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Abstract 

Introduction: Quantitative proteomics using mass spectrometry is performed via label-free 

or label-based approaches. Labelling strategies rely on the incorporation of stable heavy 

isotopes by metabolic, enzymatic or chemical routes. Isobaric labelling uses chemical labels 

of identical masses but of different fragmentation behaviours to allow the relative quantitative 

comparison of peptide/protein abundances between biological samples. 

Areas covered: We have carried out a systematic review on the use of isobaric mass tags in 

proteomic research since their inception in 2003. We focused on their quantitative 

performances, their multiplexing evolution, as well as their broad use for relative 

quantification of proteins in pre-clinical models and clinical studies. Current limitations, 

primary linked to the quantitative ratio distortion, as well as state-of-the-art and emerging 

solutions to improve their quantitative readouts are discussed.  

Expert opinion: The isobaric mass tag technology offers a unique opportunity to compare 

multiple protein samples simultaneously, allowing higher sample throughput and internal 

relative quantification for improved trueness and precision. Large studies can be performed 

when shared reference samples are introduced in multiple experiments. The technology is 

well suited for proteome profiling in the context of proteomic discovery studies. 

 

Keywords: isotopes, iTRAQ, labelling, liquid chromatography, mass spectrometry, 

proteomics, quantification, reagents, tagging, TMT 
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Article highlights 

• Protein quantification using mass spectrometry (MS) can be achieved via label-free or 

label-based approaches. 

• Label-based approaches rely on the incorporation of heavy stable isotopes. Labelling 

with isobaric chemical mass tags is one option for label-based relative quantification 

of proteins. 

• Multiplexed comparison of two to sixteen samples is currently achievable with 

isobaric labelling in routine use providing adequate precision and trueness. Higher 

order multiplexing options have been proposed. 

• Increasing multiplexing capabilities allow a number of new applications in pre-clinical 

and clinical studies. Isobaric mass tags have been successfully employed in large 

scale studies dealing with several hundred (up to a thousand) of samples. 

• While quantitative performances of isobaric mass tags suffer from the well-known co-

fragmentation issue (i.e., peptide precursor of interest isolated together with other 

peptides) that interferes with accurate quantification, solutions such as an additional 

round of fragmentation (i.e., MS/MS/MS or MS3) or further peptide 

separation/isolation (e.g., with ion mobility) can significantly improve performance. 

• We consider that quantitative precision is a must while the trueness might be less of 

an issue in proteomic discovery applications. 

• Data completeness is achieved within samples from a single experiment using 

isobaric mass tags. Missing values arise in multiple experiment comparisons due to 

the stochastic nature of the data-dependent mode of MS used for data acquisition. 

This limitation can be partly alleviated by replication of the liquid chromatography-MS 

analysis, sample fractionation, or refined data processing.   
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1. Introduction 

Proteomics has rapidly turned from qualitative to quantitative [1] when faced with biological 

questions related to protein changes in expression and abundance. Current mass 

spectrometry (MS)-based proteomic methods offer mainly relative quantification, allowing the 

comparison of proteomes in pre-clinical models and clinical studies in a wide area of 

applications, such as biomarker discovery and exploration of biological mechanisms. In 

essence, liquid chromatography (LC)-MS enables the unbiased identification of proteins in 

samples and their relative quantification between samples. Possible approaches rely on 

comparison between LC-MS analyses (i.e., label-free) or within LC-MS analyses (i.e., label-

based). 

The principle of isobaric labelling for MS-based proteomics was introduced in 2003 with a 

first generation of tandem mass tag (TMT) reagents [2]. Rapidly after, Applied Biosystems 

launched a commercial version of isobaric mass tags so-called isobaric tag for relative and 

absolute quantitation (iTRAQ) following the works by Pappin and co-workers [3]. ExactTag 

reagents and newly designed TMTs [4] became soon after available to scientists. As a matter 

of fact, the use of isobaric mass tags has gradually increased over the years (Figure 1a). 

While the iTRAQ reagents have for a long time dominated the field, TMTs are gaining 

increasing popularity (Figure 1b), most likely due to their improved multiplexing capabilities. 

Isobaric mass tags are chemical reagents, which react with specific moieties (i.e., primary 

amines; other reactive groups are available but less used (see Section 3)) in proteolytic 

peptides; this makes the quantitative approach global as every peptide is labelled as least on 

its N-terminus. Besides the reactive group, tags are composed of a mass reporter and a 

mass balancer group embedding sets of stable heavy isotope atoms. The combination of 

these two groups confers the primary characteristics of a set of isobaric mass tags, i.e., 

identical mass for each individual tag. This is basically achieved by counterbalancing the 

incorporation of stable heavy isotopes either in the mass reporter or mass balancer groups 

as depicted in Figure 2. For further illustration, tag chemical structures are given in Figure 3 

for some of TMT reagents currently commercially available. 
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Figure 2.
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A common proteomic workflow used with isobaric mass tags is the shotgun approach 

(Figure 2a) where proteins are digested with a proteolytic enzyme (trypsin being the 

classical one) after reduction of disulfide bridges and alkylation of the thiol groups. The 

obtained peptides are then directly labelled with isobaric mass tags using one different form 

of the tags for each of the samples to be compared. After completion of the labelling reaction, 

the differently-labelled peptides and therefore the samples, are mixed and subjected to LC-

MS and tandem MS (MS/MS) analysis (Figure 2b). The full survey MS scan (i.e., MS1) 

detects peptide ions (one signal being constituted of the addition of the peptides of the same 

sequence originating from each of the mixed samples). MS1 cannot distinguish the origin of 

the labelled peptides but, when exceeding a defined threshold, triggers their selection, 

isolation and fragmentation in an MS/MS scan (MS2). MS/MS fragments the peptides, 

revealing the peptide backbone fragment ions, and cleaves the attached isobaric mass tags, 

releasing the mass reporter ions from the different tags. Fragment ions are used for peptide 

identification while mass reporter ions in the low-mass range of tandem mass spectra enable 

relative quantification of the corresponding peptides between the different samples. 

Information is then inferred at protein level and compiled for all peptides of the same protein. 
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In this review, we focus our discussion on: i) the multiplexing capabilities of isobaric mass 

tags, ii) their quantitative performances in particular with regard to other MS-based relative 

quantification techniques used in proteomics, iii) their major reported limitation, referred as 

quantities’ ratio compression or distortion, iv) the processing and analysis of isobaric 

labelling-type of data, and v) some relevant applications in pre-clinical models and clinical 

studies. Isobaric labelling has been reviewed previously [5-7] but we believe that the present 

report will give pertinent additional perspectives to the reader and to the field. 

 

2. Multiplexing of samples and experimental conditions 

The main advantage of the isobaric mass tag technology is its sample multiplexing capability 

[8], for the relative quantification of multiple proteome samples at a time. While the very first 

tag set was a 2-plex version [2], enabling comparison of two samples, versions of 4-plex [3], 

6-plex [4], and 8-plex [9] were subsequently introduced and commercialized as iTRAQ or 

TMT reagents (Figure 4). Exploiting the mass defect of 12C/13C and 14N/15N isotopes, that 

arises from differences in nuclear binding energy for each isotope [10], and the high 

resolving power of recent MS instrumentation (for instance the Orbitrap analyser [11]) that 

can baseline-resolve this small differences, 8- and 10-plex version of TMTs were recently 

described and commercialized with mass reporter groups containing one extra neutron 

incorporated into either carbon or nitrogen [12,13]. A 16-plex version of the TMTs was very 

recently released (Figure 3) [14].  

Larger labels (e.g., 4-plex versus 8-plex iTRAQ) were shown to induce lower protein and 

peptide identification rates [15]. This is caused by additional internal fragmentation of the 

larger tags or increased charging during electrospray ionization [16], a fact however that was 

not confirmed using matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-

TOF/TOF) instrumentation [17]. Therefore, replacing carbon (12C by 13C) and nitrogen (14N by 
15N) atoms has been pursued as the preferred option to increase the multiplexing capabilities 

of isobaric mass tags while limiting their size increase. 

Researchers have developed alternative isobaric mass tag reagents primarily aiming at 

reducing the cost and dependence on commercial solutions described previously. A cost-

effective 12-plex N,N-dimethyl leucine (DiLeu) isobaric mass tag for high-throughput 

quantitative proteomics was presented [18], based on the original development of a 4-plex 

version of the DiLeu isobaric mass tags by the same authors [19]. Deuterium isobaric amine 

reactive tags (DiART) were also described [20,21]. In contrast to TMT and iTRAQ reagents, 

built with stable isotopes of carbon, nitrogen and oxygen, DiART reagents were synthesised 

using less-costly incorporation of deuterium. The negative effect observed with deuterium-

based mass tagging, namely retention time shifts in RP-LC, has been shown to be negligible 

when the deuterium is placed closed to a hydrophilic group [22]. More recently, the same 

researchers introduced the 10-plex isobaric tags (IBT) finally relying on the inversion of 
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methods offering in general better precision and trueness of the quantitative measurements 

than label-free approaches.  

However, an important limitation linked to isobaric mass tags with increased multiplexing 

capabilities is the dependence on high resolution mass analysers which are able to resolve 

the small mass defects. Higher mass resolution often comes with longer analysis time, as it 

is the case with the Orbitrap analyser. Because increasing mass resolution is detrimental to 

the instrument duty cycle, reduction of proteome coverages is usually observed. Yet, the 

proteome coverages can be rescued or even increased by pre-fractionation of the pooled 

sample that is straightforward and compatible with label-based approaches. Comparing a 10-

plex TMT workflow (that includes high pH reversed-phase pre-fractionation) with a label-free 

single shot data-independent acquisition (DIA) workflow for the analysis of ten samples, 

higher proteome coverage was achieved at fixed MS instrument time for the TMT-based 

method [28], confirmed also for an iTRAQ-based approach in another study [29]. In the same 

report by Muntel et al., the 10-plex TMT workflow offered slightly better precision while 

quantitative trueness was higher for the label-free DIA method [28]. In another experiment, a 

TMT-based workflow was compared to label-free proteomics using data-dependent 

acquisition (DDA); comparable levels of trueness of median quantitative ratios but superior 

sensitivity and precision were obtained with the use of the labels [30]. In large-scale 

phosphoproteomics, better precision was confirmed using isobaric mass tags but better 

trueness was obtained with label-free quantification [31]. Finally, label-free methods present 

in general lower performance in terms of precise and reproducible quantification with respect 

to the approaches based on isobaric mass tags [28,31,32].  

One further advantage of isobaric mass tags often described is the completeness of the 

generated data matrix despite the use of DDA for the LC-MS analysis. While this is true for a 

single multiplex experiment where samples are directly compared, this argument falls short 

when several multiplexed experiments are necessary to accommodate larger numbers of 

samples and conditions. Experiments are put in relation using a shared/common sample 

(usually a reference sample obtained from the initial pooling of all samples). However, the 

stochasticity of the DDA process cannot guarantee the necessary primary identification of the 

same peptides and proteins in all isobaric mass tagging experiments [30]. In a recent review, 

Wühr and co-workers suggested the use of DIA, which mostly overcomes the missing value 

problem, to analyse the specific complement ion clusters (see Section 4 for technical details) 

in a systematic way, and cope with such an issue [6]. 

Importantly, isobaric mass tag reagents can be easily obtained from several commercial 

sources and are thus directly available to scientists. However, the relatively high cost of 

these commercial reagents constitutes a severe constraint for core facilities and research 

laboratories. Less costly alternatives exist as mentioned before (e.g., DiLeu tags) but their 

use it still not widespread for other reasons (e.g., patent infringement). A clear advantage of 
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label-free approaches is the absence of these reagent costs, but then the LC-MS analysis 

often requires additional instrument time for the sequential processing of all samples. This 

time factor needs to be considered in the overall cost estimation. 

 

3.2. Comparison to other label-based methods 

Among label-based methods, isobaric labelling displays quite some interesting advantages. 

The isobaric mass tagging approach does not increase complexity of the survey MS signal 

as opposed to mass-differential isotopic labelling methods such as the stable isotope labeling 

with amino acids in cell culture (SILAC) [33,34], where doublets or triplets of MS signals are 

created. An increase in the number of precursor ions to be selected induces a reduction of 

the data acquisition speed and sensitivity. A mass defect-based labelling strategy for MS-

centric quantification was more recently developed using metabolic or chemical routes to 

circumvent such limitation related to the classical mass-differential isotopic labelling [35,36]. 

However, metabolic labelling with its early isotope incorporation presents clear benefits in 

terms of quantification accuracy as sample handling and manipulation before mixing is 

reduced to its minimum. Incorporation of isobaric mass tags, on the other hand, occurs later 

in the process after protein digestion. Therefore, initial sample preparation steps prior to 

digestion, efficiency of the digestion as well as the labelling reaction needs to be carefully 

controlled in order to generate reproducible and accurate results [37].  

It is worthwhile to note that non-isobaric versions of iTRAQ or TMT reagents can also be 

used for mass-differential labelling and therefore quantification based on precursor ions. 

Non-isobaric mTRAQ [38] and more recently mTMT [39] technologies are available for such 

purposes, enriching the pool of chemical labelling methods [40]. 

Fundamentally, chemical labelling presents an important advantage over metabolic labelling 

(e.g., SILAC) that is the accessibility to a wide range of samples. As such, isobaric labelling 

is applicable to cultured cells, tissues and body fluids among others and, most importantly as 

an in vitro procedure, is fully compatible with human samples. In that regard, it has been 

extensively applied and explored in clinical research studies (see Section 6).  

 

3.3. And other advantages… 

Isobaric mass tags have been modified for the more specific analysis of post-translational 

modifications (PTMs). For example, some particular chemistries have been developed to 

directly target protein carbonylation, glycan modifications or cysteine residues. iTRAQ 

hydrazide (iTRAQH) was used to probe carbonyl groups [41], aminoxyTMT was described 

for the quantification of carbonyl-containing compounds [42], and iodoTMT labelling was 

employed for studying cysteine-containing peptides [43,44]. Indirect methods employing a 

combination of specific peptide enrichment techniques before or after isobaric labelling have 

been used to study phosphoproteomes [16,31,45,46] and acetylomes [47,48]. An approach 
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called TAILS for terminal amine isotope labeling of substrates [49], uses isobaric mass tags 

to distinguish the N-termini of proteins from the N-termini of their protease cleavage products 

[50,51]. 

Advantageously, with isobaric mass tags, signals of precursor ions result from the sum of the 

individual but identical peptides originating from the compared samples. The concept of 

enhancing MS signal by using one sample of different origin and/or in higher quantity within 

an isobaric labelling experiment has been put forward [52-54]. The boosting to amplify signal 

with isobaric labelling (BASIL) was recently reported for phosphoproteomic analysis to 

increase by a factor of four the number of quantifiable phosphorylated peptides in a limited 

amount of human pancreatic islet cells [55]. Similarly, this approach was also exploited 

towards single-cell proteomic analysis [56,57]. 

Finally, while isobaric mass tags are predominantly used for screening/discovery and relative 

quantification applications, the technology was nevertheless also evaluated for more targeted 

and absolute quantification purposes [53,58]. For instance, Erickson et al. proposed a 

combination of chemical mass labelling using a light non-isobaric variant of the isobaric mass 

tags (e.g., so-called mTRAQ or TMTzero initially used for selected-reaction monitoring 

(SRM) MS applications [59,60]), and sample multiplexing using classical versions of isobaric 

mass tags, which they called triggered by offset, multiplexed, accurate-mass, high-resolution, 

and absolute quantification (TOMAHAQ) [61]. Similarly, Zhong et al. described a combined 

approach called hybrid offset-triggered multiplex absolute quantification (HOTMAQ) that 

allowed high throughput application of isobaric mass tags for absolute quantification in 

targeted proteomic experiments [62]. Even higher throughput was reported in targeted 

proteomics with a 54-plex quantification in a single LC-MS analysis [63].  

 

4. Addressing the co-fragmentation and ratio distortion 

The main limitation currently recognized in the quantification performance of isobaric mass 

tags results from the co-fragmentation of more than one peptide species (Figure 5). This 

induces inaccurate measurements and leads to quantities’ ratio compression (or distortion) 

[64,65]. Ratio compression refers to the underestimation of true quantitative changes 

obtained with isobaric mass tags. In complex mixtures, a majority of proteins are used to 

display a 1:1 ratio between comparative experimental conditions. This is a logical 

consequence of the generally stable concentrations of the majority of the proteins within the 

investigated proteomes. These proteins, constant in abundance between conditions, and by 

consequence their proteolytic peptides, represent a stable background. When those 

“constant” peptides are isolated for fragmentation together with peptides regulated in 

abundance (i.e., co-isolation and co-fragmentation), their reporter ions released from the 

isobaric mass tags contaminate those of the latter, more or less reducing the quantitative 

changes of truly differentially regulated peptides. As a matter of fact, if such co-fragmentation 
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methodology were more recently implemented. One key improvement was the introduction of 

the so-termed MultiNotch (or synchronous precursor selection (SPS)) MS3 to systematically 

co-isolate and co-fragment several MS/MS fragment ions using hybrid Orbitrap mass 

spectrometers [77]. MultiNotch MS3 has to a large extent addressed the initial sensitivity 

issue resulting from the additional MS3 round of fragmentation and selection of a single 

MS/MS fragment ion for MS3 [76,78]. Moreover, the limiting but necessary use of Lys-C 

enzyme to generate proteolytic peptides tagged at both N- and C-termini, ensuring release of 

reporter ions from both b- and y-type ions during MS3, could then be replaced by the use of 

classical trypsin [78]. A more recent development, now available on the last generation of 

tribrid Orbitrap mass spectrometers, is the real-time database searching (called real-time 

search (RTS)) to trigger subsequent MS3 scans in an adaptive manner only when confident 

peptide identification occurs [79,80]. These methods clearly help to alleviate the issue with 

the longer and inefficient duty cycles of the systematic MS3 acquisition mode. 

Another interesting approach to deal with the co-isolation and co-fragmentation of 

isobarically mass tagged peptides is the use of ion mobility spectrometry (IMS) (Figure 5). 

Lilley and co-workers were indeed able to reduce precursor contamination using travelling 

wave ion mobility separation (TWIMS) applied after quadrupole (Q) mass filtering on Q-TOF 

mass spectrometers [81]. High-field asymmetric waveform ion mobility MS (FAIMS) was also 

shown by the Thibault’s group to reduce the occurrence of chimeric tandem mass spectra 

and provide more accurate quantification using isobaric mass tags [82]. The latest generation 

of FAIMS devices confirmed improvement in quantitative figure-of-merits, leading to a 2.5 

fold increase in the number of quantified peptides compared to that obtained with MultiNotch 

MS3 [83]. Schweppe et al. further showed the benefit of FAIMS [84] on the quantification of a 

TMT-based interference standard [85]. FAIMS was efficiently combined with MultiNotch MS3 

and standard high-resolution MS/MS, improving in both approaches measurement accuracy 

by reduction of the occurrence of interfering species [84]. 

Another proposed strategy was to base the MS/MS quantification on complement reporter 

ion clusters at higher m/z originating from the partial loss of TMT tags (i.e., intact peptides 

remaining fused to most of the mass balancer groups) that is precursor-specific (Figure 5) 

[86]. Due to several constraints (e.g., improper design of TMTs to favour the formation of 

complement reporter ion clusters and lowered multiplexing due to limitation in current 

resolving power of mass analysers to  distinguish the clusters for 10-, 11- and 16-plex TMT 

technologies), this approach has still not been broadly adopted [87]. The so-called easily 

abstractable sulfoxide-based isobaric tag (EASI-tag) was recently introduced and similarly 

uses peptide-coupled reporter fragments for interference-free MS/MS-based quantification 

[88]. The 6-plex EASI-tag labels dissociate at low collision energy, produce a neutral loss 

and thus retain the charge on the peptide-coupled reporters, optimizing the quantitative 

signal in such a strategy. Absence of ratio compression was demonstrated as well as the 
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accurate measurements of large ratio fold changes exemplified. The SO-tag is another 

recent reagent materializing these alternative solutions [89]. 

Many efforts have been made to improve the quantitative accuracy of isobaric mass tags, 

coping with issues of interference and quantitative ratio distortion. The MS3 acquisition mode 

has been demonstrated efficient in numerous works. Alternative methods based on IMS 

become nonetheless more attractive as they can be implemented on different MS platforms, 

are sensitive and fast, and provide easy to process tandem spectra containing both the 

identification and quantification information. 

 

4. Facing computational challenges  

4.1. Processing of tandem mass spectra 

Inherently to the use of isobaric mass tags, several challenges also arise for the processing 

of the complex data generated, as well as its analysis. 

Recording of the mass and tandem mass spectra can be performed with different flavours of 

analysers when using isobaric mass tags. Similarly, tandem mass spectra can be obtained 

with different fragmentation techniques (e.g., CID or higher-energy collisional dissociation 

(HCD) available on hybrid Orbitrap mass spectrometers), depending for instance if they are 

used for identification and/or quantification purposes [90,91], as well as different levels of 

fragmentation (i.e., MS/MS or MS3). Spectral processing tools are available to handle such 

level of diversity and complexity. They are either embedded in MS vendors’ software (e.g., 

Proteome Discoverer from Thermo Fisher Scientific), part of commercial data analysis tools 

(e.g., PEAKS from Bioinformatics Solutions), or supported by researchers’ custom solutions 

[92,93]. The open-source software MaxQuant is an alternative tool to process and analyse 

both MS/MS and MS3-based isobaric mass tagging data [93]. 

 

4.2. Calculation of relative quantification values 

After the initial step of peptide and protein identification, the second step consists in 

retrieving the quantitative values. This involves a first correction to adjust area under the 

curves (for profile mode data), or peak intensities (for centroid mode data) of the reporter ion 

signals [92,94] because isotopic impurities are contained in isobaric mass tag reagents. 

Optionally, filtering based on minimum threshold of reporter ion intensity and/or level of 

occurrence of co-fragmentation can be implemented as well. Relative quantification values 

for all peptides are then calculated in different forms such as ratio fold changes or relative 

abundances (e.g., Libra methodology implemented in the Trans-Proteomic Pipeline [95]) 

between the compared conditions. Finally, quantification values for proteins are computed 

from the different peptides for inference at the protein level using different approaches (e.g., 

average, media, and weighted average). 
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4.3. Data normalization 

Data normalization is a key step to remove systematic error due to, for instance, sample 

preparation or instrument variability when multiple experiments are performed. Quantile 

normalization has been often used for data obtained with isobaric mass tags [96,97] but 

other methods have been proposed more recently such as constrained standardization [98], 

median sweeping [99] and analysis of variance (ANOVA)-based normalization [100]. These 

methods allow reducing the systematic and technical errors and could be valuable when 

applied to larger sample sizes (i.e., when multiple isobaric labelling experiments are 

performed).  

 

4.4. Missing data imputation 

While missing data are almost absent from a single isobaric mass tagging experiment, their 

number increases when multiple experiments are performed [101,102]. In such cases, data 

imputation can be performed for instance with k-nearest neighbours or singular value 

decomposition [103] in order to avoid restricting the data analysis to the proteins solely 

measured in every sample and condition, reducing the power of the statistical analysis, or 

introducing unwanted bias. An alternative way of spectral data processing that looks for 

similar tandem mass spectra between experiments (based on a roughly similar concept than 

the match between runs algorithm in MaxQuant [93], but applied specifically at MS/MS level 

for isobaric labelling applications) was proposed [102]. In this report, the peptide match 

rescue module saved quantitative information from unmatched/unexploited tandem mass 

spectra and significantly reduced the initial occurrence of missing values in the raw data. 

In summary, data processing and analysis solutions are multiple [96,97,104,105] but the 

reproducibility of these pipelines has been challenged [106]. In that regard, analysing data 

from isobaric mass tags should be performed with caution. Approaches that focus on peptide 

quantification prior to peptide/protein identification may also be attractive to process and 

analyse isobaric labelling-type of data [102,107]. 

 

5. Applications in pre-clinical and clinical studies 

Isobaric mass tags have been applied over the last years to a wide variety of proteomic 

studies resulting in an ever increasing number of publications, as depicted in Figure 1. In this 

section, we do not intend to provide a comprehensive review of these applications. More 

specifically, we focus on a few of those that smartly exploit the multiplexing capabilities of 

this technology and elegantly demonstrate the wide applicability of chemical isobaric 

labelling. 

Compartmentalization and exchanges of proteins between organelles within cells are pivotal 

to cellular processes, and their alterations are associated to various diseases [108]. The 

localisation of organelle proteins using isotope tagging (LOPIT) was introduced by Lilley’s 
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and co-workers [109,110]. This approach, combining cellular fractionation and proteomic 

profiling, takes full advantage of isobaric mass tags to decipher spatial subcellular maps 

using density gradient-based hyperplexed LOPIT (hyperLOPIT) [111,112] or LOPIT after 

differential ultracentrifugation (LOPIT-DC) [113]. High spatial resolution is achieved to map 

cells using MS-based proteomics, providing, among others, information on localization of 

protein isoforms and complexes and PTM dynamics. 

The study of PTMs is also efficiently performed with isobaric mass tags. One main 

advantage is the possibility to directly compare a reasonable number of samples while 

avoiding important occurrence of missing values. This is particularly important with PTMs 

because of their low stoichiometry. PTMs can be detected in one sample and missed in 

another using label-free approaches, for example. Combination of all samples after labelling 

also helps to increase detection of modified peptides. Phosphopeptides can be probed after 

specific enrichment, with titanium dioxide for instance, that has been shown to be compatible 

with isobaric mass tags [114]. This approach was efficiently applied in the study of glucose-

dependent phosphorylation in insulin secreting cells [115]. Likewise, acetylated peptides are 

identified and quantified using a combination of isobaric labelling and immuno-based 

enrichment of the acetylated peptides before LC-MS and MS/MS analysis [47,116,117]. 

The thermal proteome profiling (TPP) developed by Savitski and co-workers [118] is used to 

study protein aggregation and disaggregation, to phenotype cells and to detect protein 

interactions with drugs, metabolites, and other compounds [119-122]. TPP is facilitated by 

the use of unbiased multiplexed quantitative MS, and therefore isobaric mass tags, to 

explore the thermal stability of thousands of proteins via construction of melting curves 

[123,124]. Digging into the structural proteomes and establishing links to protein functions 

and pathological states using such strategies [125] represent a key task ahead in the 

proteomic field and accurate quantitative techniques based on isobaric mass tagging are 

critical tools to achieve this extraordinary challenge [126]. 

Last but not least, human clinical research studies represent a strategic application field for 

isobaric mass tag technologies. Sample multiplexing enables increased throughput, a 

fundamental element to perform large sample-size proteomic studies [37,127]. Due to 

important biological variability in humans, maintaining a proper study design with a sufficient 

number of individuals and data points are nowadays becoming a priority in research studies 

[128-131]. In this regard, isobaric labelling was used to study the plasma and cerebrospinal 

fluid proteomes in increasingly large cohorts of individuals, from hundreds to thousands of 

body fluid samples [132-135]. Similarly, iTRAQ and TMT have been used to probe a wide 

range of diseases and identify putative biomarkers in human plasma [136]. 
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6. Conclusion 

Isobaric labelling technologies are amongst the most popular techniques for the relative 

quantification of proteins with MS. They provide adequate relative protein quantification 

performance for discovery exercises. Isobaric mass tags can be applied to almost all sample 

types, and importantly offer multiplexing capabilities for concomitant comparison of two to 

sixteen samples in a single experiment (multiple experiments can be linked with the use of a 

common reference sample). They come with certain drawbacks similar to other proteomic 

techniques currently used, the primary one being the co-fragmentation limitation that results 

in quantitative ratio distortion. This issue has been a topic of intensive research over the last 

ten years. End-users of proteomic technologies generally look for lean workflows and 

efficient processes but still need to deal with trade-offs when performing differential 

screening of proteomes in large sample-size studies. All those factors require detailed 

considerations when opting for isobaric mass tagging. Selecting the appropriate workflow is 

key. It should integrate optimal sample preparation, efficient analytical separation, MS 

detection and acquisition, all combined with intelligent data processing, analysis and 

interpretation. 

 

7. Expert opinion 

In fifteen years, isobaric mass tagging has significantly evolved into a mature proteomic 

technology. Since the initial concept introduced in 2003, multiplexing capabilities and the 

possibility to compare an increasing number of samples have greatly improved, e.g., from 

two samples at a time to sixteen with the last commercial set of tags available. Moreover, 

quantitative performances, mainly relying on improved sample preparation and adapted MS 

data acquisition methods, have transformed the tool into a robust quantitative technique 

widely used in proteomic research laboratories, core facilities and contract research 

organizations.  

The deployment of state-of-the-art workflows, however, still remain cumbersome and to 

some extent limited to experienced proteomic specialists. Efficient management, 

coordination and execution of sample preparation, MS data acquisition, and 

processing/analysis of the data is key for a successful application of isobaric labelling 

techniques. The dependence to selected mass spectrometer manufacturers or to particular 

data processing and bioinformatic solutions adds another level of complexity, especially 

when they evolve over time. Significant associated costs (mainly the reagent cost [137] and 

that of high resolution mass spectrometers) can also act as a potential barrier for the full 

adoption of isobaric mass tags. 

In our laboratory, we have aimed at implementing easily manageable workflows with 

automated steps such as sample preparation and data processing. Up to now, we have 

privileged the simplicity of MS/MS scanning for data acquisition. While scouting for 
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alternative MS acquisition modes and their implementation (e.g., SPS-MS3 with enhanced 

trueness but reduced sensitivity), MS/MS has yet offered sufficient precision and very good 

repeatability of our quantitative measurements as also recently described by others [31]. 

While such data is inherently suffering from quantitative ratio distortion, they have allowed to 

reproducibly decipher relative protein changes in human plasma samples from large 

independent cohorts [132]. The results have been furthermore confirmed using label-free DIA 

MS [138] that is free of such quantitative distortion. Sample complexity and protein 

abundances have certainly an influence on the quality of the readouts and careful evaluation 

of the quantitative needs is essential to correctly address scientific questions. Interestingly, 

the emergence of alternative solutions to cope with the quantitative ratio distortion such as 

the use of IMS tends to offer an excellent compromise between implementation effort and 

quantitative performances. Importantly, isobaric labelling, considered mainly as a relative 

quantification technique, is not intended to substitute quantitative targeted MS-based assays. 

While important developments have demonstrated the use of the technology in multiplexed 

targeted assays for hypothesis-driven research or confirmatory studies, we currently see the 

primary application field in exploratory and discovery studies and generation of novel 

biological hypotheses. 

In the future, we expect further democratisation of the isobaric mass tagging technology that 

requires strict consolidation of MS data acquisition and processing tools. A universal 

approach with precise implementation is critically needed to reduce the risk of irreproducible 

and divergent results within and between laboratories. Efforts of proteomic method 

standardization are pursued by several scientific initiatives and the isobaric labelling 

technology should be an integral part of it. 

An increase of sample multiplexing still remains highly desirable to explore larger cohorts 

and sample sizes and thus bringing proteomics closer to other omics platforms in terms of 

sample throughput. This will help to face the multiple challenges uncounted in proteomics, 

such as the broad diversity, high dynamics, and complex structural changes of the 

proteomes, where large-scale accurate protein quantification is essential. Positive 

competition and benchmarking against other label-free and label-based quantitative 

approaches is important and will lead at the end, hopefully, to a few optimal solutions. Surely, 

it can be speculated that those MS-based approaches will further evolve and enable more 

efficiently to translate proteomic discoveries into real world outcomes.  
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