

Linear Credit Risk Models

Damien Ackerer Damir Filipović

Swiss Finance Institute
École Polytechnique Fédérale de Lausanne

7th General AMaMeF and Swissquote Conference 2015

Overview

Background

The linear
framework

Pricing
applications

Empirical
results

Complex
Derivatives

1 Background

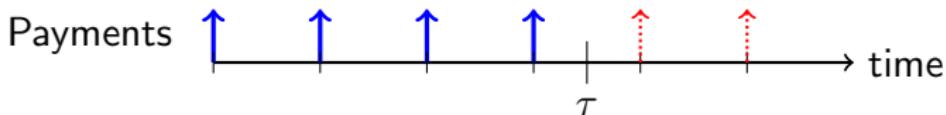
2 The linear framework

3 Pricing applications

4 Empirical results

5 Complex Derivatives

Default time τ



Default likelihood variation

$$\mathbb{P}_{t+1}[\tau \leq T] \begin{cases} \nearrow 5\% \\ \searrow 1\% \end{cases}$$

New regulatory requirements (Basel III, IFRS 9)

Expected losses (12-month, lifetime), deterioration of credit quality, valuation adjustments (CVA, DVA), etc.

⇒ Tractable models ?

Doubly-stochastic default time

Ingredients

$\mathbb{F} = (\mathcal{F}_t)$ risk-factors filtration (no default)

$S_t = e^{-\int_0^t \lambda_s ds}$ \mathbb{F} -measurable survival process with the hazard-rate $\lambda_t \geq 0$

U uniform r.v. on $(0, 1)$ independent from \mathbb{F}

Default time construction

$$\tau = \inf \{t \geq 0 : S_t \leq U\}$$

$\mathcal{H}_t = \sigma(\mathbb{1}_{\{\tau \leq s\}} : s \leq t)$ in which τ is a \mathbb{H} stopping time

$\mathcal{G}_t = (\mathcal{F}_t \vee \mathcal{H}_t)$ all the observable information

Survival process

$$S_t = \mathbb{P}[\tau > t \mid \mathcal{F}_t] = \mathbb{P}[\tau > t \mid \mathcal{F}_\infty]$$

The Survival Process

$X_t \in E \subset \mathbb{R}^m$ risk-factor process and vector $\gamma \in \mathbb{R}^m$.

Standard approach

Model the hazard-rate process: $\lambda_t = \gamma^\top X_t \geq 0$.

A new approach

Model the survival process directly!

$$S_t = \mathbb{P} [\tau > t \mid \mathcal{F}_t] = 1 - \int_0^t \gamma^\top X_s \, ds > 0 \quad (1)$$

which implies $dS_t = -\gamma^\top X_t dt$ and such that

$$\lambda_t = \frac{\gamma^\top X_t}{S_t} \geq 0 \quad (2)$$

How to construct X_t such that (1) and (2) are verified?

One Risk-Factor

W.l.o.g. let $\gamma = 1$ such that $dS_t = -X_t dt$.

Assume that there exists a constant $L > 0$ such that

$$0 \leq X_t \leq LS_t$$

then $S_t \geq e^{-Lt} > 0$ and $L \geq \lambda_t \geq 0$.

Assume that (X_t, S_t) is a polynomial preserving diffusion, then

$$dX_t = (b + \beta X_t + BS_t) dt + \sigma \sqrt{X_t(LS_t - X_t)} dW_t$$

for some reals b, β, B and $\sigma \geq 0$.

Lemma

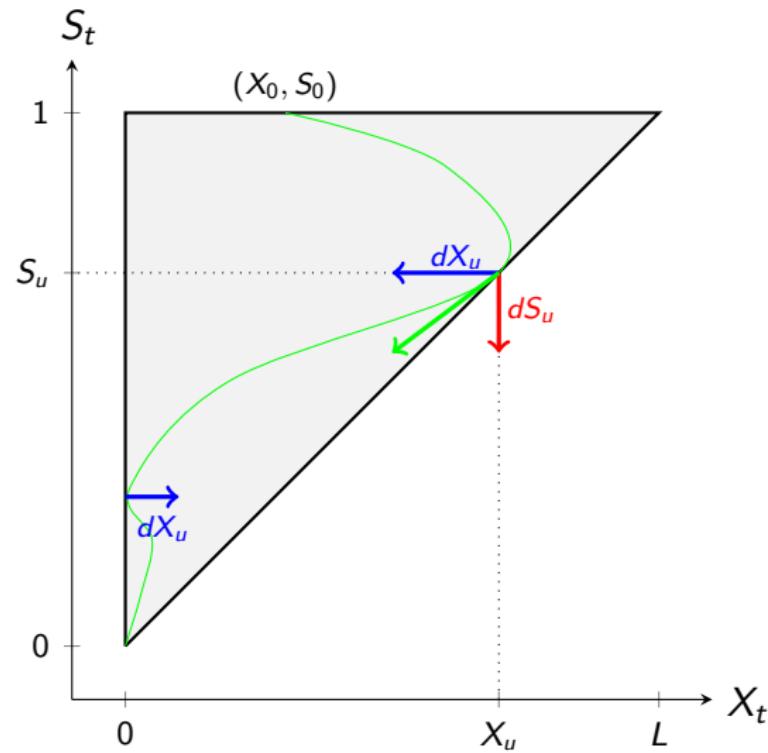
The process (X_t, S_t) is well-defined if and only if $b = 0$, $B \geq 0$, and

$$L^2 + \beta L + B \leq 0.$$

One Risk-Factor II

Inward pointing condition

The state space E is of the form



One Risk-Factor III

Background

The linear
framework

Pricing
applications

Empirical
results

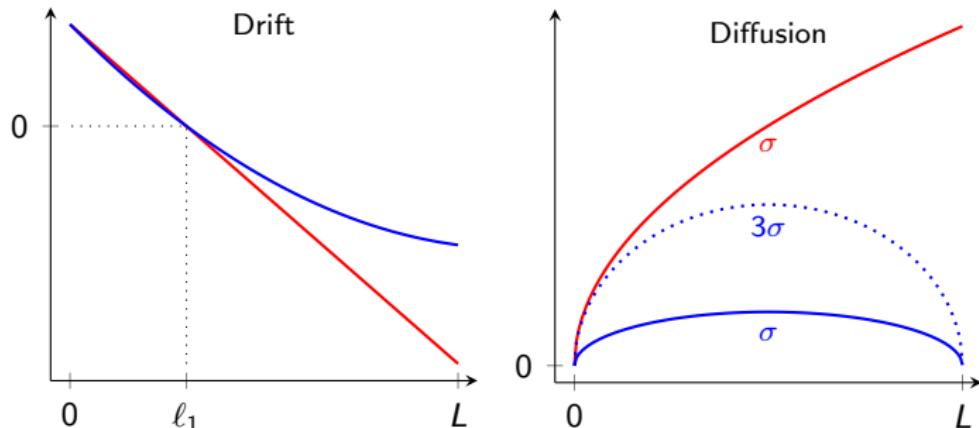
Complex
Derivatives

Hazard-rate dynamics

$$d\lambda_t = (\ell_1 - \lambda_t)(\lambda_t - \ell_2) dt + \sigma \sqrt{\lambda_t(L - \lambda_t)} dW_t$$

One risk-factor affine model (CIR process)

$$d\lambda_t = \ell_2(\lambda_t - \ell_1) dt + \sigma \sqrt{\lambda_t} dW_t$$



Multiple Risk-Factors

W.l.o.g. let $\gamma^\top \mathbf{1} = 1$ and assume $X_t \in [0, LS_t]^m$

$$-dS_t/dt = \gamma^\top X_t \leq \gamma^\top \mathbf{1} S_t = LS_t$$

such that $0 \leq \lambda_t \leq L$.

The dynamic of the multivariate process X_t rewrites

$$dX_t = (b + \beta X_t + BS_t)dt + \Sigma(X_t, S_t)dW_t$$

$$\Sigma(X_t, S_t) = \text{diag}(\sigma_1 \sqrt{X_{1t}(LS_t - X_{1t})}, \dots, \sigma_m \sqrt{X_{mt}(LS_t - X_{mt})})$$

and with $b, B \in \mathbb{R}^m$, $\beta \in \mathbb{R}^{m \times m}$, and $\sigma \in \mathbb{R}_+^m$.

Lemma

The process (X_t, S_t) is well defined if and only if $b = 0$,

$$B \geq \sum_{j \neq i} (-L\beta_{ij})^+ \quad \text{and} \quad -L\beta_{ii} - B_i \geq \sum_{j \neq i} (L(\gamma_i L + \beta_{ij}))^+$$

Preliminaries

Risk-neutral valuation

There exists an equivalent risk-neutral martingale measure \mathbb{Q} .

The discount process is $D_t = e^{-\int_0^t r_s ds}$ with the short-rate r_s .
 D_t and S_t have the same properties !

Process moments

- (X_t, S_t) polynomial preserving process with state space E
- $\text{Pol}_n(E)$ space of polynomials of order at most n on E
- H_n vector of polynomials forming a basis of $\text{Pol}_n(E)$
- G_n matrix representation of $\mathcal{A} \mid_{\text{Pol}_n(E)}$ w.r.t. H_n
- \vec{p} vector representation of $p(x, s) \in \text{Pol}_n(E)$ w.r.t. H_n

Lemma

(Cuchiero et al. (12), Filipović and Larsson (15))

$$\mathbb{E} [p(X_T, S_T) \mid \mathcal{F}_t] = H_n(X_t, S_t)^\top e^{G_n(T-t)} \vec{p}.$$

Defaultable bond

Security B pays one if $\tau > T$, zero otherwise.

Assume for simplicity $r_t = 0$, and consider the monomial basis $H_1(x, s) = \{1, x_1, \dots, x_m, s\}$.

$$\begin{aligned}
 B(t, T) &= \mathbb{1}_{\{\tau > t\}} \mathbb{E}^{\mathbb{Q}} \left[\mathbb{1}_{\{\tau > T\}} \mid \mathcal{G}_t \right] \\
 &= \mathbb{1}_{\{\tau > t\}} \mathbb{E}^{\mathbb{Q}} \left[e^{-\int_t^T \lambda_u du} \mid \mathcal{F}_t \right] \\
 &= \mathbb{1}_{\{\tau > t\}} \mathbb{E}^{\mathbb{Q}} \left[\frac{S_T}{S_t} \mid \mathcal{F}_t \right] \\
 &= \mathbb{1}_{\{\tau > t\}} \{1, X_t, S_t\}^{\top} e^{G_1(T-t)} \{0, \mathbf{0}, 1/S_t\}
 \end{aligned}$$

where the matrix G_1 is given by

$$G_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \beta^{\top} & -\gamma \\ 0 & B^{\top} & 0 \end{pmatrix}.$$

Only the first \mathcal{F}_t -conditional moment of S_T is needed !

Contingent Cash-Flow

Security C pays one at τ if and only if $t < \tau < T$.

Assume for simplicity that $r_t = r$ constant.

$$\begin{aligned}
 C(t, T) &= \mathbb{1}_{\{\tau > t\}} \mathbb{E}^{\mathbb{Q}} \left[\mathbb{1}_{\{t < \tau < T\}} e^{-r(\tau-t)} \mid \mathcal{G}_t \right] \\
 &= \mathbb{1}_{\{\tau > t\}} \int_t^T e^{-r(s-t)} \mathbb{E}^{\mathbb{Q}} \left[\lambda_s e^{-\int_t^s \lambda_u du} \mid \mathcal{F}_t \right] ds \\
 &= \mathbb{1}_{\{\tau > t\}} \int_t^T e^{-r(s-t)} \mathbb{E}^{\mathbb{Q}} \left[\frac{\gamma^T X_s}{S_t} \mid \mathcal{F}_t \right] ds \\
 &= \mathbb{1}_{\{\tau > t\}} \{1, X_t, S_t\}^{\top} (G_1^*)^{-1} \left(e^{G_1^*(T-t)} - I \right) \{0, \gamma/S_t, 0\}
 \end{aligned}$$

with $G_1^* = G_1 - \text{diag}(r)$ and using $\int_0^t e^{As} ds = A^{-1}(e^{At} - I)$.

No numerical integration over $[t, T]$!

Credit-Default-Swap \equiv sum of C and many Bs

$$\pi_t^{\text{cds}} = \{1, X_t/S_t\}^{\top} \vec{p}_{\text{cds}} \stackrel{(m=1)}{=} \{1, \lambda_t\}^{\top} \vec{p}_{\text{cds}}$$

Modeling Choices

Set $r_t = r$ constant over the estimation period.

A cascading structure

Consider $m = 2$ and dynamics of the form:

$$dS_t = -X_{1t} dt$$

$$dX_{1t} = \kappa_1(\theta_1 X_{2t} - X_{1t}) dt + \sigma_1 \sqrt{X_{1t}(LS_t - X_{1t})} dW_{1t}$$

$$dX_{2t} = \kappa_2(\theta_2 S_t - X_{2t}) dt + \sigma_2 \sqrt{X_{2t}(LS_t - X_{2t})} dW_{2t}$$

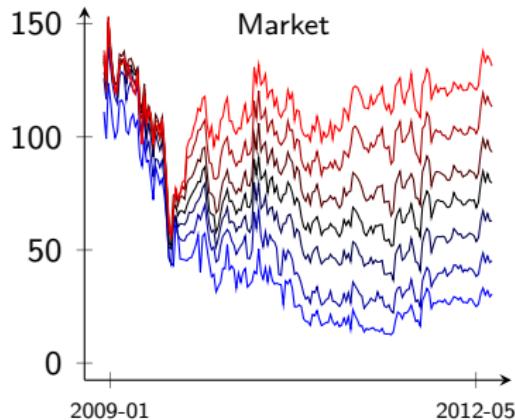
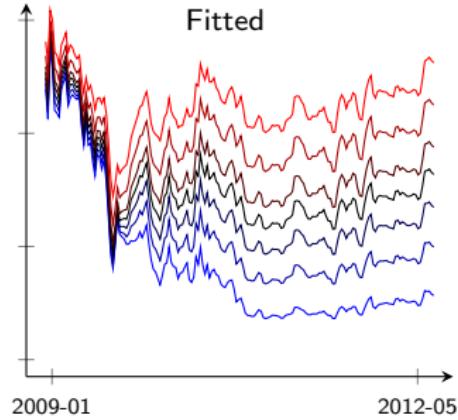
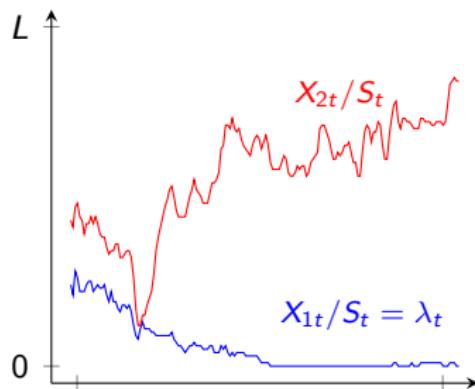
Market price of risk $dW_t^* = dW_t + \Lambda_t dt$

Assume (X_t, S_t) polynomial preserving process under \mathbb{P} an \mathbb{Q}

$$\Lambda_{1t} = \frac{\delta_1 \sqrt{X_{1t}}}{\sigma_1 \sqrt{LS_t - X_{1t}}} \quad \Lambda_{2t} = \frac{\delta_2 X_{2t} + \delta_3 S_t}{\sigma_2 \sqrt{X_{2t}(LS_t - X_{2t})}}$$

Stronger conditions on dynamics parameters ! 10 parameters.

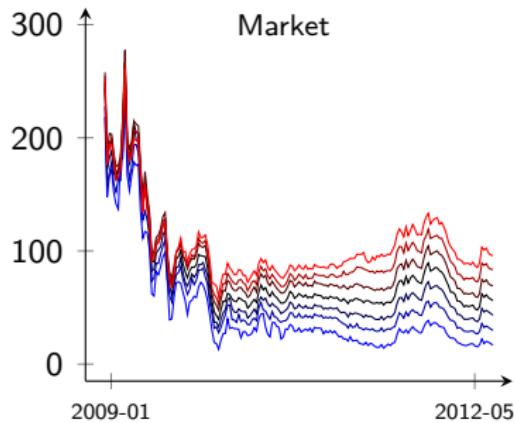
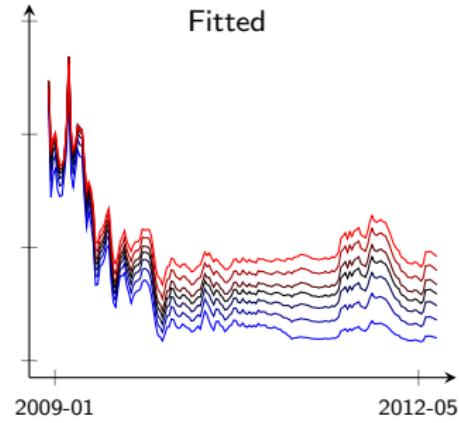
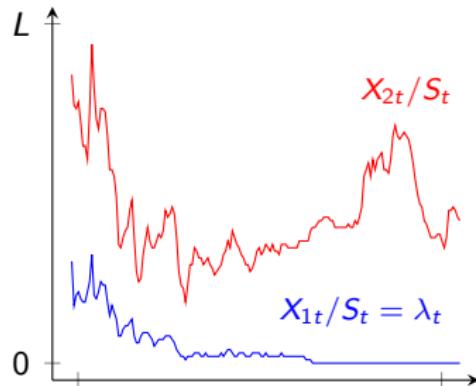
Estimation Results on AT&T



QML using UKF
CDS spreads in basis points
1 to 10-year maturity

$L \approx 8\%$
RMSE < 5 b.p.

Estimation Results on Boeing



QML using UKF
CDS spreads in basis points
1 to 10-year maturity
 $L \approx 12\%$
RMSE < 4 b.p.

Single-name CDS Option

European CDS option with maturity T , $r_s = 0$

$$\begin{aligned}\pi_t^{\text{opt}} &= \mathbb{E}^{\mathbb{Q}} \left[\mathbb{1}_{\{\tau > T\}} \left(\pi_T^{\text{cds}} \right)^+ \mid \mathcal{G}_t \right] \\ &= \frac{\mathbb{1}_{\{\tau > t\}}}{S_t} \mathbb{E}^{\mathbb{Q}} \left[\left(\{X_T, S_T\}^\top \vec{p}_{\text{cds}} \right)^+ \mid \mathcal{F}_t \right]\end{aligned}$$

$Z = \{X_T, S_T\}^\top \vec{p}_{\text{cds}} / S_t \in [a, b]$ with known \mathcal{F}_t -cond moments.

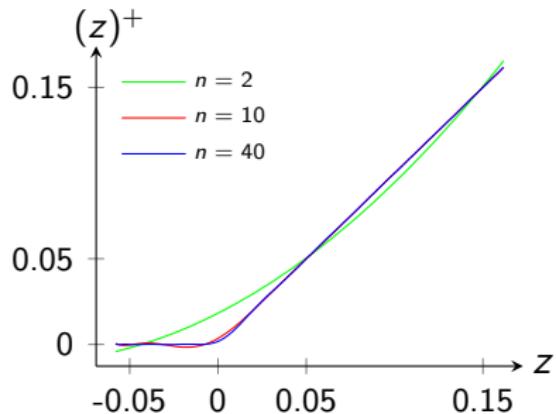
Payoff approximation

Polynomial series $p^n(y)$ converging to $(y)^+$ on $[a, b]$ such that

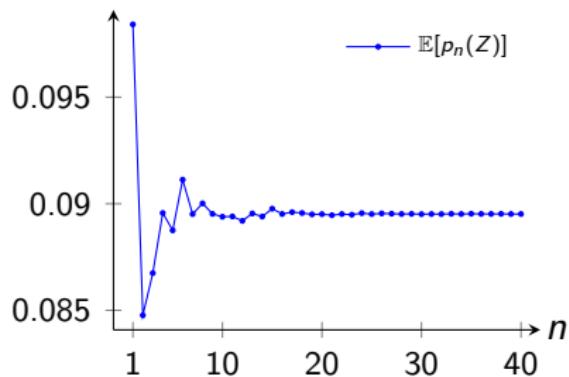
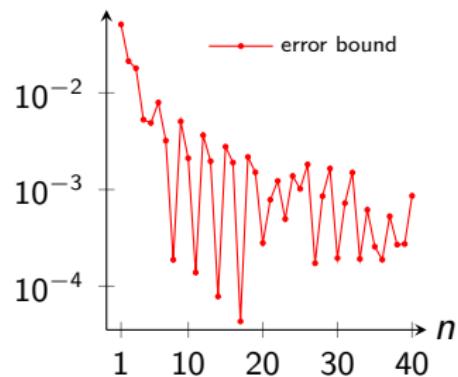
$$\mathbb{E} [p^n(Z)] \xrightarrow[n \rightarrow \infty]{} \pi_t^{\text{opt}}$$

with non-tight **error upper bound** $\|p^n(z) - (z)^+\|_\infty$ on $[a, b]$.

CDS Option Example



5-year CDS option on AT&T
1-year maturity
100 b.p. strike
Chebyshev interpolation
 $Z \in [-0.058, 0.16]$



Conclusion

Background

The linear
framework

Pricing
applications

Empirical
results

Complex
Derivatives

- New class of reduced-form models for credit-risk
- Survival process modeling $S_t = \mathbb{P}[\tau > t \mid \mathcal{F}_t]$ with PPP
- Analytical formulas for defaultable bonds and CDS prices
- Straightforward approximation of CDS options prices
- Promising directions: CVA, multi-name models, ...