beta_1} + \tilde{H}_{\theta_2, \beta_2})(t), \quad t \in [0, T^*],$$

where $\mathcal{E}(\cdot)$ denotes the stochastic exponential.

- Recall that, if M is a semimartingale, the stochastic exponential of M is the unique strong solution of

$$\begin{aligned} d\mathcal{E}(M)(t) &= \mathcal{E}(M)(t-)dM(t), \quad t \in [0, T^*], \\ \mathcal{E}(M)(0) &= 1, \end{aligned}$$

which is given by

$$\mathcal{E}(M)(t) = \exp \left(M(t) - \frac{1}{2} \langle M^c, M^c \rangle(t) \right) \prod_{0 \leq s \leq t} (1 + \Delta M(s)) e^{-\Delta M(s)}.$$

The change of measure

- ▶ **Yor's Addition Formula:** Let M_1 and M_2 two semimartingales starting at 0. Then,

$$\mathcal{E}(M_1 + M_2 + [M_1, M_2])(t) = \mathcal{E}(M_1)(t)\mathcal{E}(M_2)(t), \quad 0 \leq t \leq T^*,$$

where

$$[M_1, M_2](t) = \langle M_1^c, M_2^c \rangle(t) + \sum_{s \leq t} \Delta M_1(s) \Delta M_2(s).$$

- ▶ As $[\tilde{G}_{\theta_1, \beta_1}, \tilde{H}_{\theta_2, \beta_2}] \equiv 0$, we can write

$$\mathcal{E}(\tilde{G}_{\theta_1, \beta_1} + \tilde{H}_{\theta_2, \beta_2})(t) = \mathcal{E}(\tilde{G}_{\theta_1, \beta_1})(t)\mathcal{E}(\tilde{H}_{\theta_2, \beta_2})(t), \quad t \in [0, T^*].$$

- ▶ Conditioning on $\mathcal{F}_{T^*}^L$, we have

$$\begin{aligned} & \mathbb{E}_P[\mathcal{E}(\tilde{G}_{\theta_1, \beta_1} + \tilde{H}_{\theta_2, \beta_2})(T^*)] \\ &= \mathbb{E}_P[\mathbb{E}_P[\mathcal{E}(\tilde{G}_{\theta_1, \beta_1})(T^*) | \mathcal{F}_{T^*}^L] \mathcal{E}(\tilde{H}_{\theta_2, \beta_2})(T^*)]. \end{aligned}$$

- ▶ Hence the problem is reduced to show that $\mathcal{E}(\tilde{G}_{\theta_1, \beta_1})$ and $\mathcal{E}(\tilde{H}_{\theta_2, \beta_2})$ are true martingales with respect to appropriate filtrations.

Sketch of the proof that $\mathcal{E}(M)$ is a martingale

- ▶ M can be $\tilde{G}_{\theta_1, \beta_1}$ or $\tilde{H}_{\theta_2, \beta_2}$.
- ▶ Localize $\mathcal{E}(M)$ using a reducing sequence $\{\tau_n\}_{n \geq 1}$.
- ▶ Check that $1 = \lim_{n \rightarrow \infty} \mathbb{E}_P[\mathcal{E}(M)^{\tau_n}(T^*)] = \mathbb{E}_P[\mathcal{E}(M)(T^*)]$.
- ▶ Test the uniform integrability of $\{\mathcal{E}(M)^{\tau_n}(T^*)\}_{n \geq 1}$ with $F(x) = x \log(x)$, i.e.

$$\sup_n \mathbb{E}_P[F(\mathcal{E}(M)^{\tau_n}(T^*))] < \infty. \quad (1)$$

- ▶ For any $n \geq 1$, $\{\mathcal{E}(M)^{\tau_n}(t)\}_{t \in [0, T^*]}$ is a true martingale and induces a change of measure $\frac{dQ^n}{dP} \Big|_{\mathcal{F}_t} = \mathcal{E}(M)^{\tau_n}(t)$.
- ▶ Condition (1) can be rewritten as

$$\sup_n \mathbb{E}_{Q^n}[\log(\mathcal{E}(M)^{\tau_n}(T^*))] < \infty.$$

- ▶ We can get rid of the ordinary exponential in $\mathcal{E}(M)^{\tau_n}(T^*)$.
- ▶ The problem is reduced to find a uniform bound for the second moment of X and σ^2 under Q^n .

The dynamics under the new pricing measure

- ▶ By Girsanov's theorem for semimartingales, we can write

$$X(t) = X(0) + B_{Q_{\bar{\theta}, \bar{\beta}}}^X(t) + \int_0^t \sigma(s) dW_{Q_{\bar{\theta}, \bar{\beta}}}(t), \quad t \in [0, T]^*,$$

$$\sigma^2(t) = \sigma^2(0) + B_{Q_{\bar{\theta}, \bar{\beta}}}^{\sigma^2}(t) + \int_0^t \int_0^\infty z \tilde{N}_{Q_{\bar{\theta}, \bar{\beta}}}^L(ds, dz), \quad t \in [0, T^*],$$

where

$$B_{Q_{\bar{\theta}, \bar{\beta}}}^X(t) = \int_0^t (\theta_1 - \alpha(1 - \beta_1)X(s)) ds, \quad t \in [0, T^*],$$

and

$$B_{Q_{\bar{\theta}, \bar{\beta}}}^{\sigma^2}(t) = \int_0^t \left(\kappa'_L(\theta_2) - \rho(1 - \beta_2)\sigma^2(s) \right) ds, \quad t \in [0, T^*].$$

The dynamics under the new pricing measure

- ▶ The $Q_{\bar{\theta}, \bar{\beta}}$ -compensator measure of σ^2 is given by

$$\nu_{Q_{\bar{\theta}, \bar{\beta}}}^{\sigma^2}(dt, dz) = e^{\theta_2 z} \left(1 + \frac{\rho \beta_2}{\kappa_L''(\theta_2)} z \sigma^2(t-) \right) \ell(dz) dt.$$

- ▶ Using integration by parts, we get

$$X(T) = X(t) e^{-\alpha(1-\beta_1)(T-t)} + \frac{\theta_1}{\alpha(1-\beta_1)} (1 - e^{-\alpha(1-\beta_1)(T-t)})$$

$$+ \int_t^T \sigma(u) e^{-\alpha(1-\beta_1)(T-u)} dW_{Q_{\bar{\theta}, \bar{\beta}}}(u),$$

$$\sigma^2(T) = \sigma^2(t) e^{-\alpha(1-\beta_2)(T-t)} + \frac{\kappa_L'(\theta_2)}{\alpha(1-\beta_2)} (1 - e^{-\alpha(1-\beta_2)(T-t)})$$

$$+ \int_t^T \int_0^\infty e^{-\rho(1-\beta_2)(T-u)} z \tilde{N}_{Q_{\bar{\theta}, \bar{\beta}}}^L(du, dz),$$

where $0 \leq t \leq T \leq T^*$.

Moment condition under the historical measure

- ▶ A sufficient condition for S to have finite expectation under P is the following:

Assumption (\mathcal{P})

We assume that $\alpha, \rho > 0$ and Θ_L satisfy

$$\frac{1}{2\rho} \left(\frac{\rho}{2\alpha} \right)^{\frac{1}{1-\frac{\rho}{2\alpha}}} \leq \Theta_L - \delta,$$

for some $\delta > 0$.

- ▶ If $\Theta_L = \infty$ then assumption \mathcal{P} is satisfied.
- ▶ If $\Theta_L < \infty$, then if we choose ρ close to zero the value of α must be bounded away from zero, and vice versa, for assumption \mathcal{P} to be satisfied.

Forward price formula

Proposition

The forward price $F_{Q_{\bar{\theta}, \bar{\beta}}}(t, T)$ is given by

$$\begin{aligned} F_{Q_{\bar{\theta}, \bar{\beta}}}(t, T) &= \Lambda_g(T) \exp \left(\mathbf{X}(t) e^{-\alpha(1-\beta_1)(T-t)} + \sigma^2(t) e^{-\rho(1-\beta_2)(T-t)} \frac{1 - e^{-(2\alpha-\rho(1-\beta_2))(T-t)}}{2(2\alpha-\rho(1-\beta_2))} \right) \\ &\quad \times \exp \left(\frac{\kappa'_L(\theta_2)}{2\rho(1-\beta_2)} \left(\frac{1 - e^{-2\alpha(T-t)}}{2\alpha} - e^{-\rho(1-\beta_2)(T-t)} \frac{1 - e^{-(2\alpha-\rho(1-\beta_2))(T-t)}}{(2\alpha-\rho(1-\beta_2))} \right) \right) \\ &\quad \times \exp \left(\frac{\theta_1}{\alpha(1-\beta_1)} (1 - e^{-\alpha(1-\beta_1)(T-t)}) \right) \\ &\quad \times \mathbb{E}_{Q_{\bar{\theta}, \bar{\beta}}} \left[\exp \left(\frac{e^{-2\alpha T}}{2} \int_t^T e^{(2\alpha-\rho(1-\beta_2))s} \left(\int_t^s \int_0^\infty e^{\rho(1-\beta_2)u} z \tilde{N}_Q^L(du, dz) \right) ds \right) \middle| \mathcal{F}_t \right] \end{aligned}$$

In the particular case $Q_{\bar{\theta}, \bar{\beta}} = P$, it holds that

$$\begin{aligned} F_P(t, T) &= \Lambda_g(T) \exp \left(\mathbf{X}(t) e^{-\alpha(T-t)} + \sigma^2(t) e^{-\rho(T-t)} \frac{1 - e^{-(2\alpha-\rho)(T-t)}}{2(2\alpha-\rho)} \right) \\ &\quad \times \exp \left(\int_0^{T-t} \kappa_L \left(e^{-\rho s} \frac{1 - e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)} \right) ds \right). \end{aligned}$$

Affine transform formula

Theorem

Let $\bar{\beta} = (\beta_1, \beta_2) \in [0, 1]^2$, $\bar{\theta} = (\theta_1, \theta_2) \in \bar{D}_L$ and $T > 0$. Suppose there exist functions $\Psi_i^{\bar{\theta}, \bar{\beta}}$, $i = 0, 1, 2$ belonging to $C^1([0, T]; \mathbb{R})$, satisfying the generalised Riccati equation

$$\frac{d}{dt} \Psi_0^{\bar{\theta}, \bar{\beta}}(t) = \theta_1 \Psi_2^{\bar{\theta}, \bar{\beta}}(t) + \kappa_L \left(\Psi_1^{\bar{\theta}, \bar{\beta}}(t) + \theta_2 \right) - \kappa_L(\theta_2),$$

$$\frac{d}{dt} \Psi_1^{\bar{\theta}, \bar{\beta}}(t) = -\rho \Psi_1^{\bar{\theta}, \bar{\beta}}(t) + \frac{(\Psi_2^{\bar{\theta}, \bar{\beta}}(t))^2}{2} + \frac{\rho \beta_2}{\kappa_L''(\theta_2)} \left(\kappa_L' \left(\Psi_1^{\bar{\theta}, \bar{\beta}}(t) + \theta_2 \right) - \kappa_L'(\theta_2) \right),$$

$$\frac{d}{dt} \Psi_2^{\bar{\theta}, \bar{\beta}}(t) = -\alpha(1 - \beta_1) \Psi_2^{\bar{\theta}, \bar{\beta}}(t),$$

with initial conditions $\Psi_0^{\bar{\theta}, \bar{\beta}}(0) = \Psi_1^{\bar{\theta}, \bar{\beta}}(0) = 0$ and $\Psi_2^{\bar{\theta}, \bar{\beta}}(0) = 1$.

Moreover, suppose that the integrability condition

$$\sup_{t \in [0, T]} \kappa_L'' \left(\theta_2 + \Psi_1^{\bar{\theta}, \bar{\beta}}(t) \right) < \infty,$$

holds.

Affine transform formula

Theorem (Continue)

Then,

$$\begin{aligned} & \mathbb{E}_{Q_{\bar{\theta}, \bar{\beta}}}[\exp(X(T)) | \mathcal{F}_t] \\ &= \exp \left(\Psi_0^{\bar{\theta}, \bar{\beta}}(T-t) + \Psi_1^{\bar{\theta}, \bar{\beta}}(T-t) \color{red}{\sigma^2(t)} + \Psi_2^{\bar{\theta}, \bar{\beta}}(T-t) \color{red}{X(t)} \right), \end{aligned}$$

and

$$\begin{aligned} R_{Q_{\bar{\theta}, \bar{\beta}}}^F(t, T) &= \mathbb{E}_P[S(T) | \mathcal{F}_t] \\ &\times \left\{ \exp \left(\Psi_0^{\bar{\theta}, \bar{\beta}}(T-t) - \int_0^{T-t} \kappa_L \left(e^{-\rho s} \frac{1 - e^{-(2\alpha - \rho)s}}{2(2\alpha - \rho)} \right) ds \right. \right. \\ &+ \left(\Psi_1^{\bar{\theta}, \bar{\beta}}(T-t) - e^{-\rho(T-t)} \frac{1 - e^{-(2\alpha - \rho)(T-t)}}{2(2\alpha - \rho)} \right) \color{red}{\sigma^2(t)} \\ &+ \left. \left. \left(\Psi_2^{\bar{\theta}, \bar{\beta}}(T-t) - e^{-\alpha(T-t)} \right) \color{red}{X(t)} \right) - 1 \right\}, \end{aligned}$$

for $t \in [0, T]$.

Some remarks on the theorem

- ▶ The proof follows by applying a result by **Kallsen and Muhle-Karbe (2010)**.
- ▶ Limited applicability as it is stated.
- ▶ Reduction to a one dimensional non autonomous ODE.
 - ▶ We have that for any $\bar{\theta} \in \bar{D}_L$, $\bar{\beta} \in [0, 1]^2$, the solution of the last equation is given by $\Psi_2^{\bar{\theta}, \bar{\beta}}(t) = \exp(-\alpha(1 - \beta_1)t)$.
 - ▶ Plugging this solution to the first equation we get the following equation to solve for $\Psi_1^{\bar{\theta}, \bar{\beta}}(t)$

$$\frac{d}{dt} \Psi_1^{\bar{\theta}, \bar{\beta}}(t) = -\rho \Psi_1^{\bar{\theta}, \bar{\beta}}(t) + \frac{e^{-2\alpha(1 - \beta_1)t}}{2} + \frac{\rho \beta_2}{\kappa_L''(\theta_2)} (\kappa_L'(\Psi_1^{\bar{\theta}, \bar{\beta}}(t) + \theta_2) - \kappa_L'(\theta_2)),$$

with initial condition $\Psi_1^{\bar{\theta}, \bar{\beta}}(0) = 0$.

- ▶ The equation for $\Psi_0^{\bar{\theta}, \bar{\beta}}(t)$ is solved by integrating $\Lambda_0^{\bar{\theta}, \bar{\beta}}(\Psi_1^{\bar{\theta}, \bar{\beta}}(t), \Psi_2^{\bar{\theta}, \bar{\beta}}(t))$, i.e.,

$$\begin{aligned} \Psi_0^{\bar{\theta}, \bar{\beta}}(t) &= \int_0^t \{\theta_1 \Psi_2^{\bar{\theta}, \bar{\beta}}(s) + \kappa_L(\Psi_1^{\bar{\theta}, \bar{\beta}}(s) + \theta_2) - \kappa_L(\theta_2)\} ds \\ &= \theta_1 \frac{1 - e^{-\alpha(1 - \beta_1)t}}{\alpha(1 - \beta_1)} + \int_0^t \{\kappa_L(\Psi_1^{\bar{\theta}, \bar{\beta}}(s) + \theta_2) - \kappa_L(\theta_2)\} ds. \end{aligned}$$

Sufficient conditions for existence of global solutions

- ▶ Study of the equation $\frac{d}{dt}\hat{\Psi}^{\theta_2, \beta_2}(t) = \Lambda^{\theta_2, \beta_2}(\hat{\Psi}^{\theta_2, \beta_2})$, where

$$\Lambda^{\theta_2, \beta_2}(u) = -\rho u + \frac{1}{2} + \frac{\rho \beta_2}{\kappa_L''(\theta_2)}(\kappa_L'(u + \theta_2) - \kappa_L'(\theta_2)).$$

- ▶ Let

$$\mathcal{D}_b = \{(\theta_2, \beta_2) \in D_L \times (0, 1) : \exists u \in [0, \Theta_L - \theta_2) \text{ s.t. } \Lambda^{\theta_2, \beta_2}(u) \leq 0\}.$$

Theorem

If $(\theta_2, \beta_2) \in \mathcal{D}_b$ and $(\theta_1, \beta_1) \in \mathbb{R} \times [0, 1)$ then $\Psi_0^{\bar{\theta}, \bar{\beta}}(t)$, $\Psi_1^{\bar{\theta}, \bar{\beta}}(t)$ and $\Psi_2^{\bar{\theta}, \bar{\beta}}(t)$ are $C^1([0, T]; \mathbb{R})$ for any $T > 0$. Moreover,

$$\Psi_0^{\bar{\theta}, \bar{\beta}}(t) \longrightarrow \frac{\theta_1}{\alpha(1 - \beta_1)} + \int_0^\infty \left\{ \kappa_L \left(\Psi_1^{\bar{\theta}, \bar{\beta}}(s) + \theta_2 \right) - \kappa_L(\theta_2) \right\} ds, \quad t \rightarrow \infty,$$

$$(\Psi_1^{\bar{\theta}, \bar{\beta}}(t), \Psi_2^{\bar{\theta}, \bar{\beta}}(t)) \longrightarrow (0, 0), \quad t \rightarrow \infty,$$

and

$$t^{-1} \log \|(\Psi_1^{\bar{\theta}, \bar{\beta}}(t), \Psi_2^{\bar{\theta}, \bar{\beta}}(t))\| \rightarrow \gamma, \quad t \rightarrow \infty,$$

for some negative constant γ .

Risk premium analysis in the geometric BNS model

Lemma

If $(\theta_2, \beta_2) \in \mathcal{D}_b$ and $(\theta_1, \beta_1) \in \mathbb{R} \times [0, 1]$, the sign of the risk premium $R_{Q_{\theta, \beta}}^F(t, T)$ is the same as the sign of the function

$$\begin{aligned}\Sigma(t, T) \triangleq & \Psi_0^{\bar{\theta}, \bar{\beta}}(T - t) - \Psi_0^{0,0}(T - t) + (\Psi_1^{\bar{\theta}, \bar{\beta}}(T - t) - \Psi_1^{0,0}(T - t))\sigma^2(t) \\ & + (\Psi_2^{\bar{\theta}, \bar{\beta}}(T - t) - \Psi_2^{0,0}(T - t))X(t).\end{aligned}$$

Moreover,

$$\begin{aligned}\lim_{T-t \rightarrow \infty} \Sigma(t, T) &= \frac{\theta_1}{\alpha(1-\beta_1)} + \int_0^\infty \int_0^1 \kappa'_L \left(\lambda \Psi_1^{\bar{\theta}, \bar{\beta}}(s) + \theta_2 \right) d\lambda \Psi_1^{\bar{\theta}, \bar{\beta}}(s) ds \\ &\quad - \int_0^\infty \int_0^1 \kappa'_L \left(\lambda e^{-\rho s} \frac{1 - e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)} \right) d\lambda e^{-\rho s} \frac{1 - e^{-(2\alpha-\rho)s}}{2(2\alpha-\rho)} ds,\end{aligned}$$

and

$$\lim_{T-t \rightarrow 0} \frac{d}{dT} \Sigma(t, T) = \theta_1 + \alpha \beta_1 X(t).$$

- ▶ Analysis of possible risk profiles in **Benth and O.-L. (2015)**.

Conclusions

- ▶ A pricing measure for the BNS model for non-tradable assets with mean reversion extending Esscher's transform.
- ▶ Preserves affine structure of the model.
- ▶ Gives control on the speed and level of mean reversion.
- ▶ Provides more realistic risk premium profiles.

Further work

- ▶ Study the BNS model with jumps

$$X(t) = X(0) - \alpha \int_0^t X(s) ds + \int_0^t \sigma(s) W(t) + \eta L(t),$$

$$\sigma^2(t) = \sigma^2(0) - \rho \int_0^t \sigma^2(s) ds + L(t).$$

- ▶ Calibration.
- ▶ Pricing more complex derivatives.
- ▶ Other models with mean reversion.

References

- Barndorff-Nielsen, O. E. and Shephard, N. (2001). Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. *Journal of the Royal Statistical Society Series B*, Royal Statistical Society, Vol. 63(2), pp. 167-241.
- Benth, F.E. (2011) The stochastic volatility model of Barndorff-Nielsen and Shepard in commodity markets. *Math. Finance*, 21, pp. 595-625.
- Benth, F.E. and Ortiz-Latorre, S. (2014) A pricing measure to explain the risk premium in power markets. *SIAM Journal on Financial Mathematics*, Vol. 5, No. 1, pp. 685-728.
- Benth, F.E. and Ortiz-Latorre, S. (2015) A change of measure preserving the affine structure in the BNS model for commodity markets. To appear in *International Journal of Theoretical and Applied Finance*.
- Kallsen, J. and Muhle-Karbe, J. (2010). Exponentially affine martingales, affine measure changes and exponential moments of affine processes. *Stochastic Processes and their Applications* 120, pp. 163–181.