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Introduction

We know that in a complete financial market a unique equivalent
martingale measure exists and every contingent claim is attainable. This
means that an agent can always construct a hedging strategy based on
available assets. But, in practice, we rarely deal with a complete market,
because the number of causes for uncertainty is greater than the number
of assets held by the agent. Consequently, the hedging strategy does not
always exist in an incomplete market and corresponding portfolio value
does not equal to the claim value. In this case, we want to find a strategy
that minimizes the expected value of the squared difference of the
contingent claim and portfolio value. Such problem is called the problem
of mean-variance hedging (MVH).
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Since the pioneering work of Föllmer and Sondermann
[Follmer, Sondermann], the mean-variance hedging is a permanent area of
research in mathematical finance. At the beginning the problem was
formulated assuming that the probability measure was a martingale
measure. In this context, some results were obtained in the case of full
information by Föllmer and Sondermann [Follmer, Sondermann] and
Schweizer [Schweizer (2001)]. Under incomplete information this type of
hedging was developed later in many papers. See, for example Schweizer
[Schweizer (92)], where two correlated Wiener processes were considered
and the hedging strategy could depend on both, and Schweizer
[Schweizer (94)] where results were obtained using projection techniques.
Mention also papers [Schweizer (96)] and [Monat, Stricker]. A similar
problem for a short-fall risk minimization was studied by Weisshaupt in his
example-oriented paper [Weisshaupt]. Černỳ [Cerny], Schäl [Schal] and
Schweizer [Schweizer (95)], derived the mean–variance hedging process in
discrete time.
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Among the new studies we point out Fujii and Takahashi [Fujii, Takanashi]
and Hubalek et al. [Hubalek, Kallsen, Krawchyk]. Also mention paper of
Ceci et al. [Ceci], where the authors provide a suitable
Galtchouk-Kunita-Watanabe decomposition of the contingent claim that
works in a partial information framework, and work of Jeanblanc et al.
[Jenblac et al.], where the problem of mean-variance hedging for general
semimartingale models is solved via stochastic control methods. In
general, the mean-variance problem is very popular and has been used and
studied in many examples and contexts. In particular, in stochastic
volatility models ([Biagini, Paolo, Maurizio],[Laurent, Pham]), insurance
([Dal, Moller],[Delong, Gerard]), weather derivatives or electricity loads
([Brockett],[Keppo et al]), insider trading
([Biagini, Oksendal],[Kohlman et al.]).
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The novelty of our approach consists on considering a mean-variance
minimization problem where there are restrictions in the available
information and there is a random lower bound on a terminal wealth.
More precisely, we consider a mean-variance minimization problem for an
unobservable contingent claim under the condition that the observable
contingent claim is superhedged. To authors’ knowledge such an approach
has not been considered in the existing literature.
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Consider the financial market with one hedger on it and two contingent
claims that will be described below. Compare the information related to
both claims. The fact that the hedging strategy for some claim does not
always exist can be interpreted as a lack of sufficient information about
the market.

Mathematically, the “complete” information is described by the filtration
F = {Ft , t ≥ 0} and “incomplete” information is described by its
subfiltration F̃ = {F̃t , t ≥ 0}. We restrict ourselves to the finite horizon
T > 0.

The prices of underlying asset are given by F̃-adapted square-integrable
stochastic process S̃ = {S̃t , t ∈ [0,T ]}. We assume that S̃ is a
semimartingale.

A trading strategy is described by F̃-predictable square-integrable
stochastic processes ξ = {ξt , t ∈ [0,T ]} such that the stochastic integral∫ T

0 ξtdS̃t is well-defined. This integral describes the trading gains induced
by the self-financing portfolio strategy associated to ξ.
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Let a contingent claim H̃ be a F̃T -measurable square-integrable
nonnegative random variable. At time T , a hedger who starts with initial
capital x and uses the strategy ξ, has to pay the random amount H̃, so
that portfolio value should not be less than H̃. This contingent claim H̃
can be interpreted as a random lower bound of a terminal wealth. At the
same time hedger wants approximate a random amount H by portfolio
value. In contradistinction to H̃, we assume that H is a FT -measurable
square-integrable nonnegative random variable. In this context,
mean-variance hedging problem with partial observations means solving
the optimization problem

minimize E

(
H − x −

∫ T

0
ξtdS̃t

)2

over all ξ ∈ Ξ(x , H̃),

where

Ξ(x , H̃) = {ξ : x +

∫ T

0
ξtdS̃t ≥ H̃ a.s.}
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Similar problem in the partial case of two correlated Wiener processes was
considered by Weisshaupt, but he maximized the probability of successful
hedging of the unobservable claim, and we are interested in the
mean-variance framework, assuming that there is some reserved capital
and trying to minimize its value. This problem is naturally related to the
mean-variance hedging. The main challenge in solving mean-variance
hedging problem is to find more explicit descriptions of the optimal
strategy.
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The plan is the following: –Formulate the conditional mean-variance
hedging problem under incomplete information in the general martingale
setting and reduce it to the simplified statement.

–Prove the auxiliary result concerning the representation of the random
variable that is approached and prove the main result that gives the
solution of the minimization problem.

–The corresponding results are illustrated with the help of the model with
two correlated Wiener processes.

–Numerical illustrations.

–How the problem can be solved in a semimartingale case?
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Preliminaries

Let we have complete probability space (Ω,F ,P) with filtration
F = {Ft , t ≥ 0} that corresponds to the “complete information”.

Suppose that there exists a subfiltration F̃ = {F̃t , t ≥ 0} that corresponds
to the “incomplete information”.

Consider square-integrable cadlag martingale M̃ = {M̃t , t ≥ 0} adapted to
the “incomplete information”, or, that is the same for us, F̃-adapted.

Moreover, assume that subfiltration F̃ is generated by M̃.

We consider all processes on the interval [0,T ]. Now we introduce two
square-integrable nonnegative random variables, H and H̃, H being
FT -measurable and H̃ being F̃T -measurable. We can characterize them as
“unobservable” and “observable” random variables or contingent claims,
correspondingly.
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Problem [M(x , H̃)]
Denote by ΞM class of such F̃-predictable square-integrable processes
ξ = {ξt , t ∈ [0,T ]} that E

∫ T
0 ξ2

s d〈M̃〉s <∞. Further, for any x ∈ R
denote

ΞM(x , H̃) = {ξ ∈ ΞM : x +

∫ T

0
ξsdM̃s ≥ H̃ a.s.}.

Since the underlying price process M̃ is a martingale, we say that this is a
conditional minimization problem in the martingale framework.

Problem [M(x , H̃)]. For fixed x > 0 to find

min
ξ∈ΞM(x ,H̃)

E

(
H − x −

∫ T

0
ξsdM̃s

)2

,

and such ξ̃ for which

min
ξ∈ΞM(x ,H̃)

E

(
H − x −

∫ T

0
ξsdM̃s

)2

= E

(
H − x −

∫ T

0
ξ̃sdM̃s

)2

.
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In order to simplify the process of solving the Problem [M(x , H̃)], we make
the following remarks.

Remark

Random variable H − E(H|F̃T ) is orthogonal to any F̃T -measurable
square-integrable random variable. Therefore, it is sufficient to find

min
ξ∈ΞM(x ,H̃)

E

(
E(H|F̃T )− x −

∫ T

0
ξsdM̃s

)2

.
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Remark

Denote H1 = E(H|F̃T ) and H2 = H11H1≥H̃ + H̃1
H1<H̃

≥ H̃.

For any ξ ∈ ΞM(x , H̃)

E

(
H2 − x −

∫ T

0
ξsdM̃s

)2

≤ E

(
H1 − x −

∫ T

0
ξsdM̃s

)2

(1)

≤ E

(
H11H1≥H̃ − x −

∫ T

0
ξsdM̃s

)2

− E
(
H11H1<H̃

)2
, (2)

and the equalities in (1)–(2) are achieved if and only if H1 ≥ H̃ a.s.
Therefore, we can restrict ourselves to the case H1 ≥ H̃ a.s. and in
other cases apply bounds (1)–(2)
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Remark

Now, let H1 ≥ H̃ a.s. and consider the case when x = EH = EH1.
Recall that subfiltration F̃ is generated by M̃. Applying Clark-Ocone
integral representation theorem to H1, we get the representation

H1 = x +

∫ T

0
ξ0
s dM̃s

for some ξ0 ∈ ΞM . So, we put ξ̃ = ξ0 and get the trivial zero solution of
minimization problem. So, it is necessary consider two cases: x < EH
and x ≥ EH. However, since our goal is to solve the minimization
problem with minimal initial resources, we suppose in what follows
that x < EH.
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Remark

At last, assume that H1 ≥ H̃ a.s., x < EH = EH1. Applying
Clark-Ocone integral representation theorem to H̃, we get the
representation

H̃ = x̃ +

∫ T

0
ξ̃sdM̃s

with x̃ = EH̃ and ξ̃ ∈ ΞM . Now, rewrite

E

(
H1 − x −

∫ T

0
ξsdM̃s

)2

= E

(
H1 − H̃ −

(
x − x̃ +

∫ T

0
(ξs − ξ̃s)dM̃s

))2

,

denote G = H1 − H̃, g = x − x̃ , ηs = ξs − ξ̃s and note that G ≥ 0 a.s.,
0 < g < EG and g +

∫ T
0 ηsdM̃s = x − x̃ +

∫ T
0 (ξs − ξ̃s)dM̃s ≥ 0 a.s.
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Problem [M(g , 0)]

Under our assumptions, Problem (M(x , H̃)) can be reduced to the
following one.

Problem [M(g , 0)]. For fixed square-integrable nonnegative
F̃T -measurable random variable G and fixed number 0 < g < EG to find

min
ξ∈ΞM(g ,0)

E

(
G − g −

∫ T

0
ξsdM̃s

)2

,

and such ξ̃ for which

min
ξ∈ΞM(g ,0)

E

(
G − g −

∫ T

0
ξsdM̃s

)2

= E

(
G − g −

∫ T

0
ξ̃sdM̃s

)2

.
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Remark

Consider the term E(x , M̃) := E
(
H11H1≥H̃ − x −

∫ T
0 ξsdM̃s

)2
from the

right-hand side of (2). We can present it as

E

(
(H1 − H̃)1

H1≥H̃ −
(
x +

∫ T

0
ξsdM̃s − H̃1

H1≥H̃

))2

.

Applying Clark-Ocone integral representation theorem to H̃1
H1≥H̃ , we

get the representation H̃1
H1≥H̃ = x̃1 +

∫ T
0 γ̃sdM̃s , where

x̃1 = EH̃1
H1≥H̃ ≤ EH̃ ≤ x and x +

∫ T
0 ξsdM̃s − H̃1

H1≥H̃ ≥ 0.

Therefore the minimization of the term E(x , M̃) is in the framework of
the Problem [M(g , 0)] with g = x − x̃1 ≥ 0 and
G = (H1 − H̃)1

H1≥H̃ ≥ 0. So, in the general case, when the inequality

H1 ≥ H̃ does not hold a.s., we can minimize LHS of (1) and RHS of (2)
in the framework of the Problem [M(g , 0)].
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To solve Problem [M(g , 0)], we take into account Remark 1 and consider
the representation

G = EG +

∫ T

0
ηsdM̃s .

Let x ∈ (0,EG ). Consider z(x) that is the solution of equation

E

(
z(x) +

∫ T

0
ηsdM̃s

)+

= x . (3)

Lemma

Function z = z(x), x ∈ (0,EG ) is uniquely determined, continuous and
strongly increasing on the interval (0,EG ). In addition, z(x) ≤ x . The
range of values of this function is the interval (r ,EG ), where

r = − supω∈Ω

∫ T
0 ηsdM̃s .
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The solution of the minimization problem [M(g , 0)].

Theorem

Let g ∈ (0,EG ) be fixed. Consider z(g) that is the unique solution of

equation E
(
z(g) +

∫ T
0 ηsdM̃s

)+
= g and the Clark–Ocone integral

representation of the random variable
(
z(g) +

∫ T
0 ηsdM̃s

)+
:

(
z(g) +

∫ T

0
ηsdM̃s

)+

= g +

∫ T

0
ξ̃sdM̃s . (4)

Then ξ̃ is the solution of the minimization problem [M(g , 0)].
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Example

Consider the case when we have two correlated Wiener processes,
W = {Wt , t ≥ 0} and W̃ = {W̃t , t ≥ 0}.
Let Wt = ρW̃t + (1− ρ2)1/2Ŵt ,

where the Wiener processes W̃ and Ŵ are independent.
Let filtration F be generated by W , filtration F̃ be generated by W̃ .
Also, let M̃ = W̃ and let G = H(WT ) be square-integrable random
variable, where H : R→ R+ is real-valued non-decreasing measurable
function of polynomial growth at infinity.
In order to give the explicit solution of minimization problem [M(g , 0)], we
make the following steps.
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The model with two correlated Wiener processes

Calculate G̃ = E(G |F̃T ). In this order, introduce the function

f (x) =

∫
R
H(z)

exp
(
− (z−ρx)2

2T (1−ρ2)

)
√

2πT (1− ρ2)
dz , (5)

and get that G̃ = f (W̃T ).

Apply Theorem 2.2 and find Clark–Ocone integral representation of

the random variable
(
z(g) +

∫ T
0 ηtdW̃t

)+
, where z(g) is a solution

of equation (3) with x = g . Denote Kg := EG − z(g). Let Φ(x) be
the standard normal cumulative distribution function Then Kg is a
solution of the following equation

g =

∫ +∞

f −1(Kg )
f (x)

exp
(
− x2

2T

)
√

2πT
dx − KgΦ

(
− f −1(Kg )√

T

)
. (6)
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It follows from integral representation of G̃ that(
z(g) +

∫ T

0
ηtdW̃t

)+

=
(
f (W̃T )− Kg

)+
. (7)

From Theorem 2.2 and relation (7) we have that the solution of the
minimization problem [M(g , 0)] is the process ξ̃ such that(

f (W̃T )− Kg

)
1{W̃T ≥ f −1(Kg )} = g +

∫ T

0
ξ̃tdW̃t .

ξ̃t = ρ

∫
R

∫
R
1{x
√
T − t + W̃t ≥ f −1(Kg )}

× H(ρx
√
T − t + y

√
T (1− ρ2) + ρW̃t)

exp(−(x2 + y2)/2)

2π
√
T (1− ρ2)

ydydx .

(8)
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Evaluating E
(
G − g −

∫ T
0 ξ̃sdW̃s

)2
,

we get

E

(
G − g −

∫ T

0
ξ̃sdW̃s

)2

= E
(
G − G̃

)2
+ E

(
G̃ − g −

∫ T

0
ξ̃sdW̃s

)2

=

∫
R

(H2(x)− f 2(x))
exp

(
− x2

2T

)
√

2πT
dx

+ K 2
g Φ

(
− f (−1)(Kg )√

T

)
+

∫ f (−1)(Kg )

−∞
f 2(x)

exp
(
− x2

2T

)
√

2πT
dx .
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Example

Specify Example 2.3 for the call option H(y) = (y − K )+, y ∈ R.

The function f from (5) has the following form

f (x) =

√
T (1− ρ2)

2π
exp

(
− (ρx − K )2

2T (1− ρ2)

)
(9)

+ (ρx − K )Φ

(
ρx − K√
T (1− ρ2)

)
.

The solution of the minimization problem [M(g , 0)] is the process ξ̃

ξ̃t = ρ

∫
{x
√
T−t≥f −1(Kg )−W̃t}

Φ

(
ρx
√
T − t + ρW̃t − K√

T (1− ρ2)

)

× exp(−x2/2)√
2π

dx . (10)
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Consider a numerical example of solutions of minimization problem
[M(g , 0)] for the call option. Put g = 0.05 and consider the cases
T ∈ {5, 10}, K ∈ {1, 2, 3} and ρ ∈ {0.2, 0.5, 0.75}. Values of solutions of
equation (6), minimum values in problem [M(g , 0)], and values of EG are
presented in the following tables.

Solutions Kg of equation (6)

T=5 K=1 K=2 K=3

ρ=0.2 0.500 0.196 0.044
ρ=0.5 0.887 0.352 0.066
ρ=0.75 1.562 0.725 0.150

T=10 K=1 K=2 K=3

ρ=0.2 0.948 0.547 0.276
ρ=0.5 1.726 1.055 0.544
ρ=0.75 2.929 2.001 1.168

Minimum values in problem [M(g , 0)]

T=5 K=1 K=2 K=3

ρ=0.2 1.096 0.447 0.161
ρ=0.5 1.034 0.413 0.149
ρ=0.75 0.938 0.346 0.115

T=10 K=1 K=2 K=3

ρ=0.2 2.824 1.557 0.807
ρ=0.5 2.712 1.475 0.754
ρ=0.75 2.555 1.340 0.650

Table: Values of EG

K=1 K=2 K=3

T=5 0.479811 0.226874 0.093117
T=10 0.824124 0.505794 0.290238
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We simulate the trajectories of the Wiener process W̃t on time interval
[0, 10], take one of these trajectories on the intervals [0, 5] and [0, 10] and
present it at the bottom of Figure 1. For this trajectory we construct the
sample paths of ξ̃t , with K = 1 and ρ = 0.2, 0.5, 0.75. At the top of Figure
1 we present these sample paths, grouped by T .

Figure: Sample paths of solutions of minimization problem [M(g , 0)].
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Preliminaries

Consider two continuous risk assets S = {St , t ≥ 0} and S̃ = {S̃t , t ≥ 0}
such that St is Ft-adapted and S̃t is F̃t-adapted so that S = {St , t ≥ 0}
is the non-observable asset and S̃ = {S̃t , t ≥ 0} is observable asset.

We suppose that non-risky asset Bt ≡ 1 and the market
Σ = {1, St , S̃t , t ≥ 0} is arbitrage-free on (Ω,F ,P) with filtration F.
Moreover, we suppose that the observable market Σ̃ = {1, S̃t , t ≥ 0} is
complete on (Ω,F ,P) with filtration F̃.

Let P be the set of all equivalent martingale measures for Σ. Then the
restriction P̃ of any P∗ ∈ P on F̃ is the same unique equivalent martingale
measure for the observable market Σ̃ so that S̃ is F̃-martingale w.r.t. P̃.

Denote DT = dP̃T
dPT

the restriction of dP̃
dP on interval [0,T ].

Now, let H be a contingent claim on the extended market Σ and H̃ be a
contingent claim on the observable market Σ̃.
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In order to remain within the framework of the square-integrable approach,
we fix the interval [0,T ] and introduce the following assumptions.

(A1) S̃ = {S̃t , t ≥ 0} is the semimartingale admitting the representation

S̃t = Ñt + Ãt , where Ñ is the square-integrable martingale and Ã is
the predictable process of square-integrable variation. Suppose that F̃
is generated by Ñ = {Ñt , t ≥ 0}.

(A2) ED2
T <∞, EH2 <∞ and EH̃2 <∞.

These conditions mean, in particular, that we can consider stochastic
integral w.r.t. the semimartingale S̃ ,

I (t, ξ) =

∫ t

0
ξsdS̃s =

∫ t

0
ξsdÑs +

∫ t

0
ξsdÃs , t ∈ [0,T ]

for such F̃-predictable processes ξ that
∫ T

0 ξ2
s d〈Ñ〉s <∞ and∫ T

0 |ξs |d |Ã|s <∞ a.s. Denote ΞS class of such F̃-predictable strategies.
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Problem [S(x , H̃)]

Completeness of market Σ̃ together with condition (A2) means that for
any initial value x ≥ E

P̃
H̃ we can construct the superhedge of the

contingent claim H̃ a.s. with the help of such ξ ∈ ΞS that
E(I (T , ξ))2 <∞. In other words, there exists such ξ ∈ ΞS that

x + I (T , ξ) ≥ H̃ a.s.

We denote ΞS(x , H̃) class of such strategies. Now we can state a
conditional minimization problem in the semimartingale framework.
Problem [S(x , H̃)]. Starting with fixed value x ≥ E

P̃
H̃, to construct the

hedging strategy ξ̃ ∈ ΞS(x , H̃) so that

E

(
H − x −

∫ T

0
ξ̃sdS̃s

)2

= min
ξ∈ΞS (x ,H̃)

E

(
H − x −

∫ T

0
ξsdS̃s

)2

,

and to find this minimal value.
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Reducing the problem

Remark

Problem [S(x , H̃)] is reduced to the finding of

min
ξ∈ΞS (x ,H̃)

E

(
H1 − x −

∫ T

0
ξsdS̃s

)2

, (11)

and the minimizing ξ̃, where H1 = E(H|F̃T ).
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Remark

Consider the expansion H1 = H11H1≥H̃ + H11H1<H̃
and denote

H2 = H11H1≥H̃ + H̃1
H1<H̃

≥ H̃. Then, similarly to (1), for any

ξ ∈ ΞS(x , H̃)

E

(
H2 − x −

∫ T

0
ξsdS̃s

)2

≤ E

(
H1 − x −

∫ T

0
ξsdS̃s

)2

≤ E

(
H11H1≥H̃ − x −

∫ T

0
ξsdS̃s

)2

− E
(
H11H1<H̃

)2
.

(12)

and the equalities in (12) are achieved if and only if H1 ≥ H̃ a.s.
Therefore, we can restrict ourselves to the case H1 ≥ H̃ a.s. and in
other cases apply bounds (12).
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Remark

Now, let H1 ≥ H̃ a.s. and consider the case when x = E
P̃
H1. It follows

from the completeness of the market Σ̃ that we have the representation
H1 = x +

∫ T
0 ξ0

s dS̃s for some ξ0 ∈ ΞS(x , H̃). So, we put ξ̃ = ξ0 and get
the trivial zero solution of minimization problem. So, it is reasonable
to consider two cases: x < E

P̃
H1 and x > E

P̃
H1. However, since our

goal is to solve the minimization problem with minimal initial
resources, we suppose in what follows that x < E

P̃
H1.

Remark

Further, let E
P̃
H̃ ≤ x < E

P̃
H1. Evidently,

E
(
H1 − x −

∫ T
0 ξsdS̃s

)2
= E

(
H1 − H̃ −

(
x +

∫ T
0 ξsdS̃s − H̃

))2
. It

follows from the completeness of the market that there exists η ∈ ΞS

such that H̃ = E
P̃
H̃ +

∫ T
0 ηsdS̃s . Denote g = x − E

P̃
H̃ ≥ 0 and let

ζs = ξs − ηs , G = H1 − H̃ ≥ 0. Then obviously 0 ≤ y < E
P̃
G .
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Problem [S(g , 0)]

We reduce Problem [S(x , H̃)] to the following one.

Problem [S(g , 0)]. For fixed square-integrable nonnegative F̃T -measurable
random variable G and fixed number 0 < g < E

P̃
G to find

min
ξ∈ΞS (g ,0)

E

(
G − g −

∫ T

0
ξsdS̃s

)2

,

and such ξ̃ ∈ ΞS(g , 0) for which

min
ξ∈ΞS (g ,0)

E

(
G − g −

∫ T

0
ξsdS̃s

)2

= E

(
G − g −

∫ T

0
ξ̃sdS̃s

)2

.
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Remark

Consider the term E(x , S̃) := E
(
H11H1≥H̃ − x −

∫ T
0 ξsdS̃s

)2
from the

right-hand side of (12). We can present it as

E(x , S̃) = E

(
(H1 − H̃)1

H1≥H̃ −
(
x +

∫ T

0
ξsdS̃s − H̃1

H1≥H̃

))2

.

H̃1
H1≥H̃ admits the representation H̃1

H1≥H̃ = x̃1 +
∫ T

0 γ̃sdS̃s , where

x̃1 = E
P̃
H̃1

H1≥H̃ ≤ E
P̃
H̃ ≤ x and x +

∫ T
0 ξsdS̃s − H̃1

H1≥H̃ ≥ 0.

Therefore, the minimization of the term E(x , S̃) is in the framework of
the Problem [S(g , 0)] with g = x − x̃1 ≥ 0 and
G = (H1 − H̃)1

H1≥H̃ ≥ 0. So, in the general case, when the inequality

H1 ≥ H̃ does not hold a.s., we can minimize right-hand side of (12) in
the framework of the Problem [S(g , 0)] and the minimal value of

E
(
E(H|F̃T )− x −

∫ T
0 ξsdM̃s

)2
will be between minimal values of the

left- and right-hand sides of (12).
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To solve Problem [S(g , 0)], denote DT = dP̃T
dPT

the restriction of dP̃
dP on

[0,T ] and note that

E
P̃

(G + v(x)DT )+ ≤ EDTG + |v(x)|ED2
T < +∞.

Now, for any 0 < x < E
P̃
G consider equation

E
P̃

(G + v(x)DT )+ = x . (13)

Similarly to Lemma 2.1, we can prove the following result.

Lemma

Function v = v(x), x ∈ (0,E
P̃
G ) is uniquely determined, continuous and

strongly increasing.
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The solution of the minimization problem [S(g , 0)]
It follows from the completeness of the market that (G + v(x)DT )+

admits the representation

(G + v(x)DT )+ = E
P̃

(G + v(x)DT )++

∫ T

0
ξ̃sdS̃s = x+

∫ T

0
ξ̃sdS̃s (14)

with some ξ̃ ∈ ΞS .

Theorem

Let g ∈ (0,E
P̃
G ) be fixed. Consider v(g) that is the unique solution of

equation (13) with x = g and the representation (14) of the random
variable (G + v(g)DT )+:

(G + v(g)DT )+ = g +

∫ T

0
ξ̃sdS̃s . (15)

Then ξ̃ is the solution of the minimization problem [S(g , 0)].
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Example

Consider the case when we have unobservable semimartingale
St = {Wt +

∫ t
0 a(s)ds, t ≥ 0} and observable semimartingale

S̃t = {W̃t + at, t ≥ 0}. Let {a(s), s ≥ 0} be a deterministic function

from L1[0,T ], a be some positive constant and Wt = ρW̃t +
√

1− ρ2Ŵt ,

where (W̃t , Ŵt) is two-dimensional Wiener process under measure P.
Let filtrations F, F̃ and function H be the same as in Example 2.3. Let
G = H(ST ) be a square-integrable random variable. It follows from

Girsanov’s theorem that {S̃T , Ŵt} is two-dimensional Wiener process
under measure P̃ with Radon-Nikodym derivative

DT =
dP̃

dP

∣∣∣∣
[0,T ]

= exp

{
−aS̃T +

a2T

2

}
.

In order to give the explicit solution of minimization problem [S(g , 0)]
we repeat the same steps as in Example 2.3.
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Calculate G̃ = E
P̃

(G |F̃T ). Denote AT = 1
ρ

∫ T
0 a(s)ds − aT . We have

that

G̃ =

∫
R
H (u)

exp
(
− (u−ρ(S̃T +AT ))2

2T (1−ρ2)

)
√

2πT (1− ρ2)
du =: f

(
S̃T + AT

)
.

Define an auxiliary function h : R→ R+ :

h(x) = f (x + AT ) exp
(
ax − a2T

2

)
, x ∈ R. Equation (13) is rewritten

in the following form

g =

∫ +∞

h(−1)(−v(g))
f (x + AT )

exp
(
− x2

2T

)
√

2πT
dx

+ v(g)ea
2TΦ

(
−h(−1)(−v(g))√

T
− a

)
.
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From the integral representation of
(
G̃ + v(g)DT

)+
get the solution

ξ̃t of minimization problem [S(g , 0)].

ξ̃t = ρ

∫ +∞

h(−1)(−v(g))−S̃t

∫
R
H

(
ρx + y

√
T (1− ρ2) + ρS̃t + ρAT

)

× y exp(−y2/2)√
2πT (1− ρ2)

exp
(
− x2

2(T−t)

)
√

2π(T − t)
dydx

− v(g)a exp

(
−aS̃t +

a2T

2

)
exp

(
a2(T − t)

2

)
× Φ

(
−h(−1)(−v(g))− S̃t√

T − t
− a

)
.
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Example

Consider the same problem as in Example 3.3 with specific function
H(y) = (y − K )+, y ∈ R. We obtain the solution ξ̃t of minimization
problem [(S(g , 0)] :

ξ̃t = ρ

∫ +∞

h−1(−v(g))−S̃t
Φ

(
ρx + ρS̃t + ρAT − K√

T (1− ρ2)

)
exp

(
− x2

2(T−t)

)
√

2π(T − t)
dx

− v(g)a exp

(
−aS̃t −

a2t

2
+ a2T

)
Φ

(
−h(−1)(−v(g))− S̃t√

T − t
− a

)
.

(16)
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Consider a numerical example of minimization problem
[S(g , 0)] in the case of g = 0.05, a = 0.5 and a(s) ≡ 1, s ≥ 0. Let
T ∈ {5, 10}, K ∈ {1, 2, 3} and ρ ∈ {0.2, 0.5, 0.75}.

Solutions of equation (13) with g = 0.05

T=5 K=1 K=2 K=3

ρ=0.2 18.2229 12.6102 7.87255
ρ=0.5 23.1506 16.683 10.8804
ρ=0.75 27.9895 20.9392 14.3655

T=10 K=1 K=2 K=3

ρ=0.2 88.0026 73.6978 60.2843
ρ=0.5 102.533 86.995 72.2639
ρ=0.75 116.037 99.5158 83.7536

Minimum values in problem [S(g , 0)]

T=5 K=1 K=2 K=3

ρ=0.2 22.7261 14.8596 8.99844
ρ=0.5 22.8506 14.8849 8.91728
ρ=0.75 23.0573 15.0116 8.93836

T=10 K=1 K=2 K=3

ρ=0.2 153.068 123.704 97.5674
ρ=0.5 160.729 130.323 103.121
ρ=0.75 168.314 137.029 108.938

Values of EP̃ G̃

T=5 K=1 K=2 K=3 T=10 K=1 K=2 K=3

ρ=0.2 3.55638 2.64805 1.83557 ρ=0.2 8.00578 7.01487 6.0352
ρ=0.5 2.86796 2.02712 1.31678 ρ=0.5 6.52311 5.55252 4.6102
ρ=0.75 2.3296 1.56514 0.955956 ρ=0.75 5.31368 4.38103 3.49984
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We simulate the trajectories of the Wiener process W̃t on time interval
[0, 10], and so we obtain the trajectories of S̃t . We take one of the
obtained sample paths of S̃t and presented it at the bottom of Figure 2.
By formula (16), for this trajectory we construct the sample paths of ξ̃t ,
with K = 1 and ρ = 0.2, 0.5, 0.75. At the top of Figure 2 we present these
sample paths, grouped by T .

Figure: Sample paths of solutions of problem [S(g , 0)] with g = 0.05
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A. Černỳ.
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