Option pricing in a quadratic variance swap model

Elise Gourier

School of Economics and Finance Queen Mary University of London

Joint work with Damir Filipović and Loriano Mancini

Swiss Finance Institute and EPFL

7th General Advanced Mathematical Methods in Finance and Swissquote Conference 2015

September 9, 2015

Motivation:

- More and more instruments traded on variance
- Affine models fail to reproduce large increases in variance
- Quadratic models are an appealing alternative to jumps in variance
- Index options useful in portfolio allocation
- But not straightforward to price.

In this talk:

- Provide a short introduction to quadratic variance swap models
- Oerive an option pricing method.

Realized variance

- Filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{Q})$.
- The Q-dynamics of the index are specified as

$$\frac{dS_t}{S_{t-}} = r_t dt + \sigma_t dB_t + \int_{\mathbb{R}} \xi \left(\chi(dt, d\xi) - \nu_t^{\mathbb{Q}}(d\xi) dt \right),$$

• Let $t = t_0 < t_1 < \cdots < t_n = T$. The annualized realized variance is given as:

$$\begin{aligned} \mathrm{RV}(t,T) &= & \frac{252}{n} \sum_{i=1}^{n} \left(\log \frac{S_{t_i}}{S_{t_{i-1}}} \right)^2 \\ &\longrightarrow & \frac{252}{n} \mathrm{QV}(t,T) \\ &= & \frac{252}{n} \int_{t}^{T} \sigma_s^2 \, ds + \int_{t}^{T} \int_{\mathbb{R}} \left(\log(1+\xi) \right)^2 \chi(ds,d\xi). \end{aligned}$$

Variance swaps

• A variance swap initiated at t with maturity T, or term T-t, pays the difference between the annualized realized variance $\mathrm{RV}(t,T)$ and the variance swap rate $\mathrm{VS}(t,T)$ fixed at t. No arbitrage implies that

$$VS(t,T) = \frac{1}{T-t}\mathbb{E}^{\mathbb{Q}}\left[QV(t,T) \mid \mathcal{F}_t\right] = \frac{1}{T-t}\mathbb{E}^{\mathbb{Q}}\left[\int_t^T v_s^{\mathbb{Q}} ds \mid \mathcal{F}_t\right],$$

where the \mathbb{Q} -spot variance process is

$$v_t^{\mathbb{Q}} = \sigma_t^2 + \int_{\mathbb{R}} (\log(1+\xi))^2 \, \nu_t^{\mathbb{Q}}(d\xi).$$

Quadratic variance swap models

• X is a diffusion process in \mathbb{R}^m . Under \mathbb{Q} , it satisfies:

$$dX_t = \mu(X_t)dt + \Sigma(X_t)dW_t.$$

 X is quadratic if its drift and diffusion functions are linear and quadratic in the state variable:

$$\mu(x) = b + \beta x,$$

$$\Sigma(x)\Sigma(x)^{T} = a + \sum_{k=1}^{m} \alpha^{k} x_{k} + \sum_{k,l=1}^{m} A^{kl} x_{k} x_{l}.$$

 A quadratic variance swap model is obtained under the assumption that the Q-spot variance is a quadratic function of the latent state variable X_t:

$$v_t^{\mathbb{Q}} = g(X_t) = \phi + \psi^{\top} X_t + X_t^{\top} \pi X_t$$

for $\phi \in \mathbb{R}$, $\psi \in \mathbb{R}^m$, and $\pi \in \mathbb{S}^m$.

Quadratic variance swap model

Theorem: Quadratic term structure of variance

The quadratic variance swap model admits a quadratic term structure:

$$(T-t)VS(t,T) = \Phi(T-t) + \Psi(T-t)^T X_t + X_t^T \Pi(T-t)X_t = G(T-t,X_t)$$

where Φ , Ψ and Π satisfy the linear system of ODEs

$$\frac{d\Phi(\tau)}{d\tau} = \phi + b^T \Psi(\tau) + \operatorname{tr}(a\Pi(\tau)) \qquad \qquad \Phi(0) = 0$$

$$\frac{d\Psi(\tau)}{d\tau} = \psi + \beta^{T}\Psi(\tau) + 2\Pi(\tau)b + \alpha \cdot \Pi(\tau) \quad \Psi(0) = 0$$

$$\frac{d\Pi(\tau)}{d\tau} = \pi + \beta^T \Pi(\tau) + \Pi(\tau)\beta + A \bullet \Pi(\tau) \qquad \Pi(0) = 0$$

where $(\alpha \cdot \Pi)_k = \operatorname{tr}(\alpha^k \Pi)$ and $(A \bullet \Pi)_{kl} = \operatorname{tr}(A^{kl} \Pi)$.

A Bivariate Model Specification

• Assume $X_t = (X_{1t}, X_{2t})^T$:

$$dX_{1t} = (b_1 + \beta_{11}X_{1t} + \beta_{12}X_{2t})dt + \sqrt{a_1 + \alpha_1X_{1t} + A_1X_{1t}^2}dW_{1t}^*$$

$$dX_{2t} = (b_2 + \beta_{22}X_{2t})dt + \sqrt{a_2 + \alpha_2X_{2t} + A_2X_{2t}^2}dW_{2t}^*$$

• Spot variance quadratic in X_{1t} :

$$v_t = \phi_0 + \psi_0 X_{1t} + X_{1t} \pi_0 X_{1t}.$$

• Interpretation: variance mean-reverts to a stochastic level

$$\frac{b_1 + \beta_{12} X_{2t}}{|\beta_{11}|}.$$

• Explicit representation of forward variance f(t, T).

Estimation results

Modelling assumptions

• The price process jumps by a deterministic size $\xi > -1$. Jumps are driven by a Poisson process:

$$\frac{dS_t}{S_{t-}} = r dt + \sigma(X_t) \mathbf{R}(X_t)^{\top} dW_t + \xi (dN_t - \nu^{\mathbb{Q}}(X_t) dt).$$

The \mathbb{Q} -spot variance is given by:

$$v_t^{\mathbb{Q}} = g(X_t) = \sigma(X_t)^2 + (\log(1+\xi))^2 \nu^{\mathbb{Q}}(X_t).$$

$$\sigma(x)^2 = \frac{g(x)}{1 + (\log(1+\xi))^2 \nu^Q} = K_{\sigma^2} g(x).$$

Option pricing

Main steps:

- Derive the moments of the log price process $L_t = \log S_t$.
- ullet Edgeworth expansion of the characteristic function of $L_{\mathcal{T}}|\mathcal{F}_{t_0}$:

$$\mathbb{E}_{t_0}^{\mathbb{Q}}\left[e^{zL_T}\right] = \exp\left(\sum_{n=1}^{\infty} C_n \frac{z^n}{n!}\right) = \exp\left(C_1 z + C_2 \frac{z^2}{2}\right) \left(1 + C_3 \frac{z^3}{3!} + O(z^4)\right).$$

 Option price recovered by Fourier inversion (Chen and Scott (1992), Heston (1993), Bates (1996), Scott (1997), Bakshi and Chen (1997), Carr and Madan (1999), Duffie, Pan and Singleton (2000) etc.).

Decomposition of $L_t = \log S_t$

For $t \geq t_0 \geq 0$, $L_t = Y_t + X_{3t}$ where

$$Y_t = \int_{t_0}^t \left((\log(1+\xi) - \xi) \nu^{\mathbb{Q}}(X_s) - \frac{1}{2} \sigma(X_s)^2 \right) ds$$
$$= K_Y \int_{t_0}^t g(X_s) ds,$$

where

$$K_Y = -rac{\left(\xi - \log(1+\xi)\right)
u^Q + 1/2}{1 + (\log(1+\xi))^2
u^Q} < 0.$$

$$dX_{3t} = r dt + \sigma(X_t) \mathbf{R}(X_t)^{\top} dW_t + \log(1+\xi) (dN_t - \nu^{\mathbb{Q}}(X_t) dt), \quad X_{3t_0} = \log S_{t_0}.$$

Analysis of X_t

• Define the jump-diffusion process $X_t = (X_{1t}, X_{2t}, X_{3t})^T$. Its diffusion matrix A(x) is

$$A(x) = \begin{pmatrix} 1 + A_1 x_1^2 & 0 & \mathbf{R_1}(\mathbf{x}) \sigma(\mathbf{x}) \sqrt{1 + \mathbf{A_1} x_1^2} \\ 0 & x_2 + A_2 x_2^2 & 0 \\ \mathbf{R_1}(\mathbf{x}) \sigma(\mathbf{x}) \sqrt{1 + \mathbf{A_1} x_1^2} & 0 & \sigma(\mathbf{x})^2 \end{pmatrix}.$$

• We want q_0 , q_1 and q_2 such that

$$R_1(x)\sigma(x)\sqrt{1+A_1x_1^2}=R_1(x_1)\sqrt{K_{\sigma^2}g(x_1)}\sqrt{1+A_1x_1^2}=q_0+q_1x_1+q_2x_1^2.$$

• To capture the leverage effect, $R_1(x_1) \approx -\mathrm{sign}\left(\psi + 2\pi X_{1t}\right) \times 0.7$. Hence we choose q_0 , q_1 and q_2 to match the highest order terms of:

$$(q_0 + q_1x_1 + q_2x_1^2)^2 \approx 0.7^2 K_{\sigma^2} g(x_1)(1 + A_1x_1^2).$$

 With this specification, X_t is a quadratic jump-diffusion process and hence is polynomial preserving.

Moments of X_T

Literature on polynomial preserving processes include Wong (1964),
 Mazet (1997), Zhou (2003), Forman and Sørensen (2008), Cuchiero (2011), Cuchiero, Keller-Ressel and Teichmann (2012), Filipović,
 Mayerhofer and Schneider (2013), Filipović, Larsson and Trolle (2014),
 Filipović and Larsson (2015) etc.

Conditional moments of X_T

Let $D=\frac{(3+N)(2+N)(1+N)}{6}$ denote the dimension of the space of polynomials in X_T of degree N or less. The D-row vector of the mixed \mathcal{F}_{t_0} -conditional moments of X_T of order N or less with $T\geq t_0$ is given by

$$\begin{split} &\left(1, \, \mathbb{E}^{\mathbb{Q}}\left[X_{1T} | \mathcal{F}_{t_0}\right], \dots, \mathbb{E}^{\mathbb{Q}}\left[X_{2T} X_{3T}^{N-1} | \mathcal{F}_{t_0}\right], \, \mathbb{E}^{\mathbb{Q}}\left[X_{3T}^{N} | \mathcal{F}_{t_0}\right]\right) \\ &= \left(1, \, X_{1t_0}, \dots, X_{2t_0} X_{3t_0}^{N-1}, \, X_{3t_0}^{N}\right) e^{\widetilde{B}(T-t_0)}, \end{split}$$

where \widetilde{B} is an upper block triangular $D \times D$ matrix and $e^{\widetilde{B}(T-t_0)}$ denotes the matrix exponential of $\widetilde{B}(T-t_0)$.

Moments of X_T

Proof: The generator of X_t is given by:

$$\mathcal{A}f(x) = egin{pmatrix} eta_{11}x_1 + eta_{12}x_2 \ b_2 + eta_{22}x_2 \end{pmatrix}^ op
abla_x f(x) + rac{1}{2}\sum_{i,j=1}^3 A_{ij}(x)rac{\partial^2 f(x)}{\partial x_i \partial x_j} \ + \left(f\left(x + \log(1+\xi)e_3
ight) - f(x) -
abla_x f(x)^ op e_3 \log(1+\xi)
ight)
u^\mathbb{Q}(x),$$

where $e_3 = (0,0,1)^{\top} \Rightarrow \mathcal{A}$ polynomial preserving.

The mixed conditional moments satisfy the backward Kolmogorov equation. Solve the PDE by guessing that the solution is a polynomial in X_{t_0} of degree N. Apply $\mathcal A$ to the mixed powers $1, x_1, ..., x_2 x_3^{N-1}, x_3^N$ and collect terms.

Moments of L_t

• Powers of L_T are obtained from

$$\begin{split} L_T^n &= (Y_T + X_{3T})^n = \sum_{k=0}^n \binom{n}{k} Y_T^k X_{3T}^{n-k} \\ &= \sum_{k=0}^n \binom{n}{k} K_Y^k(k!) \int_{t_0}^T \int_{t_1}^T \dots \int_{t_{k-1}}^T g(X_{t_1}) \dots g(X_{t_k}) dt_k \dots dt_1 X_{3T}^{n-k}. \end{split}$$

Moments of L_T calculated using nested conditional expectations:

$$\begin{split} \mathbb{E}^{\mathbb{Q}}_{t_0} \left[g(X_{t_1}) \cdots g(X_{t_k}) X_{3T}^{n-k} \right] &= \mathbb{E}^{\mathbb{Q}}_{t_0} \left[g(X_{t_1}) \cdots g(X_{t_k}) \underbrace{\mathbb{E}^{\mathbb{Q}}_{t_k} \left[X_{3T}^{n-k} \right]}_{P_0(t_k, X_{t_k})} \right] \\ &= \mathbb{E}^{\mathbb{Q}}_{t_0} \left[g(X_{t_1}) \cdots g(X_{t_{k-1}}) \underbrace{\mathbb{E}^{\mathbb{Q}}_{t_{k-1}} \left[g(X_{t_k}) P_0(t_k, X_{t_k}) \right]}_{P_1(t_k, t_{k-1}, X_{t_{k-1}})} \right] \\ &= P_k(t_k, t_{k-1}, ..., t_0, X_{t_0}). \end{split}$$

Conclusion

- We develop a quadratic variance swap model which is tractable and parsimonious in the number of parameters.
- Variance swap rates are available in closed-form, up to the resolution of ODEs.
- We derive an pricing methodology for European index options, which uses the polynomial preserving property of quadratic jump-diffusions to approximate the characteristic function of the log price.

Thank you for your attention!