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Cavitation bubbles collapsing and rebounding in a pressure gradient rp form a ‘‘microjet’’ enveloped

by a ‘‘vapor jet.’’ This Letter presents unprecedented observations of the vapor jets formed in a uniform

gravity-induced rp, modulated aboard parabolic flights. The data uncover that the normalized jet volume

is independent of the liquid density and viscosity and proportional to � � jrpjR0=�p, where R0 the

maximal bubble radius and �p is the driving pressure. A derivation inspired by ‘‘Kelvin-Blake’’

considerations confirms this law and reveals its negligible dependence of surface tension. We further

conjecture that the jet only pierces the bubble boundary if � * 4� 10�4.
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Jets produced by cavitation bubbles play a key role in
cutting-edge technologies [1–3] and erosion [4–6]. These
jets typically arise when a bubble collapses in a liquid of
anisotropic pressure: At the ending collapse stage, the
bubble surface develops a fast (* 100 m s�1 [4,7,8])
liquid jet. This ‘‘microjet’’ is directed inwards against the
local pressure gradient rp [9], defined in the absence of
the bubble. While the bubble bounces off its enclosed
gas, the microjet pierces the bubble and starts penetrating
the liquid [4–6,10] unless hitting a boundary. During the
regrowth (‘‘rebound’’, see Fig. 1(a)] of the bubble, the
microjet becomes visible because of its conical shell of
vapor [5,11–13], here called the ‘‘vapor jet’’ (Fig. 3).
The velocity and structure of jets of bubbles were modeled
and measured in various cases [4,8,9,14], but no general
relation is known between the ‘‘jet size’’ and the
underlying pressure gradient. Such a relation would allow
the modulation of jets by specifically engineering
the pressure field, and, vice versa, permit a measurement
of a pressure field via static images of jetting bubbles
(Fig. 1).

This Letter expands the state-of-the-art in three ways.
(i) It presents the first high-speed movies of the jets caused
by a gravity-induced pressure gradientrp ¼ �g in normal
gravity (g ¼ 9:81 m s�2, liquid density � � 103 kgm�3).
(ii) It performs a systematic study of the vapor jets ob-
served while varying the maximal bubble radius, the liquid
viscosity, the liquid pressure, and the pressure gradient.
The latter is varied through a modulation of g aboard
parabolic flights [15]. (iii) A statistical analysis of the
data, backed-up by a theoretical derivation, reveals that
the jet size scales with a dimensionless jet-parameter � .

Our experiment relies on a gravity-induced rp, which
exhibits the unique advantage of being uniform in space
and time. Such a gradient approximates, to first order, any
smooth field pðxÞ ¼ pð0Þ þ xyrpþOð@2pÞ, where
rp � rpð0Þ. Examples of rp are

rp ¼

8>><
>>:

�g gravitational field ðaÞ;
��ðv � rÞv stat. potential flow ðbÞ;
þ0:2R0�ph=h

3 rigid flat surface ðcÞ;
�0:2R0�ph=h3 free flat surface ðdÞ;

(1)

where v is the velocity field, R0 is the maximal bubble
radius before collapse, h is the shortest vector from the
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FIG. 1 (color). Observations of the vapor jets directed against
rp during the rebound of cavitation bubbles. (a)–(d) match the
cases of Eqs. (1)(a)–(d): (a) (video online [30]) Collapse and
rebound of a bubble (R0 � 4 mm, �p � 15 kPa) in 0g (upper)
and 1g (lower); note the shock at the collapse. (b) Rebounding
bubble (R0 � 1 mm, �p � 100 kPa) moving leftwards while
jetting against the dynamic rp, orthogonal to the calculated p
contours. (c),(d) Bubbles (R0 � 2 mm, �p � 100 kPa) re-
bounding with a jet towards a flat rigid surface (h ¼ 5:3R0)
and away from a flat free surface (h ¼ 5:1R0), respectively.
Images were taken using the setup of this Letter (a),(c),(d) and
a cavitation tunnel [29] (b).
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surface to the bubble center, and �p � p0 � pv with p0

being the pressure at cavity level and pv the vapor pressure.
Equation (1)b follows from momentum conservation of an
incompressible, stationary potential flow. Equations (1)c,d
provide ‘‘effective’’ time averages of the self-generated
pressure anisotropy of a bubble growing and collapsing
close to a flat boundary: rp is defined such that adding a
constant counter-gradient �rp would suppress the jet
according to Ref. [16]. Jets described by Eqs. (1)a–d are
shown in Fig. 1.

Experimental setup.—Our setup (Fig. 2) uses a high-
speed camera (Photron SA1.1) operating at up to
250 000 fps with exposure times of 370 ns to record a
cavitation bubble generated by a pulsed laser (Quantel
CFR 400, 532 nm, 8 ns). The laser is focussed inside
a liquid volume to form a point-plasma [17] (diameter &
0:1 mm), which quickly cools and condensates while
growing a bubble that subsequently collapses and re-
bounds. Whereas past studies [5,6,18] used lenses to focus
a laser, we here use for the first time a concave parabolic
mirror (Fig. 2). We found the mirror technique to produce
bubbles of much higher sphericity, since reflection is inde-
pendent of the liquid’s refractive index and mirrors allow
large angles of convergence (here 53�) without spherical
aberration. Our millimeter-sized bubbles are so spherical
that the tiny gravity-induced pressure difference between
their top and bottom becomes the dominant source of jet
formation. To our knowledge, this experiment provides the
first clean movies of gravity-jets in normal gravity con-
ditions. Similar observations in the past [7] required large
bubbles (R0 > 1cm) in hypergravity.

The four controllable experimental parameters are the
maximal bubble radius R0 (varied in the range 1–7 mm),
the liquid pressure at cavity level p0 (8–80 kPa), the norm
of the pressure gradient jrpjð0–18 kPam�1Þ, and the

dynamic viscosity � (1-30 m Pas). These parameters are
controlled as follows: A pressure-regulated vacuum pump
depressurizes the liquid at a precision of 0.2 kPa, while also
removing traces of laser-generated gas. The flight maneu-
vers (93 ballistic trajectories, straight cruise, 24 steep
turns) provide intervals of stable gravity at 0g, 1g, 1:2g,
1:4g, 1:6g, and 1:8g (i.e., g ¼ 1:8� 9:81 ms�2), as well as
transition phases, thus offering a wide range of gradients
jrpj ¼ �g. By adjusting the energy of the laser pulse and
the pressure p0, bubbles of various radii R0 can be ob-
tained. R0 is then measured at 10 �m accuracy on the
high-speed movies [e.g., Fig. 1(a), left]. These movies
resolve the initial growth and collapse of the bubble into
more than 100 frames. Demineralized water is used in the
experiments at variable gravity, while ground-based
follow-up experiments use water-glycerol mixtures to
expand the viscosity range from � ¼ 1 mPa s (pure water)
to � ¼ 2 mPa s (25% glycerol mass) and � ¼ 30 mPa s
(75% glycerol). The addition of glycerol mainly alters �,
but it also affects pv, �, and the sound speed c. These
variations are accounted for in the data analysis below
[Eq. (3)].
Experimental results.—Observations of rebounding bub-

bles with a gravity-jet are shown in Figs. 1(a), 3(a), 3(b),
and 4. Most of these images use a parallel backlight
(Fig. 2); hence, the bubbles appear in absorption against
a white background. This type of imaging allows a precise
measurement of the bubble geometry and a visualization of
shocks [Fig. 1(a)]. An alternative front-illumination dis-
closes the internal structure, namely, the narrow microjet
inside the vapor jet [Fig. 3(b)]. The missing jet in ‘0g’
[Fig. 1(a), top] proves the gravitational origin of the jets.
Rayleigh-Taylor instabilities during the rebound [19] can
be excluded as jet drivers because of the torus-topology
[Figs. 3(b) and 3(c)].
Nearby boundaries can also cause jets by altering

the pressure gradient [5,6,11], and they dominate over
gravity if � � h2�g=ðR0�pÞ< 0:2 [square of Eq. 8.8 in
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FIG. 3. (a),(b) Observations of the gravity-driven jet of a
rebounding cavitation bubble (R0 ¼ 3 mm, �p ¼ 10 kPa) in
normal gravity: (a) using a back-illumination (see Fig. 2), (b)
using a front-illumination and adaptive overlaying of different
exposures to increase the dynamic range and sharpness. The
vapor jet envelops a narrow microjet in agreement with simula-
tions [14]. (c)–(e) Model (see text).
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FIG. 2 (color online). Schematic view of the experiment flown
on parabolic flights. The test chamber, filled with a water-
glycerine mixture of adjustable viscosity, is pressure controlled.
An ultraspherical cavitation bubble is produced by a 8 ns laser
pulse focused with a parabolic mirror at a high convergence
angle of 53�. (Dimensions in mm).
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Ref. [16]]. Here, h ¼ 55 mm is the distance from the
parabolic mirror to the bubble center. To guarantee accu-
rate results we only retain gravity-dominated cases with
� � 0:5, thus keeping a sample of 104 bubbles with jets.
Yet, many small bubbles (R0 & 2:5 mm, thus h=R0 * 22)
in ‘0g’ (� ¼ 0) yield no jet [Fig. 1(a), top], since the
influence of boundaries is too weak. Albeit excluded
from the analysis, these data are shown in Fig. 4 as a single
point.

For each bubble in the sample, each high-speed image of
the rebound phase is decomposed into a circular disk and a
jet, using a �2 fit of a circular top-hat function. The jet
volume V�

jet [vaporþ liquid, Fig. 3(c)] is then calculated

assuming axial symmetry about the jet-axis. Since V�
jet only

contains a part of the microjet, we define an effective
volume Vjet as the geometrical extension of V�

jet into the

bubble [Fig. 3(c)]—an approach justified in § ‘‘theoretical
model.’’ The relation between Vjet and V�

jet depends on the

cone angle’. This angle is measured along the edges of the
vapor jet rather than at its tip to bypass potential deforma-
tions of the tip by surface tension. When V�

jet is maximal,

we observe ’ � 4� across all bubbles. Trigonometry then

implies [20] Vmax
jet ¼ ðV�max1=3

jet þ 0:2R1Þ3 where R1 is the

maximal bubble radius during the rebound. We finally
define a ‘‘normalized jet volume’’ as

�jet � Vmax
jet =½ð4�=3ÞR3

1	: (2)

Aiming for a model of �jet, we adopt the ansatz that �jet is

proportional to a nondimensional parameter � , defined as a
power law of the parameters R0, �, g, p0, �, and the liquid
compressibility (sound speed c). The surface tension 	 is
neglected as justified for our relatively large bubbles [21],
but we will show (theory below) that even the jets of much
smaller bubbles remain insignificantly affected by surface
tension. The most general nondimensional form of � then
reads

� ¼ ðR

0�

�g�p
���1c�
þ2��1��
þ1Þ�; (3)

where 
, �, � are free parameters. To determine 
, �, �
we perform a �2 fit, minimizing the uncertainty-weighted
rms of �jet=� over the 104 data points. This yields


 ¼ 1:04
 0:03, � ¼ 1:05
 0:20, � ¼ 0:98
 0:10
(with �2 ¼ 0:9), where the ranges are 67% confidence
intervals obtained by bootstrapping the data [22]. Since

 ¼ � ¼ � ¼ 1 is consistent with the data, it seems natu-
ral to adopt this choice. Substituting jrpj ¼ �g then
reduces Eq. (3) to

� ¼ jrpjR0=�p: (4)

Figure 4 shows the measured values of �jet as a function of

� together with the linear regression (solid line)

�jet ¼ 5:4�: (5)

A remarkable feature of this proportionality relation
[Eqs. (4) and (5)] is its independence of the viscosity �,
as verified for �-variations by a factor 30 (Fig. 4).
If no vapor jet is observed (V�max

jet ¼ 0), Eq. (2) implies

�jet ¼ �min
jet � 0:002. The inequality �min

jet > 0 reflects that

when no vapor jet forms, a microjet may still be present. In
fact, no vapor jet arises in all cases between no microjet
[Fig. 3(d)] and a microjet that just touches the bubble
surface [Fig. 3(e)]. This range of indeterminacy is shaded
in Fig. 4. Using Eq. (5) the threshold value �c, where
�jetð�cÞ ¼ �min

jet , reads �c � 4 � 10�4. The jet only pierces

the bubble surface if � > �c; i.e., �c delimits the topologi-
cal transition between a sphere and a torus. To confirm this
conjecture further investigations of this transition are
needed.
Theoretical model.—The relation �jet / � will now be

derived from first principles. By conservation of momen-
tum, the microjet momentum equals the integrated mo-
mentum accumulated by the liquid during the bubble
growth and collapse. This momentum, called ‘‘Kelvin-
impulse’’, was explored by Blake [16]. It can be computed

as I ¼ RTc�Tc
dt

R
SðtÞ dF, where Tc is the collapse time,

S is the bubble surface (here assumed spherical), and
dF ¼ �pdS is the force acting on the bubble surface.
Spherically symmetric (isotropic) terms in the pressure
field p vanish in the integral over S. Hence, we only
consider anisotropic pressure terms, here given by a con-
stant rp, defined as the pressure gradient in the absence of
a bubble. The bubble adds an additional gradient that varies

= 1 mPa sη
= 2 mPa sη
= 30 mPa sη
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FIG. 4 (color). Scaling law. Black points are data at varying
R0, p0, � and fixed g ¼ 9:81 ms�2. Colored points are data at
varying R0, p0, g and fixed � ¼ 1 mPa s (green: g < 11 ms�2,
red: g > 16 ms�2, blue: intermediate). Some 67% measurement
uncertainties are shown by the error bars. The solid line is the
weighted regression [Eq. (5)]. The zone of experimental inde-
terminacy, covering the cases between Figs. 3(d) and 3(e), is
gray shaded.
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with the normalized time 
 � t=Tc. This bubble-generated
gradient contains a radial, spherically symmetric term
(section 3.2.3 in [23]) vanishing in the momentum integral,
and a linear term proportional to rp caused by the motion
of the bubble center. Thus, neglecting isotropic terms,
dF ¼ �fð
Þðrp �RÞdS, where fð
Þ is a scalar function
and RðtÞ is the vector from the bubble center to a surface
element. In this generic model, the microjet momentum I
solves to [24]

I / �rpR3
0Tc: (6)

Tc is the key term, where side-effects can intervene. While

theRayleigh-theory [25] impliesTc � 0:915R0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�p

p
, the

Plesset-theory [26] details the following: (i) Incondensable
gas increases Tc (see section ‘‘Discussion’’). (ii) Surface
tension decreases Tc—by less than 1% for our bubbles
and by about 7% for a microbubble (R0 ¼ 10 �m) in water
at standard conditions (	 ¼ 0:07 Nm�1, p0 ¼ 105 Pa).
Carried along to Eq. (8b), this 7% effect reduces the jet
mass by only 14%, comparable to a 1 �m-measurement
error of R0. (iii) Viscosity increases Tc for small bubbles,
but the effect is even weaker—about 1% for a bubble with
R0 ¼ 10 �m (at � ¼ 1 mPas, p0 ¼ 105 Pa). Hereafter Tc

in Eq. (6) will hence be approximated as 0:915R0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�=�p

p
.

In analogy to the ‘‘Kelvin impulse’’ we now introduce a

kinetic ‘‘Kelvin energy’’ E ¼ 2
RR0

0

R
SðtÞ jdF � dRj, result-

ing from the work done by the same anisotropic forces that
generate the jet’s momentum. Thus [27],

E / jrpjR4
0: (7)

Defining m and v as the mass and spatially averaged
velocity of the fully developed microjet (Fig. 3) implies
I ¼ mv and E / mv2. Equations (6) and (7) then yield

v / �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�p=�

q
ê; (8a)

m / jrpjR4
0�=�p; (8b)

where ê � rp=jrpj. Equation (8a) is a known relation
[8], while Eq. (8b) is of interest regarding the jet volume.
We hypothesize that the effective jet volume scales with
the microjet volume, Vmax

jet ¼ "m��1, at an efficiency

" / R3
1=R

3
0. This approximation derives from the observa-

tion that the vapor jet grows out of the rebound bubble, thus
consuming a fraction of the rebound volume / R3

1.

Equations (2) and (8b) then imply

�jet / jrpjR0=�p � �: (9)

Alternatively, Eq. (9) also results from assuming �jet pro-

portional to E=E0, where E0 ¼ ð4�=3ÞR3
0�p.

Discussion.—In summary, Eqs. (5) and (9) demonstrate
experimentally and theoretically that the normalized
jet volume �jet is proportional to � . Along this discovery

subtle issues were encountered that are worth explaining:
(i) Eq. (9) is not ‘‘scale invariant’’ as it depends
on R0: given rp, big bubbles yield larger �jet than

small ones. Formal scale invariance is nonetheless
recovered using an adequately normalized gradient
~r � P3

i¼1 @=ð@xi=R0Þêi ) � ¼ j~rpj=�p. (ii) How can a

microjet survive inside the hot gas [28] during the collapse
point? This feature might be attributed to the lifetime of the
hot gas (< 1 �s, [28]) being too short to evaporate the jet.
(iii) We neglected incondensable gas inside the bubble,
since the measured bubble radii RðtÞ agree within 1%
with the Rayleigh-equation [25], when neglecting incon-
densable gas. If bubbles contain significant amounts of
incondensable gas, they do not fully collapse, hence less
concentrating their Kelvin impulse. (iv) While Eqs. (5) and
(9) rely on stationary rp’s, they also approximate nonsta-
tionary situations, if the characteristic time-scales are com-
parable to or above Tc. This is illustrated by the data of
Figs. 1(c) and 1(d) (where �jet ¼ 0:2R2

0h
�2) plotted as stars

in Fig. 4. (v) We here considered jet parameters � < 0:008.
Larger � may produce more complex bubblejet morphol-
ogies, requiring a decomposition into spherical harmonics.
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