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Background

Credit Risk(s)

Default time 7

PaymentsT T T T | T T

! —r— ‘ time

Default likelihood variation
5%
P T<T
t+1[ > ]<1%

New regulatory requirements (Basel I, IFRS 9)

Expected losses (12-month, lifetime), deterioration of credit
quality, valuation adjustments (CVA, DVA), etc.

= Tractable models ?
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Background Ingredients
F = (F:) risk-factors filtration (no default)

t . .
Se = e JoXsd  F-measurable survival process with the
hazard-rate A\; > 0

U uniform r.v. on (0,1) independent from

Default time construction
T=inf{t>0:5 < U}

Hi = 0(l;<s) 1 s < t) in which 7 is a H stopping time
Ge = (Fe V He) all the observable information

Survival process
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The Survival Process

X: € E C R™ risk-factor process and vector v € R™.

Standard approach
Model the hazard-rate process: A\; = WTXt > 0.

A new approach
Model the survival process directly!

t
st:P[T>t\ft]=1—/ 7" Xs ds >0
0

which implies dS; = —y" X;dt and such that

_ ’YTXt >

At = 0
t S, ©

How to construct X; such that (1) and (2) are verified?
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One Risk-Factor
W.l.o.g. let v =1 such that dS; = —X;dt.

Assume that there exists a constant L > 0 such that
0< X; <LS;

then S; > e tt>0and L> )\ > 0.

Assume that (X, S;) is a polynomial preserving diffusion, then

dX; = (b+ BX¢ + BS; )dt + o/ Xe( LS; — X¢)dW;

for some reals b, 3, B and o > 0.

Lemma

The process (Xt, St) is well-defined if and only if b=10, B > 0,
and
[2+BL+B<O0.
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Inward pointing condition
he linear The state space E is of the form
St
Xo, S
1 (Xo, So)
S+ (ﬂ
dSy
—
dXy
0 £4
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Hazard-rate dynamics

The linear
framework

d)\t = (61 = )\t)(>\t - 62) dt+ g/ )\t(l— - At) th

One risk-factor affine model (CIR process)
dA\t = lo(A\s — {1) dt + o/ Ae dW,

Drift Diffusion
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Multiple Risk-Factors
W.lo.g let ¥'1=1 and assume X; € [0, LS:]™

—dS;/dt =" X, <415, = LS,
such that 0 < \; < L.

The dynamic of the multivariate process X; rewrites
dXt - (b + ,BXt + BSt)dt + Z(Xt, St)th

Y (X:, S¢) = diag(o1v/X1:(LS: — X1t), - - . s 0m/ Xme (LSt — Xmt))
and with b,B € R™, g € R™*™ and o € RT.

Lemma
The process (X, St) is well defined if and only if b =0,

B> (—LBj)" and —LBi—Bi=> (L(viL+By)*
JF# J#i
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Risk-neutral valuation
There exists an equivalent risk-neutral martingale measure Q.

t
Pricing The discount process is Dy = e~ Jo =95 \yith the short-rate rs.
pelications D; and S; have the same properties !

Process moments
(Xt,S¢)  polynomial preserving process with state space E

Pol,(E) space of polynomials of order at most n on E

H, vector of polynomials forming a basis of Pol,(E)
Gn matrix representation of A |pg, gy w.r-t. Hy
p vector representation of p(x,s) € Pol,(E) w.r.t. H,

Lemma
(Cuchiero et al. (12), Filipovi¢ and Larsson (15))

E [p(Xr, ST) | Fe] = Ha(Xe, St) e T 9.
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Security B pays one if 7 > T, zero otherwise.
Assume for simplicity r; = 0, and consider the monomial basis
Hi(x,s) ={1,x1,...,Xm,S}.

Pricing
applications

B(t, T) = 1r=n B [1ira1y |G
= H{T>t}EQ [O_ftT Audlur | .7'}}
)
= H{T>t}EQ {ST |]:t:|
t
= Il{T>t}{1»Xt7St}Tecl(Tft){O,(], 1/5:}

where the matrix Gy is given by

0 0 O
G=1|0 g —]).
0 BT 0

Only the first F;-conditional moment of St is needed !
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Security C paysone at 7 ifandonlyif t <7 < T.

Assume for simplicity that r; = r constant.

Pricing

applications C(t> T) = :H-{T>t}]EQ |::H‘{f<7'< T}eir(Tit) ‘ gt]

_H{T>t}/ rie tEQ[ |~7'—t} ds
= g {1 X ST (61) 7 (G (729 — 1) {0.7/5:,0}

with Gf = Gy — diag(r) and using [ e°ds = A"1(e”t — /).
No numerical integration over [t, T]!

Credit-Default-Swap = sum of C and many Bs

m= 1
cds - {1 Xt/st}TPcds ( ) {1 )\t}TPcds
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Modeling Choices

Set r; = r constant over the estimation period.
A cascading structure
Consider m = 2 and dynamics of the form:
dS;i = —Xie dt
dXit = k1( 61 Xor — Xit) dt + o1/ X1 (LS: — Xi¢) dWhy
dXor = ko( 028 — Xot) dt + 024/ Xot (LSt — Xo¢) dWoy

Market price of risk dW;" = dW, + A.dt
Assume (Xt, St) polynomial preserving process under P an Q

A 01 VX1t N — 02 Xor + 03 St
e o1V LS — Xqt 2 o2/ Xot (LS — Xot)

Stronger conditions on dynamics parameters ! 10 parameters.




Linear Credit

Risk Models . .
D. Ackerer Estimation Results on AT&T

150 ¢ Market T Fitted
100

Empirical 50 +

results

0L : ‘ ‘
2009-01 2012-05 2009-01 2012-05

L4

QML using UKF

CDS spreads in basis points
1 to 10-year maturity

L=~ 8%

RMSE < 5 b.p.
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Estimation Results on Boeing

300 1 Market

200 | M

2009-01 2012-05

Xot/S¢

0,,

T Fitted

2009-01 2012-05

QML using UKF

CDS spreads in basis points
1 to 10-year maturity

L~ 12%

RMSE < 4 b.p.
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Single-name CDS Option

European CDS option with maturity T, rs =0
opt _ Q cds +
T =B 1emy <7TT > | Ge

1, N
= 7{5?} E¢ [<{XT75T}Tpcds) |~Ft:|

Z = {X7,57} " PBeds/St € [a,b] with known F;-cond
moments.

Payoff approximation

Polynomial series p"(y) converging to (y)™ on [a, b] such that
E[p"(Z)] —— m™
n—o0

with non-tight error upper bound ||p"(z) — (z)*]| ., on [a, b].
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CDS Option Example

0.09 |

0.085 |

10

20

5-year CDS option on AT&T
1-year maturity

100 b.p. strike

Chebyshev interpolation

Z € [—0.058,0.16]

—— error bound

1 1 1 1 >n
1 10 20 30 40
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New class of reduced-form models for credit-risk

Survival process modeling S; = P[r > t | F¢] with PPP

Analytical formulas for defaultable bonds and CDS prices

Straightforward approximation of CDS options prices

Promising directions: CVA, multi-name models, ...
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