Are American options European after all?

Jan Kallsen

Christian-Albrechts-Universität zu Kiel based on joint work with Sören Christensen (Göteborg) and Matthias Lenga (Kiel)

Lausanne, September 10, 2015

Outline

- Are American options European after all?
- 2 Cheapest dominating European option
- 3 Embedded American options
- 4 A new result
- Conclusion

Outline

- Are American options European after all?
- Cheapest dominating European option
- 3 Embedded American options
- 4 A new result
- Conclusion

... which is still somewhat open

- Setup:
 - Black-Scholes model with positive interest rate
 - $V_{Am,g}(\vartheta,x)$: fair value of an American option with payoff function g(x), time to maturity ϑ , stock price x
 - $v_{Eu,f}(\vartheta,x)$: fair value of a European option with payoff function f(x), time to maturity ϑ , stock price x
- Consider the American put $g(x) := (K x)^+$. Question: Is there a European payoff f(x) such that
 - $\triangleright v_{Am,g} = v_{Eu,f}$ in the continuation region of g and
 - ▶ $g \le v_{Eu,f}$ in the stopping region (and hence everywhere)?

(Or at least for some g? Or even for all g?)

... which is still somewhat open

Setup:

- Black-Scholes model with positive interest rate
- $v_{Am,g}(\vartheta,x)$: fair value of an American option with payoff function g(x), time to maturity ϑ , stock price x
- $v_{Eu,f}(\vartheta,x)$: fair value of a European option with payoff function f(x), time to maturity ϑ , stock price x
- Consider the American put $g(x) := (K x)^+$. Question: Is there a European payoff f(x) such that
 - $\triangleright v_{Am,g} = v_{Eu,f}$ in the continuation region of g and
 - ▶ $g \le v_{Eu,f}$ in the stopping region (and hence everywhere)?

(Or at least for some g? Or even for all g?)

... which is still somewhat open

- Setup:
 - Black-Scholes model with positive interest rate
 - $v_{Am,g}(\vartheta, x)$: fair value of an American option with payoff function g(x), time to maturity ϑ , stock price x
 - $v_{Eu,f}(\vartheta,x)$: fair value of a European option with payoff function f(x), time to maturity ϑ , stock price x
- Consider the American put $g(x) := (K x)^+$. Question: Is there a European payoff f(x) such that
 - $\triangleright v_{Am,g} = v_{Eu,f}$ in the continuation region of g and
 - $g \le v_{Eu,f}$ in the stopping region (and hence everywhere)?

(Or at least for some g? Or even for all g?)

... which is still somewhat open

- Setup:
 - Black-Scholes model with positive interest rate
 - $v_{Am,g}(\vartheta, x)$: fair value of an American option with payoff function g(x), time to maturity ϑ , stock price x
 - $v_{Eu,f}(\vartheta,x)$: fair value of a European option with payoff function f(x), time to maturity ϑ , stock price x
- Consider the American put $g(x) := (K x)^+$. Question: Is there a European payoff f(x) such that
 - \triangleright $v_{Am,g} = v_{Eu,f}$ in the continuation region of g and
 - $g \le v_{Eu,f}$ in the stopping region (and hence everywhere)?

(Or at least for some g? Or even for all g?)

Recall valuation of derivatives

in order to fix notation

- liquid assets: bond $B(t) = \exp(rt)$, stock $S(t) = S(0) \exp(\mu t + \sigma W(t))$
- European option: payoff f(S(T)) at time T fair initial value:

$$v_{\mathsf{Eu},f}(T,S(0)) = E_Q(e^{-rT}f(S(T)))$$

for the unique EMM $Q \sim P$

• American option: payoff g(S(t)) if exercised at $t \leq T$ fair initial value:

$$\pi = \mathit{v}_{\mathsf{Am},g}(\mathit{T}, \mathit{S}(0)) = \sup_{ au \ \mathsf{stopping time}} \mathit{E}_{\mathit{Q}}(e^{-r au}g(\mathit{S}(au))$$

• American put: $g(x) = (K - x)^+$

Outline

- Are American options European after all?
- 2 Cheapest dominating European option
- 3 Embedded American options
- 4 A new result
- 5 Conclusion

Christensen (Math. Fin. 11)

- Black-Scholes model, American payoff g(x), T, S(0) given
- Solve

$$\min_{f} v_{\mathsf{Eu},f}(T,\mathcal{S}(0))$$

- CDEO: minimizer f if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly tight
- implications of equality $v_{Eu,f}(T,S(0)) = v_{Am,g}(T,S(0))$ (if true):
 - new algorithm for American options
 - static European hedge for American options
 - interpretation of early exercise premium as payoff
 - properties of early exercise curve
 - alternative supermartingale decomposition

Christensen (Math. Fin. 11)

- Black-Scholes model, American payoff g(x), T, S(0) given
- Solve

$$\min_{f} v_{\mathsf{Eu},f}(T,S(0))$$

- CDEO: minimizer f if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly tight
- implications of equality $v_{Eu,f}(T,S(0)) = v_{Am,g}(T,S(0))$ (if true):
 - new algorithm for American options
 - static European hedge for American options
 - interpretation of early exercise premium as payoff
 - properties of early exercise curve
 - alternative supermartingale decomposition

Christensen (Math. Fin. 11)

- Black-Scholes model, American payoff g(x), T, S(0) given
- Solve

$$\min_{f} v_{\mathsf{Eu},f}(T,\mathcal{S}(0))$$

- CDEO: minimizer f if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly tight
- implications of equality $v_{Eu,f}(T, S(0)) = v_{Am,g}(T, S(0))$ (if true):
 - new algorithm for American options
 - static European hedge for American options
 - interpretation of early exercise premium as payoff
 - properties of early exercise curve
 - alternative supermartingale decomposition

Christensen (Math. Fin. 11)

- Black-Scholes model, American payoff g(x), T, S(0) given
- Solve

$$\min_{f} v_{\mathsf{Eu},f}(T,\mathcal{S}(0))$$

- CDEO: minimizer f if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly tight
- implications of equality $v_{Eu,f}(T,S(0)) = v_{Am,g}(T,S(0))$ (if true):
 - new algorithm for American options
 - static European hedge for American options
 - interpretation of early exercise premium as payoff
 - properties of early exercise curve
 - alternative supermartingale decomposition

Christensen (Math. Fin. 11)

- Black-Scholes model, American payoff g(x), T, S(0) given
- Solve

$$\min_{f} v_{\mathsf{Eu},f}(T,\mathcal{S}(0))$$

- CDEO: minimizer f if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly tight
- implications of equality $v_{Eu,f}(T,S(0)) = v_{Am,g}(T,S(0))$ (if true):
 - new algorithm for American options
 - static European hedge for American options
 - interpretation of early exercise premium as payoff
 - properties of early exercise curve
 - alternative supermartingale decomposition

Christensen (Math. Fin. 11)

- Black-Scholes model, American payoff g(x), T, S(0) given
- Solve

$$\min_{f} v_{\mathsf{Eu},f}(T,\mathcal{S}(0))$$

- CDEO: minimizer f if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly tight
- implications of equality $v_{Eu,f}(T,S(0)) = v_{Am,g}(T,S(0))$ (if true):
 - new algorithm for American options
 - static European hedge for American options
 - interpretation of early exercise premium as payoff
 - properties of early exercise curve
 - alternative supermartingale decomposition

Christensen (Math. Fin. 11)

- Black-Scholes model, American payoff g(x), T, S(0) given
- Solve

$$\min_{f} v_{\mathsf{Eu},f}(T,\mathcal{S}(0))$$

- CDEO: minimizer f if it exists
- semi-infinite linear programming
- upper bound for $\pi = v_{Am,g}(T, S(0))$, but surprisingly tight
- implications of equality $v_{Eu,f}(T,S(0)) = v_{Am,g}(T,S(0))$ (if true):
 - new algorithm for American options
 - static European hedge for American options
 - interpretation of early exercise premium as payoff
 - properties of early exercise curve
 - alternative supermartingale decomposition

Computing American option prices by minimization

over sets of martingales

Davis & Karatzas (94), Rogers (02), Haugh & Logan (04):

$$\pi = v_{\mathsf{Am},g}(T,\mathcal{S}(0)) = \inf_{\mathsf{M \ mart., \ } \mathsf{M}(0) = 0} \mathsf{E}_{\mathsf{Q}}\bigg(\sup_{t \in [0,T]} \big(e^{-rt}g(\mathcal{S}(t)) - \mathsf{M}(t)\big)\bigg)$$

"≥" follows from the Doob-Meyer decomposition

$$V_{\mathsf{Am},g}(T-t,\mathcal{S}(t))e^{-rt}=\pi+M^{\star}(t)-A^{\star}(t)$$

with $M^*(0) = 0 = A^*(0)$, M^* martingale, $A^* \ge 0$, A^* increasing.

• Christensen (11):

$$\pi = V_{\mathsf{Am},g}(T,S(0)) \leq \inf_{V_{\mathsf{Eu},f} \text{ dominating } g} V_{\mathsf{Eu},f}(T,S(0))$$

">" (if true) would rely on decomposition

$$V_{\mathsf{Am},g}(T-t,S(t))e^{-rt}=\pi+ ilde{M}(t)- ilde{A}(t)$$

with $\tilde{M}(0) = 0 = \tilde{A}(0)$, \tilde{M} martingale, $\tilde{A} \geq 0$, \tilde{M} Markov-type, i.e. $\tilde{M}(t) = m(T - t, S(t))$ for some m.

Computing American option prices by minimization

over sets of martingales

Davis & Karatzas (94), Rogers (02), Haugh & Logan (04):

$$\pi = v_{\mathsf{Am},g}(T,\mathcal{S}(0)) = \inf_{\mathsf{M \ mart., \ } \mathsf{M}(0) = 0} \mathsf{E}_{\mathsf{Q}}\bigg(\sup_{t \in [0,T]} \big(e^{-rt}g(\mathcal{S}(t)) - \mathsf{M}(t)\big)\bigg)$$

"≥" follows from the Doob-Meyer decomposition

$$V_{\mathsf{Am},g}(T-t,\mathcal{S}(t))e^{-rt}=\pi+M^{\star}(t)-A^{\star}(t)$$

with $M^*(0) = 0 = A^*(0)$, M^* martingale, $A^* \ge 0$, A^* increasing.

Christensen (11):

$$\pi = \mathit{v}_{\mathsf{Am},g}(\mathit{T},\mathcal{S}(0)) \leq \inf_{\mathit{v}_{\mathsf{Eu},f} \text{ dominating } g} \mathit{v}_{\mathsf{Eu},f}(\mathit{T},\mathcal{S}(0))$$

"≥" (if true) would rely on decomposition

$$V_{\mathsf{Am},g}(T-t,\mathcal{S}(t))e^{-rt}=\pi+ ilde{M}(t)- ilde{A}(t)$$

with $\tilde{M}(0) = 0 = \tilde{A}(0)$, \tilde{M} martingale, $\tilde{A} \geq 0$, \tilde{M} Markov-type, i.e. $\tilde{M}(t) = m(T - t, S(t))$ for some m.

Outline

- Are American options European after all?
- Cheapest dominating European option
- 3 Embedded American options
- 4 A new result
- Conclusion

Embedded American options

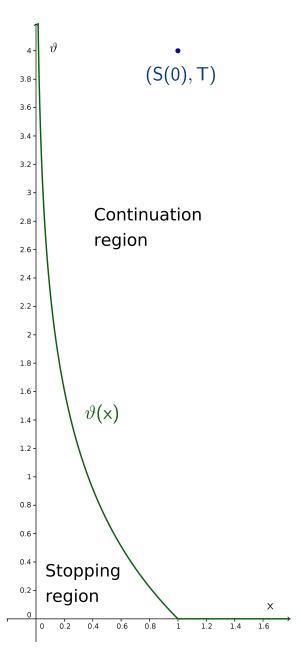
Jourdain & Martini (Ann. IHP Anal. nonlin. 01, AAP 02)

- Black-Scholes model,
 given European payoff f(x)
- embedded American payoff

$$g(x) = \inf_{\vartheta} v_{\mathsf{Eu},f}(\vartheta, x) \quad \bigg(= v_{\mathsf{Eu},f}(\vartheta(x), x) \bigg)$$

$$(\vartheta \in [0,\infty) \text{ or } \vartheta \in [0,T])$$

- If curve $x \mapsto \vartheta(x)$ is nice:
 - $ightharpoonup V_{Am,g} \leq V_{Eu,f}$
 - \triangleright $V_{Am,g} = V_{Eu,f}$ in continuation region of g,
 - The embedded early exercise curve $x \mapsto \vartheta(x)$ is the early exercise curve of g.



Embedded American options

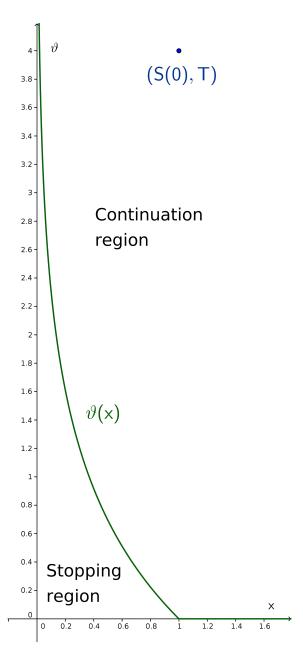
Jourdain & Martini (Ann. IHP Anal. nonlin. 01, AAP 02)

- Black-Scholes model,
 given European payoff f(x)
- embedded American payoff

$$g(x) = \inf_{\vartheta} v_{\mathsf{Eu},f}(\vartheta, x) \quad \bigg(= v_{\mathsf{Eu},f}(\vartheta(x), x) \bigg)$$

$$(\vartheta \in [0,\infty) \text{ or } \vartheta \in [0,T])$$

- If curve $x \mapsto \vartheta(x)$ is nice:
 - $ightharpoonup V_{Am,g} \leq V_{Eu,f}$
 - \triangleright $V_{Am,g} = V_{Eu,f}$ in continuation region of g,
 - The embedded early exercise curve $x \mapsto \vartheta(x)$ is the early exercise curve of g.



Embedded American options

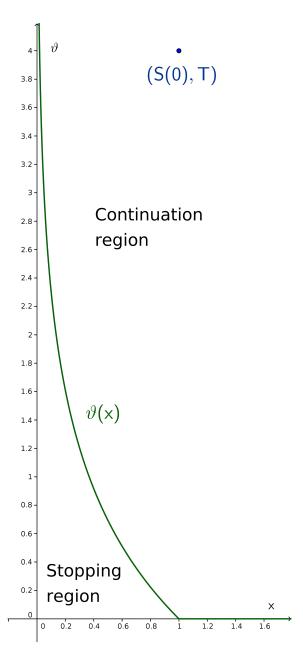
Jourdain & Martini (Ann. IHP Anal. nonlin. 01, AAP 02)

- Black-Scholes model,
 given European payoff f(x)
- embedded American payoff

$$g(x) = \inf_{\vartheta} v_{\mathsf{Eu},f}(\vartheta, x) \quad \bigg(= v_{\mathsf{Eu},f}(\vartheta(x), x) \bigg)$$

$$(\vartheta \in [0,\infty) \text{ or } \vartheta \in [0,T])$$

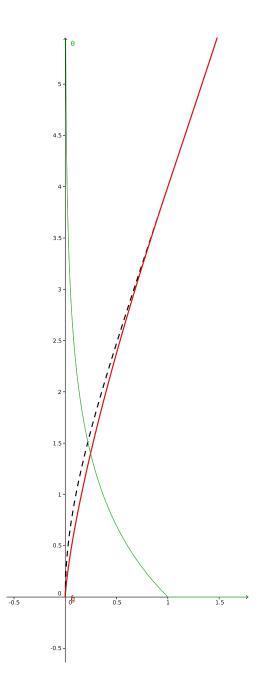
- If curve $x \mapsto \vartheta(x)$ is nice:
 - $ightharpoonup V_{Am,g} \leq V_{Eu,f}$
 - $ightharpoonup v_{Am,q} = v_{Eu,f}$ in continuation region of g,
 - ► The embedded early exercise curve $x \mapsto \vartheta(x)$ is the early exercise curve of g.



of embedded American payoffs

- B(t) = 1, $S(t) = \exp(\sqrt{2}W(t) - t)$
- European payoff $f(x) = 3x^{1/2} + x^{3/2}$
- American payoff $g(x) = 4x^{3/4} 1_{\{x < 1\}} + f(x) 1_{\{x \ge 1\}}$
- early exercise curve

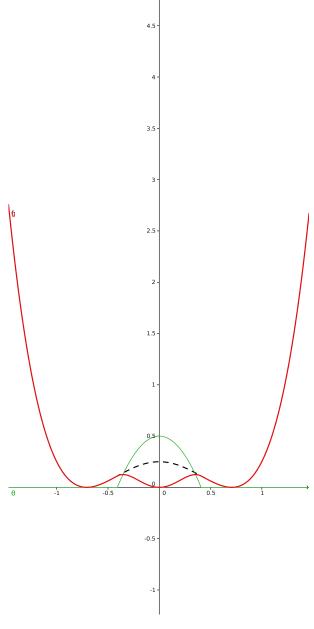
$$\vartheta(x) = -\log(x) \mathbf{1}_{\{x < 1\}}$$



of embedded American payoffs ct'd

- B(t) = 1, S(t) = W(t)
- European payoff $f(x) = (x^2 \frac{1}{2})^2$
- American payoff $g(x) = 2x^2(1-4x^2)1_{\{x^2<1/6\}} + f(x)1_{\{x^2\geq1/6\}}$
- early exercise curve

$$\vartheta(x) = (\frac{1}{2} - 3x^2) \mathbf{1}_{\{x^2 < 1/6\}}$$



of embedded American payoffs ct'd

American butterfly in the Bachelier model:

•
$$B(t) = 1$$
, $S(t) = W(t)$

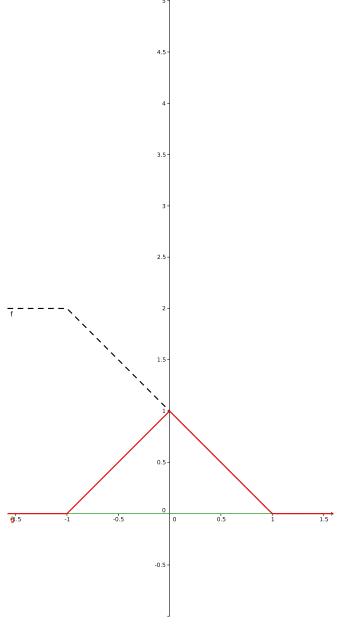
European payoff

$$f(x) = 21_{\{x \le -1\}} + (1-x)1_{\{-1 < x < 1\}}$$

American payoff

$$g(x) = (1+x)1_{\{-1 < x < 0\}} + (1-x)1_{\{0 \le x < 1\}}$$

• early exercise curve $\vartheta(x) = \infty 1_{\{x=0\}}$



of embedded American payoffs ct'd

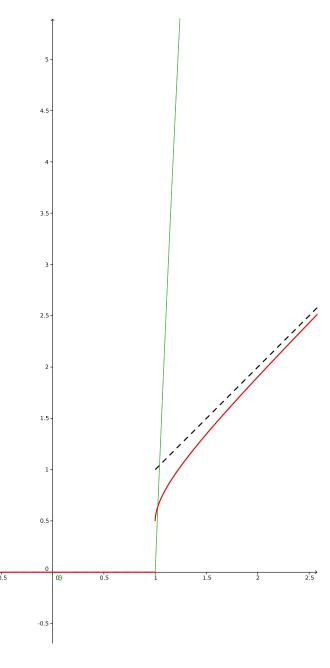
Jourdain & Martini (01):

- $B(t) = \exp(rt)$, $S(t) = S(0) \exp((r - \frac{\sigma^2}{2})t + \sigma W(t))$
- European payoff $f(x) = x 1_{\{x > K\}}$
- American payoff

$$g(x) = f(x)\Phi\left(\frac{2}{\sigma}\sqrt{(r+\frac{\sigma^2}{2})\log\frac{x}{K}}\right)$$

early exercise curve

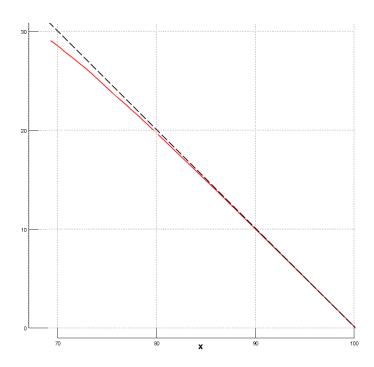
$$\vartheta(x) = \log(x)/(r + \frac{\sigma^2}{2})1_{\{x > K\}}$$



of embedded American payoffs ct'd

European put in the Black-Scholes model:

- $B(t) = \exp(rt)$, $S(t) = S(0) \exp((r - \frac{\sigma^2}{2})t + \sigma W(t))$
- European payoff $f(x) = (K x)^+$
- yields an embedded American option, but only up to some maximal ϑ



Outline

- Are American options European after all?
- Cheapest dominating European option
- 3 Embedded American options
- 4 A new result
- 5 Conclusion

Some bad news first ...

- ... the second one making me nervous at some point
 - Strehle (14): no representation for the American put in the Cox-Ross-Rubinstein model
 - Jourdain & Martini (02): no generating European payoff exists for American put!?

First, in Section 2 we design a family of European payoffs which verify very crude necessary conditions for $\widehat{\varphi}(x) = (K - x)^+$ to have any chance to hold. This is the main step, it relies on the parameterization of φ by a measure h related to $\mathcal{A}\varphi$. Then we focus on the Continuation region. Among our family we find necessary and sufficient conditions which grant that the equation $\inf_{t\geq 0} v_{\varphi}(t,x) = v_{\varphi}(\widehat{t}(x),x)$ defines a curve which displays the same qualitative features as the free boundary of the American Put (Section 3).

Unfortunately, it is easy to see that for any function among our family $\widehat{\varphi}(x) = (K - K^*)(x/K^*)^{-\alpha} \mathbb{1}_{\{x \geq K^*\}}$ below K^* , which is not satisfactory. The third step is to prove that the price of the American option with modified payoff $(K - x)^+ \mathbb{1}_{\{x \leq K^*\}} + \widehat{\varphi}(x) \mathbb{1}_{\{x > K^*\}}$, denoted by $\widehat{\varphi}_h$ to emphasize the dependence on the parameter h, and matching $(K - x)^+$ both for $x \geq K$ and for $x \leq K^*$ is still embedded in $v_{\varphi}(t, x)$: $v_{\widehat{\varphi}_h}^{am}(t, x) = (K - x)^+ \mathbb{1}_{\{x \leq K^*\}} + v_{\varphi}(t \vee \widehat{t}(x), x) \mathbb{1}_{\{x > K^*\}}$. This is done in Section 4.

Since we show that $\widehat{\varphi}_h$ cannot be equal to the Put payoff everywhere [indeed $\widehat{\varphi}_h''(K^{*+}) > 0$], we believe that at this stage there is little to get from further calculations. The last stage is to select among our family the point h^* so that,

A sufficient criterion

"for the engineer"

- American payoff: $g(x) = \varphi(x) 1_{\{x \leq K\}}$,
- φ holomorphic, bounded, positive on (0, K), and $\varphi(K) = 0$

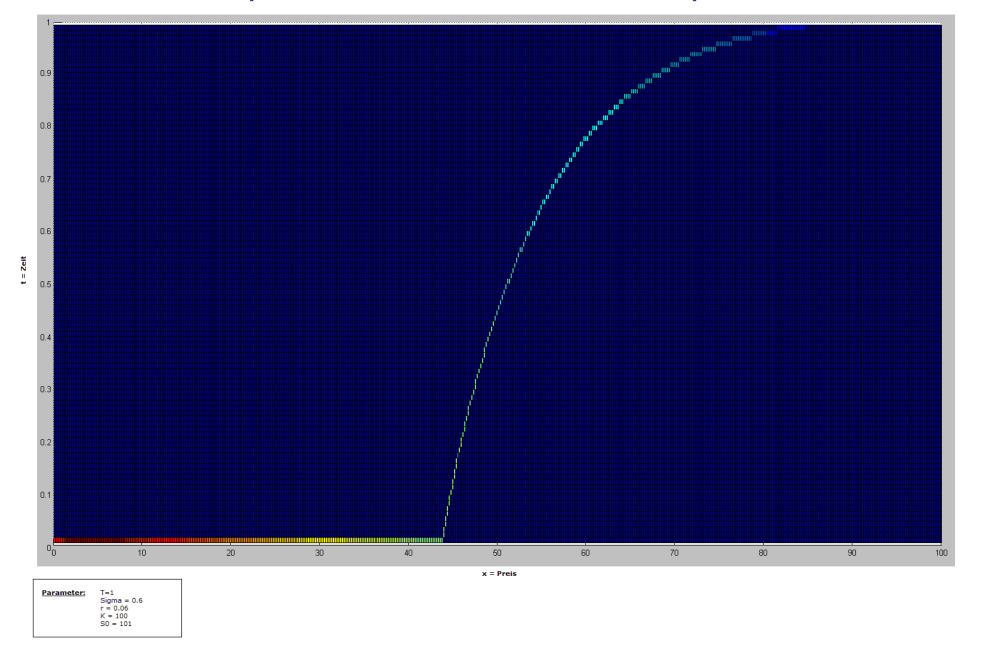
Theorem (Christensen, K., Lenga 15)

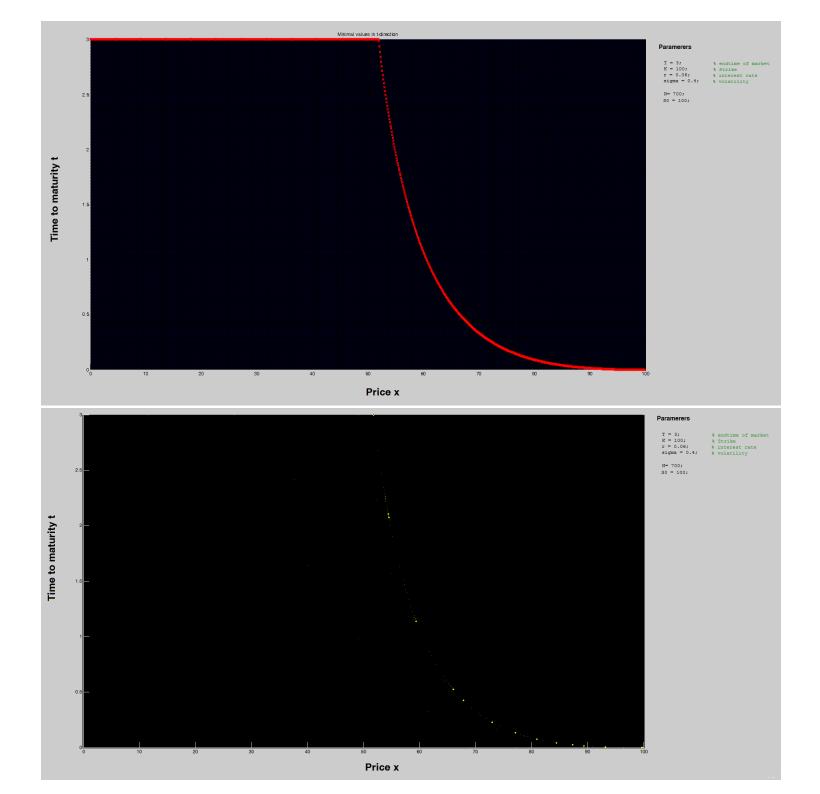
The CDEO f exists (as a generalized function). If

- $v_{Eu,f}(T+\epsilon,x) < \infty$ for some $\epsilon > 0, x < K$,
- $\lim_{\vartheta \to 0} v_{Eu,f}(\vartheta, x) > \varphi(x)$ for any x < K,
- for any $x \leq K$, function $\vartheta \mapsto v_{Eu,f}(\vartheta,x)$ has a unique minimum in some $\vartheta(x)$ (the embedded early exercise curve of the CDEO f),
- for some x₀ we have
 - $\vartheta(x) = T \text{ for } x \leq x_0$,
 - ▶ $\vartheta(x) \in (0, T)$ for $x \in (x_0, K)$,

then g is the embedded American option of its CDEO f.

Numerical inspection for the American put





- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on $[0, T] \times \mathbb{R}_{++}$ (one Lagrange multiplier for each constraint $v_{\mathsf{Eu},f}(\vartheta,x) \geq g(x)$)
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier $\neq 0$ only if constraint is binding. Here: support of dual optimizer $\subset \{(\vartheta, x) : v_{\mathsf{Eu},f}(\vartheta, x) = g(x)\}$
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff g is embedded option of its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on $[0, T] \times \mathbb{R}_{++}$ (one Lagrange multiplier for each constraint $v_{\mathsf{Eu},f}(\vartheta,x) \geq g(x)$)
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier $\neq 0$ only if constraint is binding. Here: support of dual optimizer $\subset \{(\vartheta, x) : v_{\mathsf{Eu},f}(\vartheta, x) = g(x)\}$
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff g is embedded option of its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on $[0, T] \times \mathbb{R}_{++}$ (one Lagrange multiplier for each constraint $v_{Eu,f}(\vartheta, x) \geq g(x)$)
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier $\neq 0$ only if constraint is binding. Here: support of dual optimizer $\subset \{(\vartheta, x) : v_{\mathsf{Eu},f}(\vartheta, x) = g(x)\}$
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff g is embedded option of its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on $[0, T] \times \mathbb{R}_{++}$ (one Lagrange multiplier for each constraint $v_{Eu,f}(\vartheta, x) \geq g(x)$)
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier $\neq 0$ only if constraint is binding. Here: support of dual optimizer $\subset \{(\vartheta, x) : v_{\mathsf{Eu},f}(\vartheta, x) = g(x)\}$
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff g is embedded option of its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on $[0, T] \times \mathbb{R}_{++}$ (one Lagrange multiplier for each constraint $v_{Eu,f}(\vartheta, x) \geq g(x)$)
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier $\neq 0$ only if constraint is binding. Here: support of dual optimizer $\subset \{(\vartheta, x) : v_{\mathsf{Eu},f}(\vartheta, x) = g(x)\}$
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff g is embedded option of its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on $[0, T] \times \mathbb{R}_{++}$ (one Lagrange multiplier for each constraint $v_{\mathsf{Eu},f}(\vartheta,x) \geq g(x)$)
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier $\neq 0$ only if constraint is binding. Here: support of dual optimizer $\subset \{(\vartheta, x) : v_{\mathsf{Eu},f}(\vartheta, x) = g(x)\}$
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff g is embedded option of its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on $[0, T] \times \mathbb{R}_{++}$ (one Lagrange multiplier for each constraint $v_{\mathsf{Eu},f}(\vartheta,x) \geq g(x)$)
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier $\neq 0$ only if constraint is binding. Here: support of dual optimizer $\subset \{(\vartheta, x) : v_{\mathsf{Eu},f}(\vartheta, x) = g(x)\}$
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff g is embedded option of its CDEO.

- Key ingedients:
 - convex duality in locally convex spaces
 - identity of analytic functions
- Primal problem: find CDEO (in space of generalized functions/ distributions/measures in order to warrant existence)
- Domain of dual problem: measures on $[0, T] \times \mathbb{R}_{++}$ (one Lagrange multiplier for each constraint $v_{\mathsf{Eu},f}(\vartheta,x) \geq g(x)$)
- Establish weak duality, existence of primal and dual optimizer, strong duality, complementary slackness condition
- Recall: Lagrange multiplier $\neq 0$ only if constraint is binding. Here: support of dual optimizer $\subset \{(\vartheta, x) : v_{\mathsf{Eu},f}(\vartheta, x) = g(x)\}$
- Slackness condition: gBm started on support of dual optimizer has lognormal law at T.
- Using assumptions and identity of analytic functions: support of dual optimizer must be nice connected curve.
- Consequence: Am. payoff g is embedded option of its CDEO.

Outline

- Are American options European after all?
- Cheapest dominating European option
- 3 Embedded American options
- 4 A new result
- Conclusion

Where are we now?

- Interesting relation between American and European options
- Several important implications of equality
- Verification theorem based on qualitative properties of the CDEO
- Not yet clear:
 - Rigorous proof for the American put?
 - How generally does equality hold?