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Credit Risk(s)

Default time τ

Payments

τ
time

Default likelihood variation

Pt+1[τ ≤ T ]
5%

1%

New regulatory requirements (Basel III, IFRS 9)

Expected losses (12-month, lifetime), deterioration of credit
quality, valuation adjustments (CVA, DVA), etc.

⇒ Tractable models ?



Linear Credit
Risk Models

D. Ackerer

Background

The linear
framework

Pricing
applications

Empirical
results

Complex
Derivatives

Doubly-stochastic default time

Ingredients

F = (Ft) risk-factors filtration (no default)

St = e−
∫ t

0 λsds F-measurable survival process with the
hazard-rate λt ≥ 0

U uniform r.v. on (0, 1) independent from F

Default time construction

τ = inf {t ≥ 0 : St ≤ U}

Ht = σ(1{τ≤s} : s ≤ t) in which τ is a H stopping time

Gt = (Ft ∨Ht) all the observable information

Survival process

St = P[τ > t | Ft ] = P[τ > t | F∞]
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The Survival Process

Xt ∈ E ⊂ Rm risk-factor process and vector γ ∈ Rm.

Standard approach

Model the hazard-rate process: λt = γ>Xt ≥ 0.

A new approach

Model the survival process directly!

St = P [τ > t | Ft ] = 1−
∫ t

0
γ>Xs ds > 0 (1)

which implies dSt = −γ>Xtdt and such that

λt =
γ>Xt

St
≥ 0 (2)

How to construct Xt such that (1) and (2) are verified?
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One Risk-Factor
W.l.o.g. let γ = 1 such that dSt = −Xtdt.

Assume that there exists a constant L > 0 such that

0 ≤ Xt ≤ LSt

then St ≥ e−Lt > 0 and L ≥ λt ≥ 0.

Assume that (Xt , St) is a polynomial preserving diffusion, then

dXt = (b + βXt + BSt )dt + σ
√

Xt( LSt − Xt)dWt

for some reals b, β,B and σ ≥ 0.

Lemma

The process (Xt ,St) is well-defined if and only if b = 0, B ≥ 0,
and

L2 + βL + B ≤ 0.
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One Risk-Factor II

Inward pointing condition

The state space E is of the form

dSu

dXu

dXu

(X0,S0)

0 Xu L

0

Su

1

St

Xt
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One Risk-Factor III

Hazard-rate dynamics

dλt = (`1 − λt)(λt − `2) dt + σ
√
λt(L− λt) dWt

One risk-factor affine model (CIR process)

dλt = `2(λt − `1) dt + σ
√
λt dWt

Drift

0 `1 L

0

Diffusion

σ

3σ

σ

0 L

0
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Multiple Risk-Factors
W.l.o.g. let γ>1 = 1 and assume Xt ∈ [0, LSt ]

m

−dSt/dt = γ>Xt ≤ γ>1St = LSt

such that 0 ≤ λt ≤ L.

The dynamic of the multivariate process Xt rewrites

dXt = (b + βXt + BSt)dt + Σ(Xt , St)dWt

Σ(Xt ,St) = diag(σ1

√
X1t(LSt − X1t), . . . , σm

√
Xmt(LSt − Xmt))

and with b,B ∈ Rm, β ∈ Rm×m, and σ ∈ Rm
+.

Lemma

The process (Xt ,St) is well defined if and only if b = 0,

B ≥
∑
j 6=i

(−Lβij)+ and − Lβii − Bi ≥
∑
j 6=i

(L(γiL + βij))+
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Preliminaries

Risk-neutral valuation
There exists an equivalent risk-neutral martingale measure Q.

The discount process is Dt = e−
∫ t

0 rsds with the short-rate rs .
Dt and St have the same properties !

Process moments
(Xt ,St) polynomial preserving process with state space E
Poln(E ) space of polynomials of order at most n on E
Hn vector of polynomials forming a basis of Poln(E )
Gn matrix representation of A |Poln(E) w.r.t. Hn

~p vector representation of p(x , s) ∈ Poln(E ) w.r.t. Hn

Lemma

(Cuchiero et al. (12), Filipović and Larsson (15))

E [p(XT ,ST ) | Ft ] = Hn(Xt , St)
>eGn(T−t)~p.
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Defaultable bond
Security B pays one if τ > T , zero otherwise.
Assume for simplicity rt = 0, and consider the monomial basis
H1(x , s) = {1, x1, . . . , xm, s}.

B(t,T ) = 1{τ>t}EQ [
1{τ>T} | Gt

]
= 1{τ>t}EQ

[
e−

∫ T
t λudu | Ft

]
= 1{τ>t}EQ

[
ST
St
| Ft

]
= 1{τ>t}{1,Xt ,St}>eG1(T−t){0, 0, 1/St}

where the matrix G1 is given by

G1 =

(
0 0 0
0 β> −γ
0 B> 0

)
.

Only the first Ft-conditional moment of ST is needed !
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Contingent Cash-Flow
Security C pays one at τ if and only if t < τ < T .

Assume for simplicity that rt = r constant.

C (t,T ) = 1{τ>t}EQ
[
1{t<τ<T}e

−r(τ−t) | Gt
]

= 1{τ>t}

∫ T

t
e−r(s−t)EQ

[
λse
−

∫ s
t λudu | Ft

]
ds

= 1{τ>t}

∫ T

t
e−r(s−t)EQ

[
γ>Xs

St
| Ft

]
ds

= 1{τ>t}{1,Xt , St}>(G ∗1 )−1
(
eG

∗
1 (T−t) − I

)
{0, γ/St , 0}

with G ∗1 = G1 − diag(r) and using
∫ t

0 eAsds = A−1(eAt − I ).

No numerical integration over [t,T ]!

Credit-Default-Swap ≡ sum of C and many Bs

πcds
t = {1,Xt/St}>~pcds

(m=1)
= {1, λt}>~pcds
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Modeling Choices
Set rt = r constant over the estimation period.

A cascading structure

Consider m = 2 and dynamics of the form:

dSt = −X1t dt

dX1t = κ1( θ1X2t − X1t) dt + σ1

√
X1t(LSt − X1t) dW1t

dX2t = κ2( θ2St − X2t) dt + σ2

√
X2t(LSt − X2t) dW2t

Market price of risk dW ∗
t = dWt + Λtdt

Assume (Xt , St) polynomial preserving process under P an Q

Λ1t =
δ1

√
X1t

σ1

√
LSt − X1t

Λ2t =
δ2 X2t + δ3 St

σ2

√
X2t(LSt − X2t)

Stronger conditions on dynamics parameters ! 10 parameters.
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Estimation Results on AT&T
Market

2009-01 2012-05

0

50
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150 Fitted

2009-01 2012-05

X1t/St = λt

X2t/St

0

L

QML using UKF
CDS spreads in basis points
1 to 10-year maturity

L ≈ 8%
RMSE < 5 b.p.
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Estimation Results on Boeing
Market

2009-01 2012-05

0

100
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300 Fitted

2009-01 2012-05

X1t/St = λt

X2t/St

0

L

QML using UKF
CDS spreads in basis points
1 to 10-year maturity

L ≈ 12%
RMSE < 4 b.p.
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Single-name CDS Option

European CDS option with maturity T , rs = 0

πopt
t = EQ

[
1{τ>T}

(
πcds
T

)+
| Gt
]

=
1{τ>t}

St
EQ
[(
{XT , ST}>~pcds

)+
| Ft

]
Z = {XT , ST}>~pcds/St ∈ [a, b] with known Ft-cond

moments.

Payoff approximation

Polynomial series pn(y) converging to (y)+ on [a, b] such that

E [pn(Z )] −−−→
n→∞

πopt
t

with non-tight error upper bound ‖pn(z)− (z)+‖∞ on [a, b].
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CDS Option Example

-0.05 0 0.05 0.15

0

0.05

0.15 n = 2

n = 10

n = 40

(z)+

z

5-year CDS option on AT&T
1-year maturity
100 b.p. strike
Chebyshev interpolation
Z ∈ [−0.058, 0.16]

1 10 20 30 40

0.085

0.09

0.095

E[pn(Z)]

n
1 10 20 30 40

10−2

10−3

10−4

error bound

n
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Conclusion

• New class of reduced-form models for credit-risk

• Survival process modeling St = P[τ > t | Ft ] with PPP

• Analytical formulas for defaultable bonds and CDS prices

• Straightforward approximation of CDS options prices

• Promising directions: CVA, multi-name models, . . .
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