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Non tradable assets

I An asset is non tradable if we cannot build a portfolio with it.
I Energy related examples: non-storable commodities, weather indices,
electricity...

I Interested in pricing forwards contracts on these assets.
I There is no buy and hold strategy =) classical non-arbitrage
arguments break down.

I Any probability measure Q equivalent to the historical measure P is
a valid risk neutral pricing measure.

I The forward price with time to delivery 0 < T < T � at time
0 < t < T is given by

FQ (t,T ) = EQ [S(T )jFt ]

where Ft is the information in the market up to time t. Assuming
deterministic interest rates and r = 0.



Risk premium pro�le
I The risk premium for forward prices is de�ned by

RFQ (t,T ) , EQ [S(T )jFt ]�EP [S(T )jFt ].
I Goal: To be able to obtain more realistic risk premium pro�les. For
instance:
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where τ = T � t is the time to delivery.



Mathematical model

I Let (Ω,F , fFtgt2[0,T � ],P) be a �ltered probability space satisfying
the usual hypothesis, where T � > 0 is a �xed �nite time horizon.

I Consider a standard Brownian motion W and a pure jump Lévy
subordinator

L(t) =
Z t
0

Z ∞

0
zNL(ds, dz), t 2 [0,T �],

where NL(ds, dz) is a Poisson random measure with Lévy measure `
satisfying

R ∞
0 z`(dz) < ∞.

I Let
κL (θ) , logEP [e

θL(1)],

and
ΘL , supfθ 2 R+ : EP [e

θL(1)] < ∞g.
I A minimal assumption is that ΘL > 0.



Mathematical model

I Consider the Ornstein-Uhlenbeck processes X with Barndor¤-Nielsen
& Shephard stochastic volatility σ

X (t) = X (0)� α
Z t
0
X (s)ds +

Z t
0

σ(s)W (t),

σ2(t) = σ2(0)� ρ
Z t
0

σ2(s))ds + L(t)

= σ2(0) +
Z t
0
(κ0L(0)� ρσ2(s))ds +

Z t
0

Z ∞

0
zÑL(ds, dz),

with t 2 [0,T �], α, ρ > 0,X (0) 2 R, σ2(0) > 0 and

ÑL(ds, dz) = NL(ds, dz)� `(dz)ds.

I We model the spot price process by

S(t) = Λg exp (X (t)) , t 2 [0,T �].



The change of measure

I Let β̄ = (β1, β2) 2 [0, 1]2 and θ̄ = (θ1, θ2) 2 D̄L , R�DL, where
DL , (�∞,ΘL/2).

I Consider the following family of kernels

Gθ1,β1 (t) , σ�1(t) (θ1 + αβ1X (t)) , t 2 [0,T �],

Hθ2,β2 (t, z) , eθ2z
�
1+

ρβ2
κ00L (θ2)

zσ2(t�)
�
, t 2 [0,T �], z 2 R+.

I Next, de�ne the following family of Wiener and Poisson integrals

G̃θ1,β1 (t) ,
Z t
0
Gθ1,β1 (s)dW (s), t 2 [0,T �],

H̃θ2,β2 (t) ,
Z t
0

Z ∞

0

�
Hθ2,β2 (s, z)� 1

�
ÑL(ds, dz), t 2 [0,T �],

associated to the kernels Gθ1,β1 and Hθ2,β2 , respectively.



The change of measure
I The family of measure changes is given by
Qθ̄,β̄ � P, β̄ 2 [0, 1]2, θ̄ 2 D̄L, with

dQθ̄,β̄

dP

�����
Ft

, E(G̃θ1,β1 + H̃θ2,β2 )(t), t 2 [0,T �],

where E(�) denotes the stochastic exponential.
I Recall that, if M is a semimartingale, the stochastic exponential of
M is the unique strong solution of

dE(M)(t) = E(M)(t�)dM(t), t 2 [0,T �],
E(M)(0) = 1,

which is given by

E(M)(t) = exp
�
M(t)� 1

2
hMc ,Mc i(t)

�
∏

0�s�t
(1+ ∆M(s)) e�∆M (s).



The change of measure
I Yor�s Addition Formula: Let M1 and M2 two semimartingales
starting at 0. Then,

E(M1 +M2 + [M1,M2 ])(t) = E(M1)(t)E(M2)(t), 0 � t � T �,

where

[M1,M2 ](t) = hMc
1 ,M

c
2 i(t) + ∑

s�t
∆M1(s)∆M2(s).

I As [G̃θ1,β1 , H̃θ2,β2 ] � 0, we can write

E(G̃θ1,β1 + H̃θ2,β2 )(t) = E(G̃θ1,β1 )(t)E(H̃θ2,β2 )(t), t 2 [0,T �].

I Conditioning on FLT � , we have

EP [E(G̃θ1,β1 + H̃θ2,β2 )(T
�)]

= EP [EP [E(G̃θ1,β1 )(T
�)jFLT � ]E(H̃θ2,β2 )(T

�)].

I Hence the problem is reduced to show that E(G̃θ1,β1 ) and E(H̃θ2,β2 )
are true martingales with respect to appropriate �ltrations.



Sketch of the proof that E(M) is a martingale
I M can be G̃θ1,β1 or H̃θ2,β2 .
I Localize E(M) using a reducing sequence fτngn�1.
I Check that 1 = limn!∞ EP [E(M)

τn
(T �)] = EP [E(M)(T �)].

I Test the uniform integrability of fE(M)τn (T �)gn�1 with
F (x) = x log(x), i.e.

sup
n

EP [F (E(M)τn (T �))] < ∞. (1)

I For any n � 1, fE(M)τn (t)gt2[0,T � ] is a true martingale and induces
a change of measure dQ n

dP

���
Ft
= E(M)τn (t).

I Condition (1) can be rewritten as

sup
n

EQ n [log(E(M)τn (T �))] < ∞.

I We can get rid of the ordinary exponential in E(M)τn (T �).
I The problem is reduced to �nd a uniform bound for the second
moment of X and σ2 under Qn .



The dynamics under the new pricing measure

I By Girsanov�s theorem for semimartingales, we can write

X (t) = X (0) + BXQ θ̄,β̄
(t) +

Z t
0

σ(s)dWQ θ̄,β̄
(t), t 2 [0,T ]�,

σ2(t) = σ2(0) + Bσ2

Q θ̄,β̄
(t) +

Z t
0

Z ∞

0
zÑLQ θ̄,β̄

(ds, dz), t 2 [0,T �],

where

BXQ θ̄,β̄
(t) =

Z t
0
(θ1 � α(1� β1)X (s))ds, t 2 [0,T �],

and

Bσ2

Q θ̄,β̄
(t) =

Z t
0

�
κ0L(θ2)� ρ(1� β2)σ

2(s)
�
ds, t 2 [0,T �].



The dynamics under the new pricing measure

I The Qθ̄,β̄-compensator measure of σ2 is given by

vσ2

Q θ̄,β̄
(dt, dz) = eθ2z

�
1+

ρβ2
κ00L (θ2)

zσ2(t�)
�
`(dz)dt.

I Using integration by parts, we get

X (T ) = X (t)e�α(1�β1)(T�t) +
θ1

α(1� β1)
(1� e�α(1�β1)(T�t))

+
Z T
t

σ(u)e�α(1�β1)(T�u)dWQ θ̄,β̄
(u),

σ2(T ) = σ2(t)e�α(1�β2)(T�t) +
κ0L(θ2)

α(1� β2)
(1� e�α(1�β2)(T�t))

+
Z T
t

Z ∞

0
e�ρ(1�β2)(T�u)zÑLQ θ̄,β̄

(du, dz),

where 0 � t � T � T �.



Moment condition under the historical measure

I A su¢ cient condition for S to have �nite expectation under P is the
following:

Assumption (P)
We assume that α, ρ > 0 and ΘL satisfy

1
2ρ

� ρ

2α

� 1
1� ρ

2α � ΘL � δ,

for some δ > 0.

I If ΘL = ∞ then assumption P is satis�ed.
I If ΘL < ∞, then if we choose ρ close to zero the value of α must be
bounded away from zero, and vice versa, for assumption P to be
satis�ed.



Forward price formula
Proposition
The forward price FQ θ̄,β̄

(t,T ) is given by

FQ θ̄,β̄
(t,T )

= Λg (T ) exp

 
X (t)e�α(1�β1)(T�t) + σ2(t)e�ρ(1�β2)(T�t) 1� e

�(2α�ρ(1�β2))(T�t)

2(2α� ρ(1� β2))

!

� exp
 

κ0L(θ2)

2ρ(1� β2)

 
1� e�2α(T�t)

2α
� e�ρ(1�β2)(T�t) 1� e

�(2α�ρ(1�β2))(T�t)

(2α� ρ(1� β2))

!!

� exp
�

θ1
α(1� β1)

(1� e�α(1�β1)(T�t))

�
�EQ θ̄,β̄

"
exp

 
e�2αT

2

Z T
t
e(2α�ρ(1�β2))s

�Z s
t

Z ∞

0
eρ(1�β2)uzÑLQ (du, dz)

�
ds

!
jFt

#

In the particular case Qθ̄,β̄ = P, it holds that

FP (t,T ) = Λg (T ) exp

 
X (t)e�α(T�t) + σ2(t)e�ρ(T�t) 1� e�(2α�ρ)(T�t)

2(2α� ρ)

!

� exp
 Z T�t

0
κL

 
e�ρs 1� e�(2α�ρ)s

2(2α� ρ)

!
ds

!
.



A¢ ne transform formula

Theorem
Let β̄ = (β1, β2) 2 [0, 1]2, θ̄ = (θ1, θ2) 2 D̄L and T > 0. Suppose there
exist functions Ψθ̄,β̄

i , i = 0, 1, 2 belonging to C1([0,T ];R), satisfying the
generalised Riccati equation

d
dtΨθ̄,β̄

0 (t) = θ1Ψθ̄,β̄
2 (t) + κL

�
Ψθ̄,β̄
1 (t) + θ2

�
� κL(θ2),

d
dtΨθ̄,β̄

1 (t) = �ρΨθ̄,β̄
1 (t) + (Ψθ̄,β̄

2 (t))2

2 + ρβ2
κ00L (θ2)

�
κ0L

�
Ψθ̄,β̄
1 (t) + θ2

�
� κ0L(θ2)

�
,

d
dtΨθ̄,β̄

2 (t) = �α(1� β1)Ψ
θ̄,β̄
2 (t),

with initial conditions Ψθ̄,β̄
0 (0) = Ψθ̄,β̄

1 (0) = 0 and Ψθ̄,β̄
2 (0) = 1.

Moreover, suppose that the integrability condition

sup
t2[0,T ]

κ00L

�
θ2 +Ψθ̄,β̄

1 (t)
�
< ∞,

holds.



A¢ ne transform formula
Theorem (Continue)
Then,

EQ θ̄,β̄
[exp(X (T ))jFt ]

= exp
�

Ψθ̄,β̄
0 (T � t) +Ψθ̄,β̄

1 (T � t)σ2(t) +Ψθ̄,β̄
2 (T � t)X (t)

�
,

and

RFQ θ̄,β̄
(t,T ) = EP [S(T )jFt ]

�
(
exp

 
Ψθ̄,β̄
0 (T � t)�

Z T�t
0

κL

 
e�ρs 1� e�(2α�ρ)s

2(2α� ρ)

!
ds

+

 
Ψθ̄,β̄
1 (T � t)� e�ρ(T�t) 1� e�(2α�ρ)(T�t)

2(2α� ρ)

!
σ2(t)

+
�

Ψθ̄,β̄
2 (T � t)� e�α(T�t)

�
X (t)

�
� 1
o
,

for t 2 [0,T ].



Some remarks on the theorem
I The proof follows by applying a result by Kallsen and Muhle-Karbe
(2010).

I Limited applicability as it is stated.
I Reduction to a one dimensional non autonomous ODE.

I We have that for any θ̄ 2 D̄L, β̄ 2 [0, 1]2, the solution of the last
equation is given by Ψθ̄,β̄

2 (t) = exp(�α(1� β1)t).
I Plugging this solution to the �rst equation we get the following equation

to solve for Ψθ̄,β̄
1 (t)

d
dt

Ψθ̄,β̄
1 (t) = �ρΨθ̄,β̄

1 (t)+
e�2α(1�β1)t

2
+

ρβ2
κ00L (θ2)

(κ0L(Ψ
θ̄,β̄
1 (t)+ θ2)� κ0L(θ2)),

with initial condition Ψθ̄,β̄
1 (0) = 0.

I The equation for Ψθ̄,β̄
0 (t) is solved by integrating Λθ̄,β̄

0 (Ψθ̄,β̄
1 (t),Ψθ̄,β̄

2 (t)),
i.e.,

Ψθ̄,β̄
0 (t) =

Z t

0
fθ1Ψθ̄,β̄

2 (s) + κL(Ψ
θ̄,β̄
1 (s) + θ2)� κL(θ2)gds

= θ1
1� e�α(1�β1)t

α(1� β1)
+
Z t

0
fκL(Ψ

θ̄,β̄
1 (s) + θ2)� κL(θ2)gds .



Su¢ cient conditions for existence of global solutions
I Study of the equation d

dt Ψ̂θ2,β2 (t) = Λθ2,β2 (Ψ̂θ2,β2 ), where

Λθ2,β2 (u) = �ρu +
1
2
+

ρβ2
κ00L (θ2)

(κ0L(u + θ2)� κ0L(θ2)).

I Let

Db = f(θ2, β2) 2 DL� (0, 1) : 9u 2 [0,ΘL� θ2) s.t. Λθ2,β2 (u) � 0g.

Theorem
If (θ2, β2) 2 Db and (θ1, β1) 2 R� [0, 1) then Ψθ̄,β̄

0 (t),Ψθ̄,β̄
1 (t) and

Ψθ̄,β̄
2 (t)) are C1([0,T ];R) for any T > 0. Moreover,

Ψθ̄,β̄
0 (t) �! θ1

α(1� β1)
+
Z ∞

0

n
κL

�
Ψθ̄,β̄
1 (s) + θ2

�
� κL(θ2)

o
ds, t ! ∞,

(Ψθ̄,β̄
1 (t),Ψθ̄,β̄

2 (t)) �! (0, 0) , t ! ∞,

and
t�1 log




(Ψθ̄,β̄
1 (t),Ψθ̄,β̄

2 (t))



! γ, t ! ∞,

for some negative constant γ.



Risk premium analysis in the geometric BNS model
Lemma
If (θ2, β2) 2 Db and (θ1, β1) 2 R� [0, 1), the sign of the risk premium
RFQ θ̄,β̄

(t,T ) is the same as the sign of the function

Σ(t,T ) , Ψθ̄,β̄
0 (T � t)�Ψ0,00 (T � t) + (Ψθ̄,β̄

1 (T � t)�Ψ0,01 (T � t))σ2(t)

+ (Ψθ̄,β̄
2 (T � t)�Ψ0,02 (T � t))X (t).

Moreover,

lim
T�t!∞

Σ(t,T )

=
θ1

α(1� β1)
+
Z ∞

0

Z 1
0

κ0L

�
λΨθ̄,β̄

1 (s) + θ2

�
dλΨθ̄,β̄

1 (s)ds

�
Z ∞

0

Z 1
0

κ0L

 
λe�ρs 1� e�(2α�ρ)s

2(2α� ρ)

!
dλe�ρs 1� e�(2α�ρ)s

2(2α� ρ)
ds,

and

lim
T�t!0

d
dT

Σ(t,T ) = θ1 + αβ1X (t).

I Analysis of possible risk pro�les in Benth and O.-L. (2015).



Conclusions

I A pricing measure for the BNS model for non-tradable assets with
mean reversion extending Esscher�s transform.

I Preserves a¢ ne structure of the model.
I Gives control on the speed and level of mean reversion.
I Provides more realistic risk premium pro�les.

Further work

I Study the BNS model with jumps

X (t) = X (0)� α
Z t
0
X (s)ds +

Z t
0

σ(s)W (t) + ηL(t),

σ2(t) = σ2(0)� ρ
Z t
0

σ2(s)ds + L(t).

I Calibration.
I Pricing more complex derivatives.
I Other models with mean reversion.
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