Electron Energy Loss Spectrometry

Spectrometry

Cécile Hébert

Centre Interdisciplinaire de Microscopie Electronique Laboratoire de Spectrométrie et Microscopie Electronique Ecole Polytechnique Fédérale de Lausanne

Abstract

EELS (electron energy loss spectrometry) is a technique used in TEM. It analyses the energy *lost* by the incoming fast electrons when they travel through the sample. While diffraction effects in the TEM are driven by the interaction of the fast electrons with the nucleus, in EELS, one deals with electro-electron interactions. This is the interaction between the electron of the beam and the electrons in the sample. Therefore EELS is able to provide information about the electronic structure of the sample. EELS can also be used for chemical analysis, and can provide quantitative information about the composition of the specimen. Since the energy lost is relatively small compared to the energy of the incoming electron (at most 2 to 3000 eV compared to 120 -300 keV in conventional microscopes), the electrons which have lost energy can still be "used" for imaging the specimen. Imaging the specimen with electrons which have lost energy characteristic for a certain atom will provide a cartographic picture of the repartition of this kind of atom in the sample. This is called chemical mapping.

Looking at the fine structure in the EELS spectrum will give information about the electronic state in the samples, and these results can be compared to theoretical calculations.

Outline

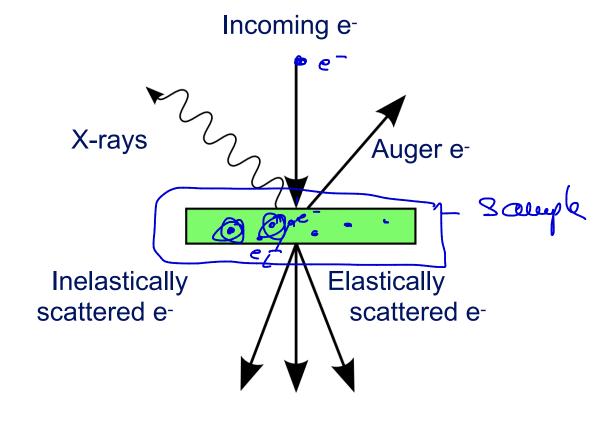
- Introduction: EELS in the TEM
- Instrumentation
- Core Loss EELS
 - Theory
 - Applications
- Low losses
- Imaging (EFTEM)
- ELNES

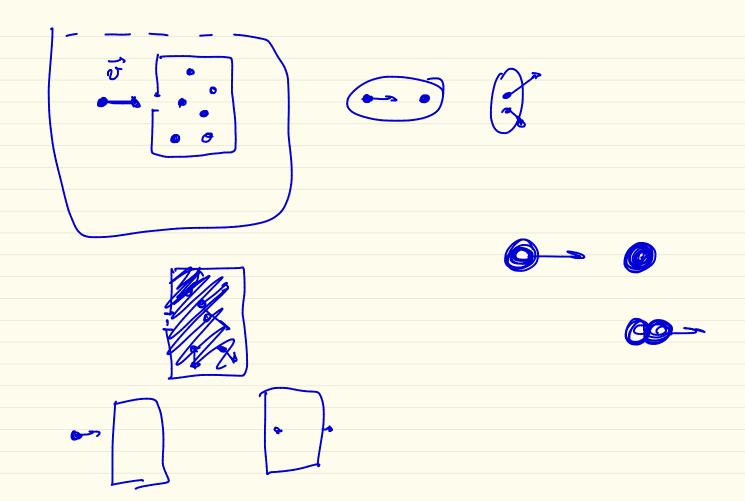
Outline

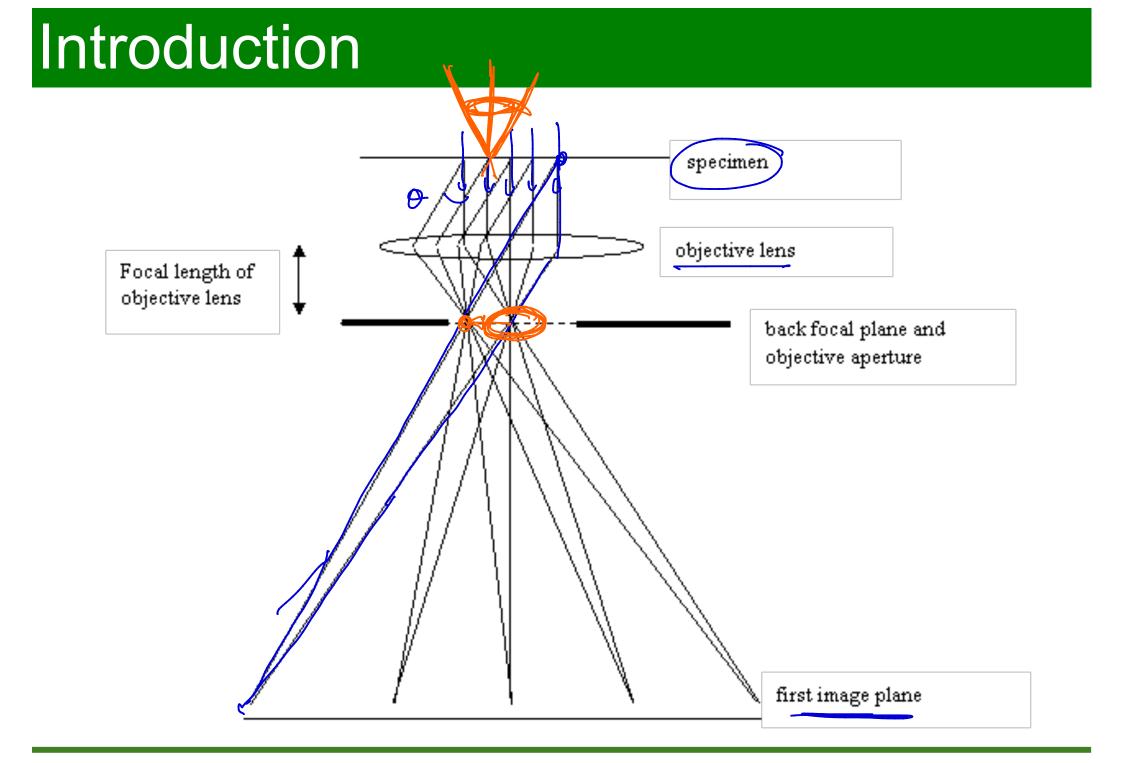
- Introduction: EELS in the TEM
- Instrumentation
- Core Loss EELS
 - Theory
 - Applications
- Low losses
- Imaging (EFTEM)
- ELNES

EELS in the TEM

Probe = electrons 100-300 kV Velocity: 0.55-0.77 c

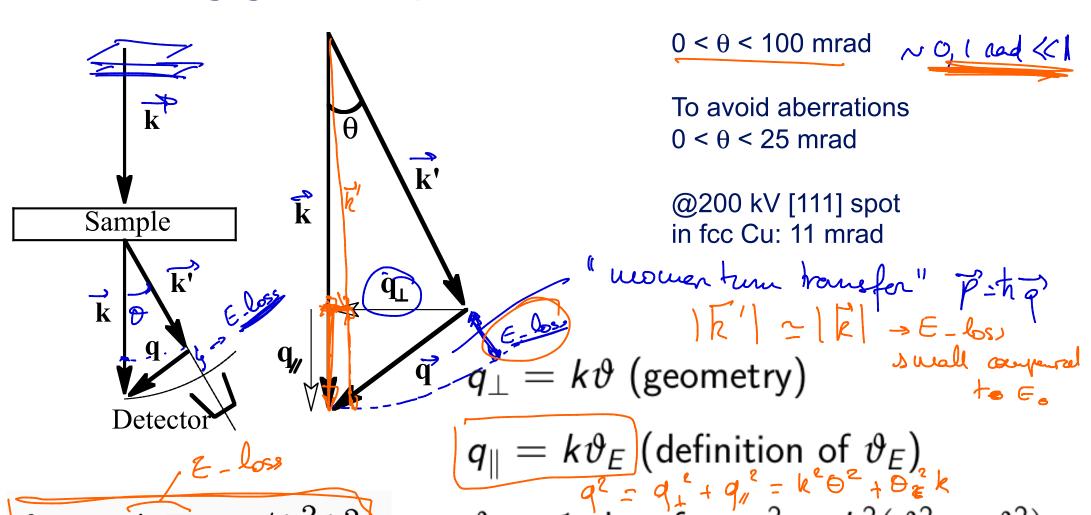






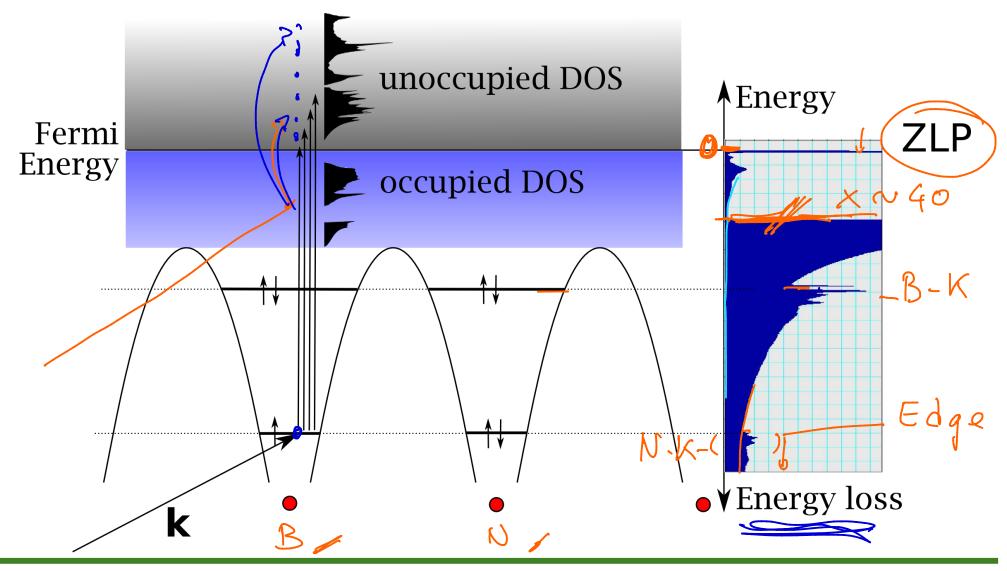
Scattering geometry

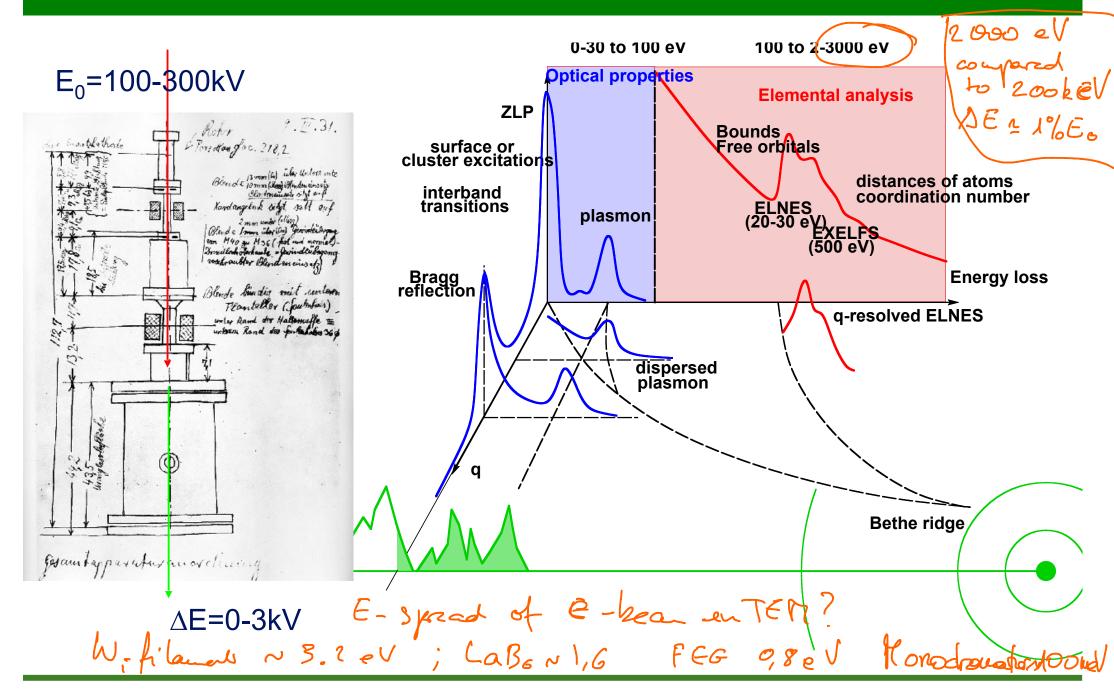
$$q^2 = k^2 + (k')^2 - 2kk' \cos\theta$$

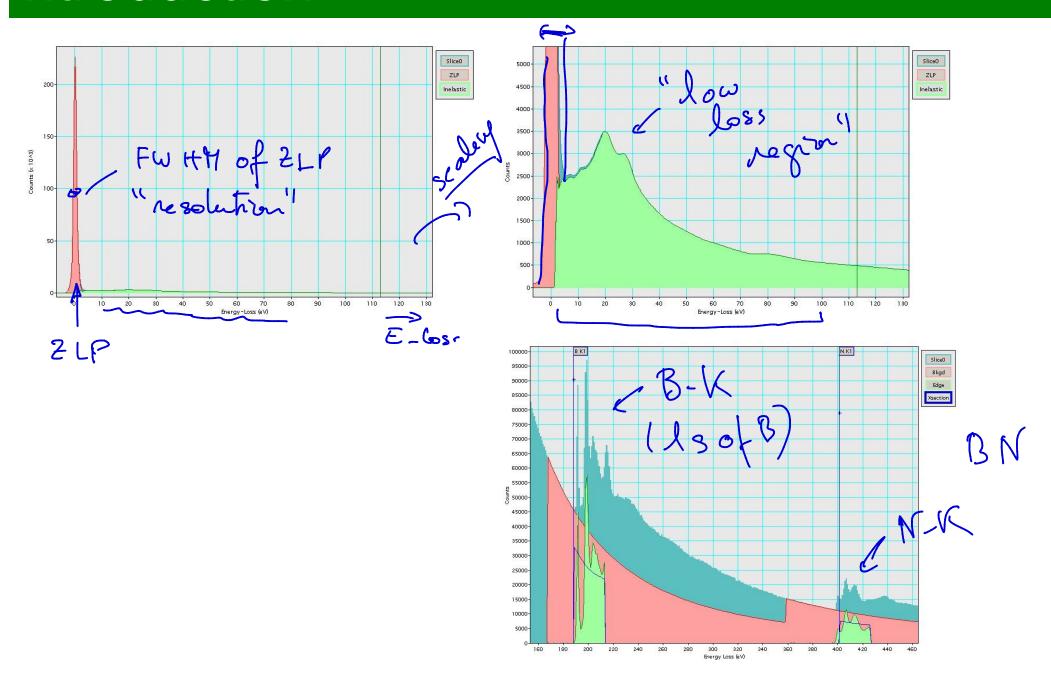


 $heta_E = \Delta E m \gamma / \hbar^2 k^2$ $heta_E = \psi \ll 1$ therefore $q^2 = k^2 (\vartheta_E^2 + \vartheta^2)$

Excitation process

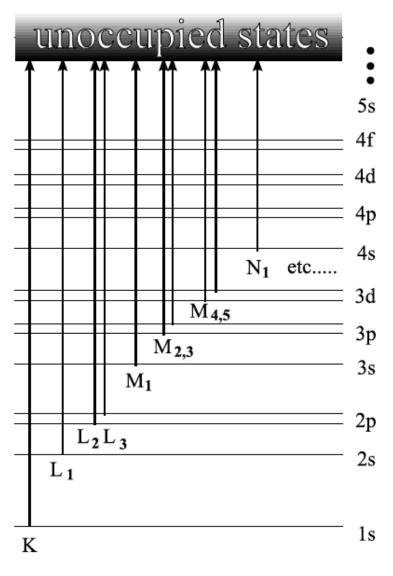




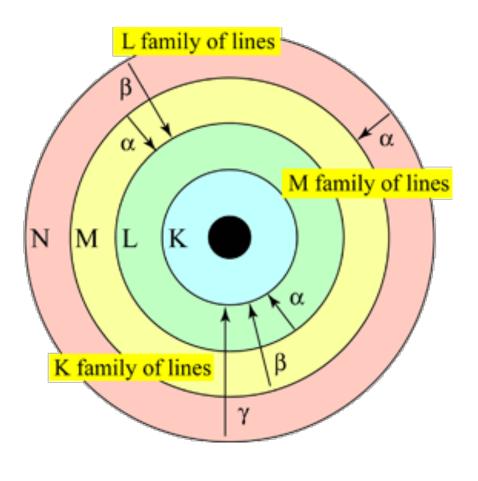


Edge nomenclature

EELS



EDX



Plural scattering; mean free path

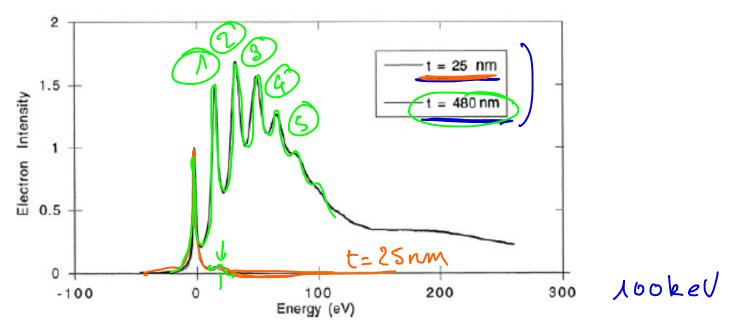


Fig. 1.5 Energy-loss spectra recorded from silicon specimens of two different thicknesses. The thin sample gives a strong zero-loss peak and a weak first-plasmon peak; the thicker sample provides plural scattering peaks at multiples of the plasmon energy

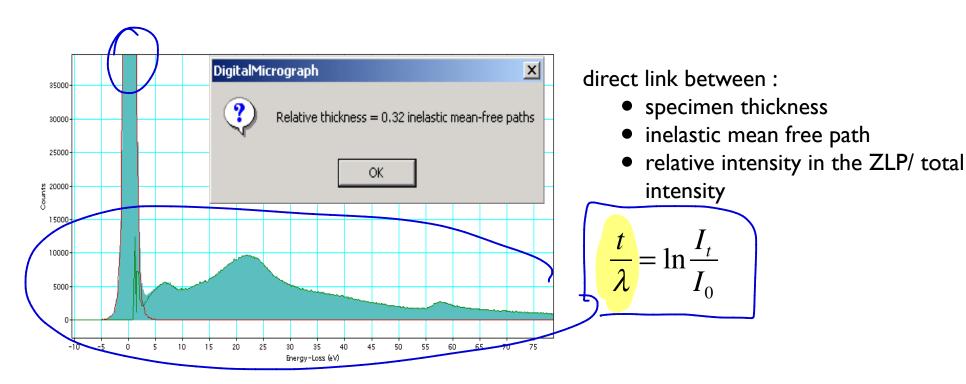
An incident electron can interact many times with the specimen: plural scattering is likely to occur

The inelastic mean free path gives the average distance between 2 inelastic scattering events. It is typically 50-150 nm

Plural scattering; mean free path

inelastic mean free path depends B? collection angle "}

Thickness measurements



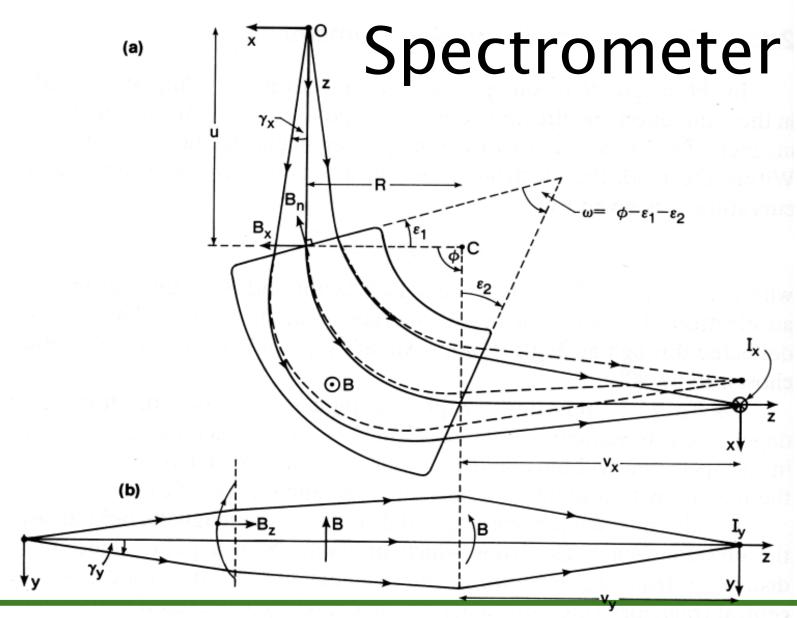
Be careful, λ depends on the acquisition conditions!

$$\lambda \approx \frac{106F(E_0/E_{\rm m})}{\ln(2\beta E_0/E_{\rm m})}$$
 $F = \frac{T}{E_0} = \frac{m_0 v^2}{2E_0} = \frac{1 + E_0/1022 \text{ keV}}{(1 + E_0/511 \text{ keV})^2}$ $E_{\rm m} \approx 7.6 \, Z^{0.36}$ $\Rightarrow \lambda$ in the 20% accuracy

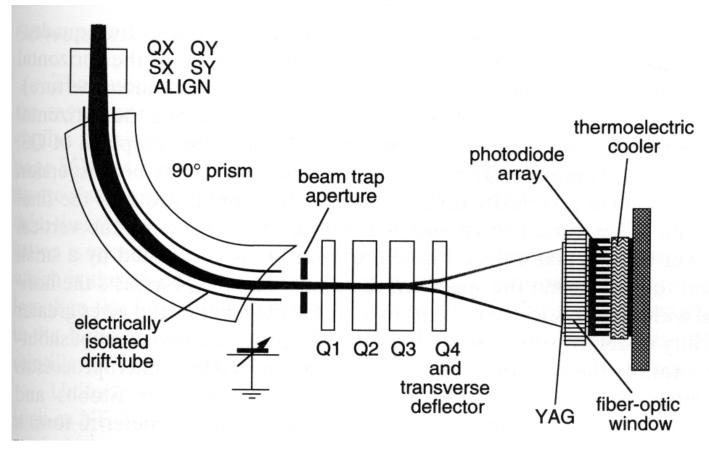
Outline

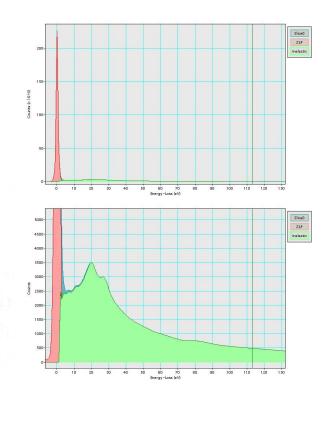
- Introduction: EELS in the TEM
- Instrumentation
- Core Loss EELS
 - Theory
 - Applications
- Low losses
- Imaging (EFTEM)
- ELNES

Instrumentation

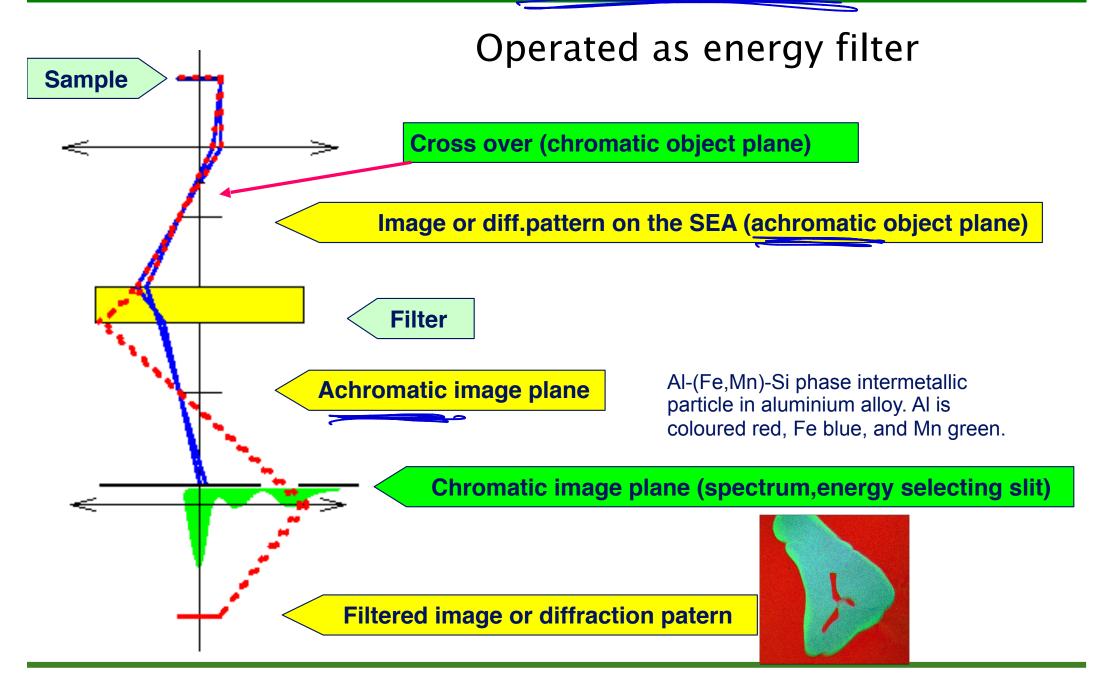


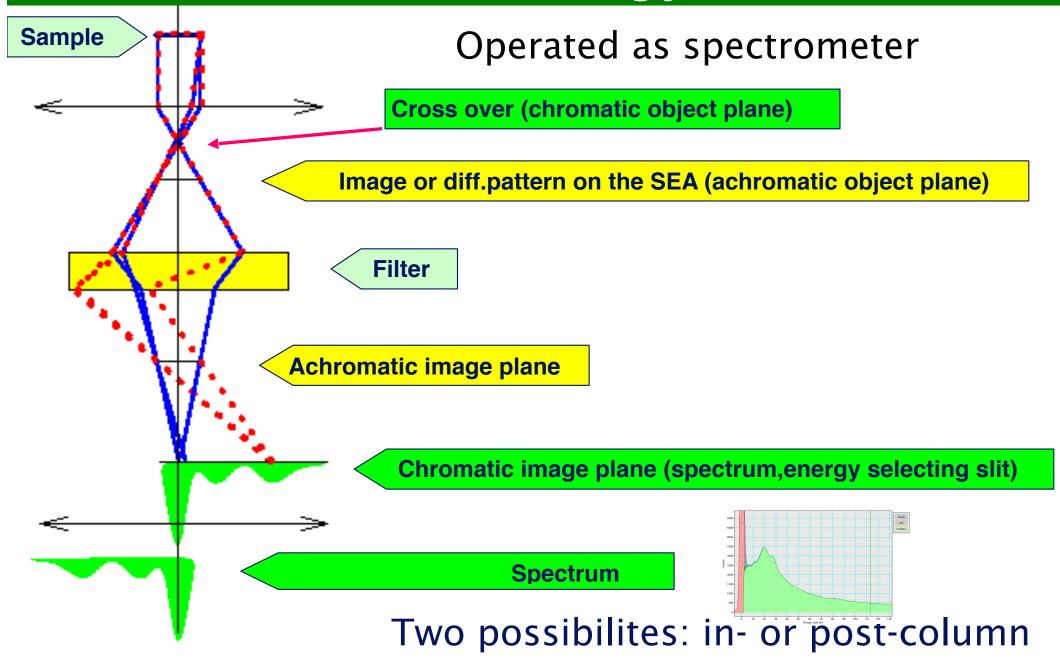
Instrumentation

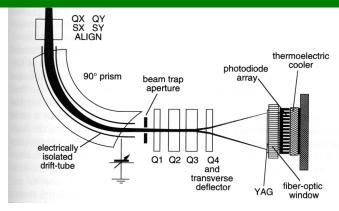




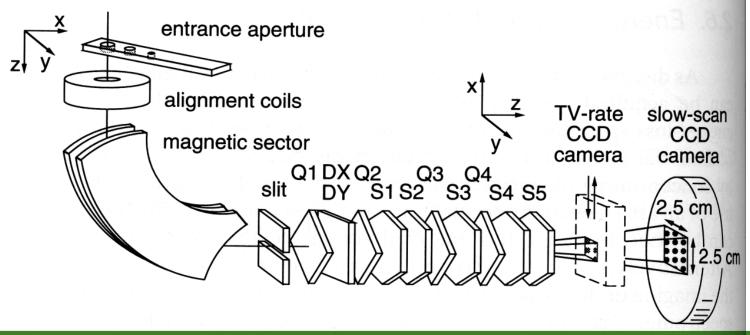
Gatan PEELS 666 Gatan digi-PEELS 766 Gatan Enfina

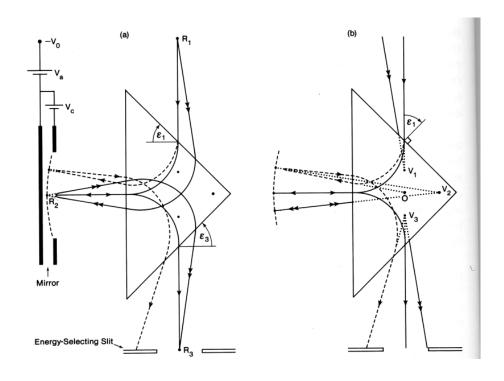






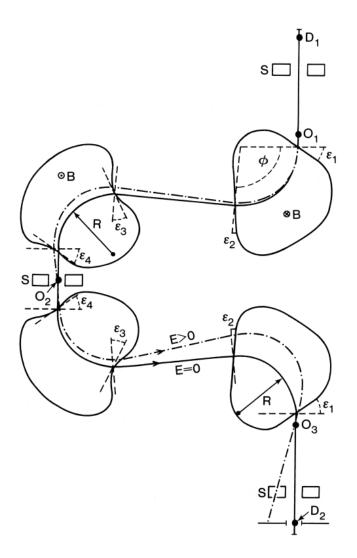
Gatan Imaging Filter





1962: Castaing-Henry filter

1984: Zeiss 902



Zanchi; Krahl: Omega filter

1992: Zeiss 912

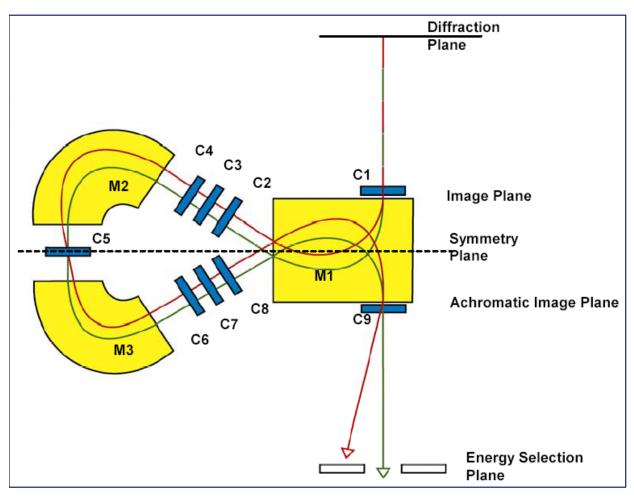
Jeol: omega

Zeiss libra: corrected omega

Mandoline:

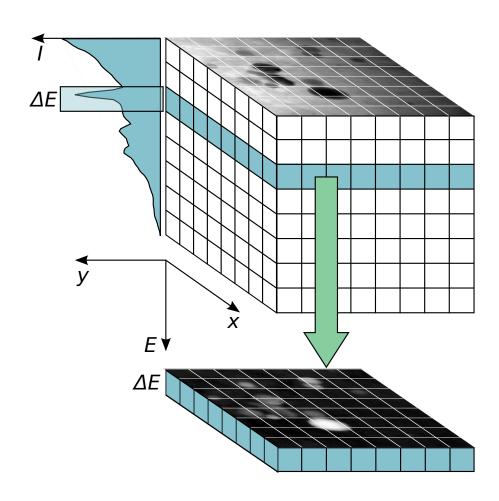
SESAM project (Zeiss)

Installed and working in Stuttgart

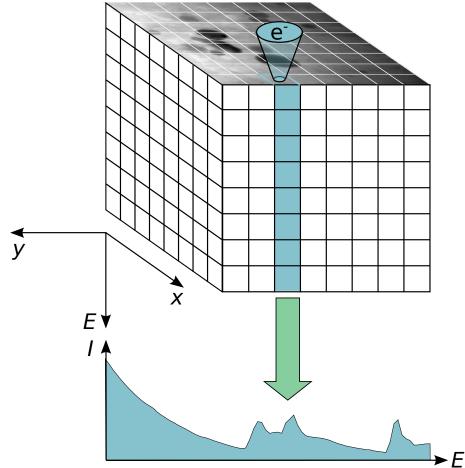


Instrumentation: data acquisition

3D Data cubes: EFTEM vs. (STEM)-EELS



An energy filtered image is a slice from the 3D data cube.



Each recorded spectrum corresponds to a column in the 3D data cube.

Outline

- Introduction: EELS in the TEM
- Instrumentation
- Core Loss EELS
 - Theory
 - Applications
- Low losses
- Imaging (EFTEM)
- ELNES

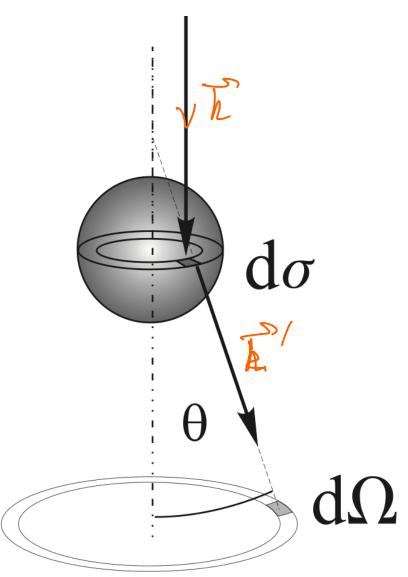
transition from core (occupied) to unoccupied state
We need quantum mechanics!
System = fast incoming electron + target electron
first order perturbation theory
First Born approximation
perturbation potential is Coulomb potential

H.A.Bethe: 1930:

Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie

Annalen der Physik, vol. 397, Issue 3, pp.325-400

Core loss EELS: theory

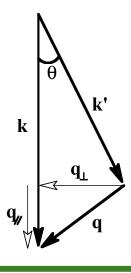


Relevant quantity: scattering cross-section as a function of angle θ and energy loss E.

It is given for one atom.

We consider a transition from initial state | I > to final state | F > for the core electron of the atom

q: momentum transfer



Transition probability per unit time dP_{if} from an initial state $|i\rangle$ electron to a final state $|f\rangle$ situated between v_f and $v_f + dv_f$.

$$dP_{if} = \frac{2\pi}{\hbar} |\langle f|V|i\rangle|^2 d\nu_f \, \delta(E_i - E_f)$$
 final state of the system :

Initial and final state of the system:

$$|i\rangle = |\vec{k}\rangle \otimes |I\rangle$$
and
 $|f\rangle = |\vec{k}'\rangle \otimes (F)$ final state in unoccurrent Dos

 $|I\rangle$ and $|F\rangle$ Initial and final states of the target electron.

 \vec{k} before the interaction \vec{k}' after.

$$\vec{q} = \vec{k} - \vec{k}'$$

$$dP_{if} = \frac{2\pi}{\hbar} |\langle F| \otimes \langle \vec{k}' | V | \vec{k} \rangle \otimes |I\rangle|^2 d\nu_f \delta(E_I - E_F + E)$$

 $\langle \vec{k}' | V | \vec{k} \rangle$?? $\longrightarrow V$ Coulomb potential

$$\langle \vec{k}' | V | \vec{k} \rangle = \frac{1}{4\pi\epsilon_0} \int (2\pi)^{-3} d^3 r \frac{e^2}{|\vec{r} - \vec{R}|} e^{i(\vec{k} - \vec{k}')\vec{R}}$$

 \vec{r} position vector of the fast electron \vec{R} of the target electron

$$\langle \vec{k}'|V|\vec{k}\rangle = \frac{e^2}{(2\pi)^3\epsilon_0 q^2}e^{i\vec{q}.\vec{R}}$$

$$dP_{if} = \frac{e^4}{(2\pi)^5 \hbar \epsilon_0^2 q^4} |\langle F|e^{i\vec{q}.\vec{R}}|I\rangle|^2 d\nu_f \,\delta(E_I - E_F + E)$$

depends on E-loss & O

$$d\sigma = \sum_{i,f} \frac{dP_{if}}{j_0}$$

 j_0 current density of the plane wave

$$\psi_{\vec{k}}(\vec{R}) = (2\pi)^{-3/2} e^{i\vec{k}\cdot\vec{R}}$$
 $j_0 = (\hbar k)/((2\pi)^3 m)$

$$d\sigma = \sum_{I,F} \frac{me^4}{(\hbar 2\pi\varepsilon_0)^2 q^4 k} |\langle F|e^{i\vec{q}.\vec{R}}|I\rangle|^2 d\nu_f \delta(E_I - E_F + E)$$

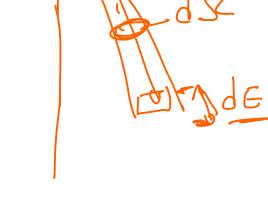
 $d
u_f = d
u_t \, d
u_e \, (d
u_t$: target electron, $d
u_e$: fast electron) $d
u_e = (k' m) / \hbar^2 d E d \Omega$

$$d\nu_e = (k'm)/\hbar^2 dEd\Omega$$

If the final state is expressed in an orthogonal basis set:

$$d\nu_t = 1$$

$$d\nu_f = k' \frac{m}{\hbar^2} dE d\Omega$$



$$\frac{\partial^2 \sigma}{\partial E \partial \Omega} = \sum_{I,F} 4 \frac{m^2 e^4}{\hbar^4 (4\pi)^2 \varepsilon_0^2 q^4} \frac{k}{k'} |\langle F| e^{i\vec{q}.\vec{R}} |I\rangle|^2 \delta(E_I - E_F + E)$$

Relativistic effects : $m
ightarrow \gamma m$

Core loss EELS: theory

$$\frac{\partial^2 \sigma}{\partial E \partial \Omega} = \sum_{I,F} \frac{4\gamma^2}{a_0^2 q^4} \frac{k'}{k} |\langle F | e^{i\vec{q}.\vec{R}} | I \rangle|^2 \delta(E_I - E_F + E) = \underbrace{\frac{4\gamma^2}{a_0^2 q^4} \frac{k'}{k}} S(\vec{q}, E)$$

$$S(\vec{q}, E) = \sum_{F} |\langle F|e^{i\vec{q}.\vec{R}}|I\rangle|^2 \delta(E_I - E_F + E)$$

S: Dynamic form factor

 a_0 : Bohr radius

$$\underline{a_0} = \frac{4\pi\varepsilon_0 \hbar^2}{me^2}$$

$$\vec{q} = \vec{k} - \vec{k}'$$

$$\gamma = (1 - v^2/c^2)^{-1/2}$$

R F Egerton, *Electron energy-loss spectroscopy in the TEM*, Rep. Prog. Phys. 72 (2009) 016502 (25pp); Egerton R F 1996 *Electron Energy-Loss Spectroscopy in the Electron Microscope* 2nd edn (New York: Plenum/Springer)

Dipole approximation

$$S(\vec{q},E)=\sum_F |\langle F|e^{i\vec{q}.\vec{R}}|I
angle|^2\delta(E_I-E_F+E)$$

If $\vec{q}.\vec{R}\ll 1$ we can write $e^{i\vec{q}.\vec{R}}\simeq 1+i\vec{q}.\vec{R}$

$$S(\vec{q}, E) = \sum_{F} |\langle F | i \vec{q} . \vec{R} | I \rangle|^2 \delta(E_I - E_F + E)$$

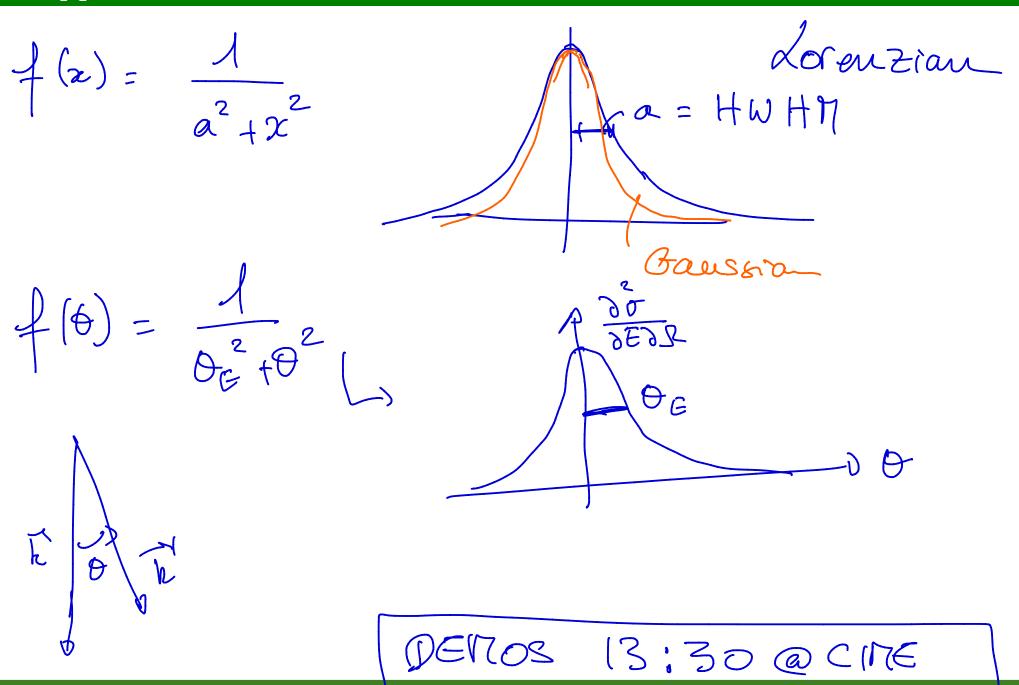
$$S(\vec{q}, E) \propto q^2$$
; $\frac{\partial^2 \sigma}{\partial E \partial \Omega} \propto \frac{1}{q^4} S(\vec{q}, E)$

with the scattering geometry, $q^2=k^2(\vartheta_F^2+\vartheta^2)$

with the scattering geometry,
$$q^2 = k^2(\vartheta_E^2 + \vartheta_E^2)$$
Lorenzian distribution
$$\frac{\partial^2 \sigma}{\partial E \partial \Omega} \propto \frac{1}{\vartheta^2 + \vartheta_e^2}$$

$$\frac{\partial^2 \sigma}{\partial E \partial \Omega} \propto \frac{1}{\vartheta^2 + \vartheta_e^2}$$

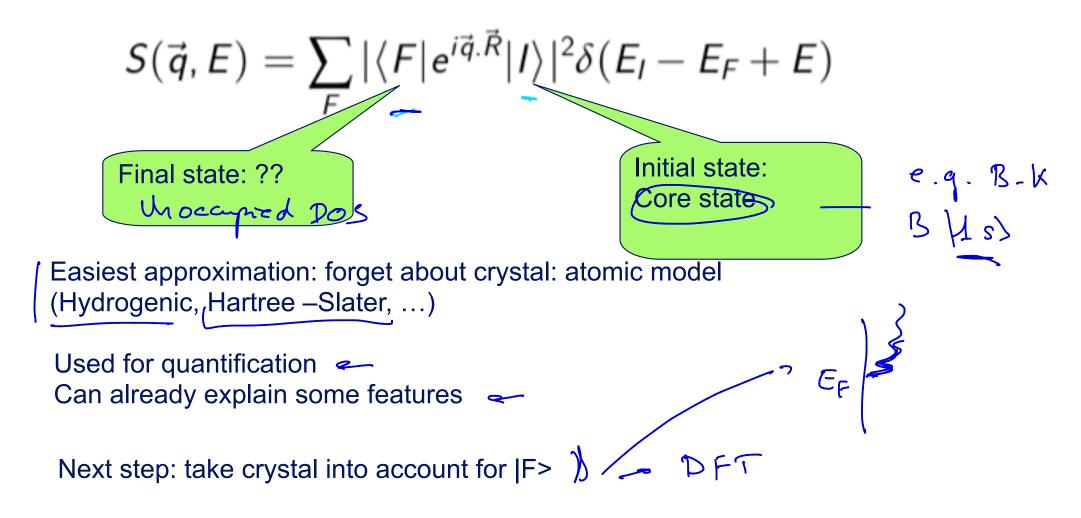
Angular distribution of the ionisation



Core loss EELS: theory



Introduction



Further: consider real electron wave in the crystal (instead of plane wave)
Work in progress P. Schattschneider (TU Vienna), Oxley & Pantelides (Oak Ridge)

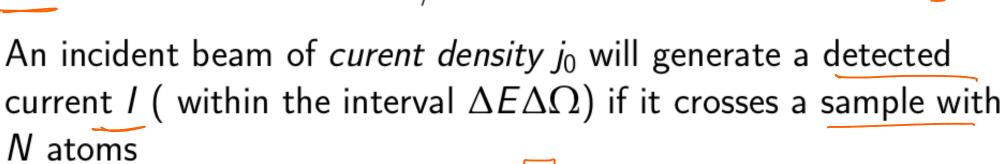
Core loss EELS: quantification

Intensity in the EELS spectrum will be used for quantification

The *partial* ionisation cross section is given by :

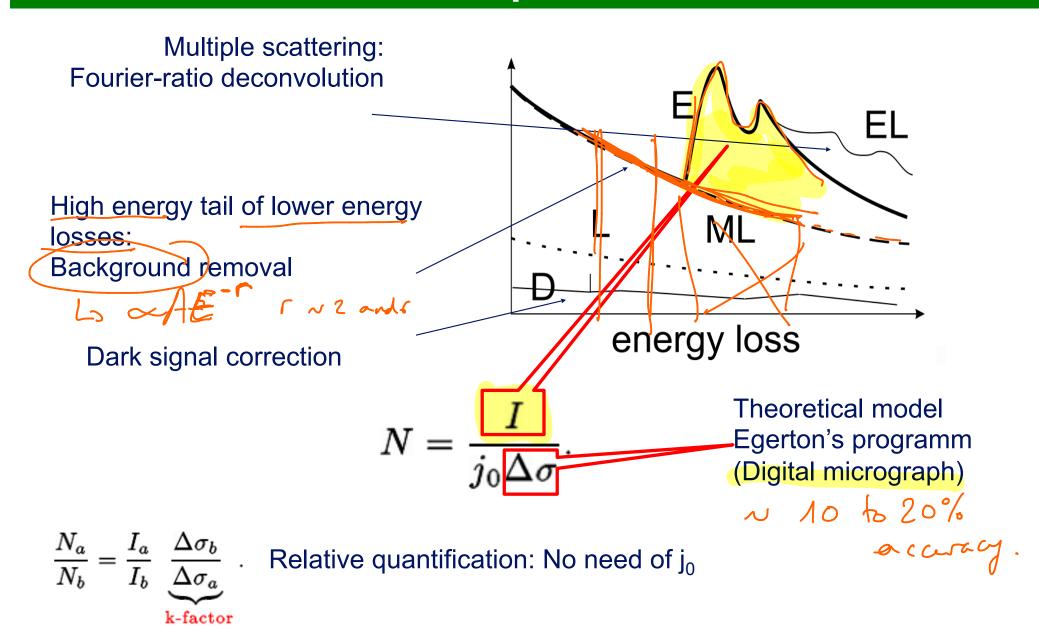
$$\Delta \sigma = \int_{E_n}^{E_n + \Delta E} \int_{\Delta \Omega} dE d\Omega \frac{\partial^2 \sigma}{\partial E \partial \Omega}.$$

 $\Delta\sigma$ has the dimension : $m^2/{
m atom}$.

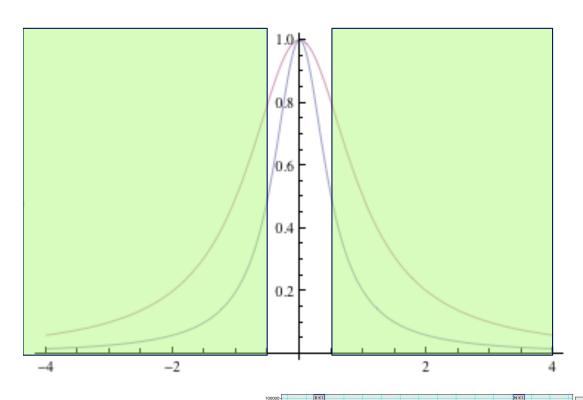


$$= N\Delta \sigma j_0. \qquad N = \frac{T}{\Delta \sigma j_0}$$

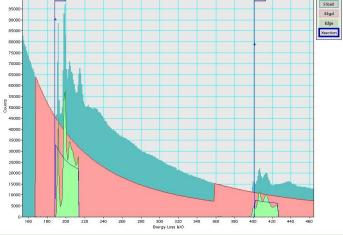
Core loss EELS: quantification



Core loss EELS: theory



 θ_{E} ~ Δ E/2E $_{0}$



Beam Energy: 200 keV

Convergence Semi-Angle: 0 mrad Collection Semi-Angle: 100 mrad

Relative quantification:

Elem. Atomic ratio (/N) % content

B 0.89 ± 0.126 N 1.00 ± 0.000 47.08 ± 4,708

Beam Energy: 200 keV

Convergence Semi-Angle: 0 mrad Collection Semi-Angle: 0.5 mrad

Relative quantification:

Elem. Atomic ratio (/N) % content

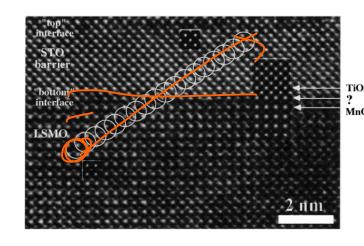
B 0.30 ± 0.042 22.89 N 1.00 ± 0.000 77.11

Outline

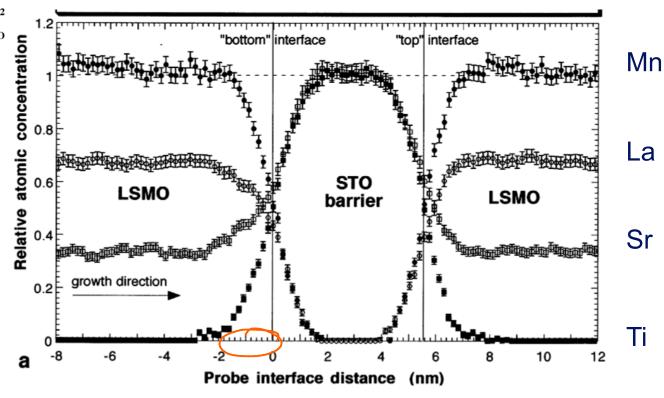
- Introduction: EELS in the TEM
- Instrumentation
- Core Loss EELS
 - Theory
 - Applications
- Low losses
- Imaging (EFTEM)
- ELNES

L. Samet & al. Eur. Phys. J. B 34, 179-192 (2003)

EELS study of interfaces in magnetoresistive LSMO/STO/LSMO tunnel junctions



La_{0.66} Sr_{0.33} MnO₃ ,/SrTiO₃ /La_{0.66} Sr_{0.33} MnO₃

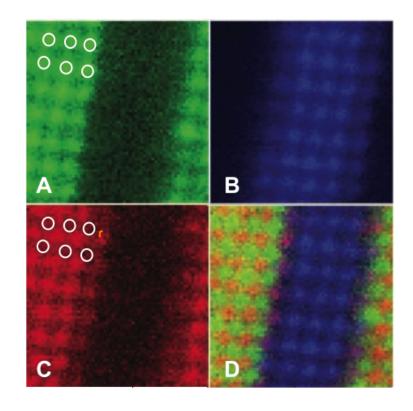


Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy

D. A. Muller, *et al. Science* **319**, 1073 (2008);

DOI: 10.1126/science.1148820

Fig. 1. Spectroscopic imaging of a La_{0.7}Sr_{0.3}MnO₃/ SrTiO₃ multilayer, showing the different chemical sublattices in a 64×64 pixel spectrum image extracted from 650 eV—wide electron energy-loss spectra recorded at each pixel. (A) La M edge; (B) Ti L edge; (C) Mn L edge; (D) red-green-blue falsecolor image obtained by combining the rescaled Mn, La, and Ti images. Each of the primary color maps is rescaled to include all data points within two standard deviations of the image mean. Note the lines of purple at the interface in (D), which indicate Mn-Ti intermixing on the B-site sublattice. The white circles indicate the position of the La columns, showing that the Mn lattice is offset. Live acquisition time for the 64×64 spectrum image was ~30 s; field of view, 3.1 nm.



ELSEVIER

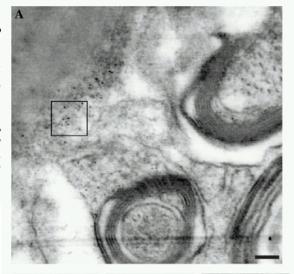
Journal of Structural Biology 150 (2005) 144-153

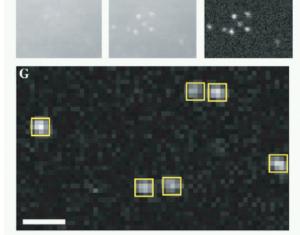
www.elsevier.com/locate/yjsbi

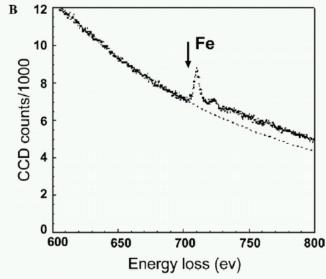
Electron tomography of with abnormal regu

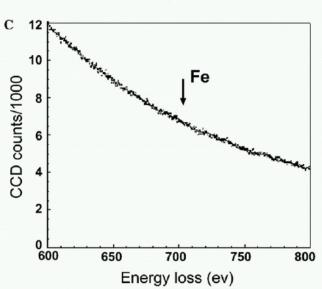
Peijun Zhang ^a, William Land ^b, Stantc Sophia R. Smith ^b, David Germai Tracey A. Rouault

Identification of ferritin molecules. dark field STEM image (contrast reversed) of a thin tissue section from the IRP knockout mouse









Accuracy: - 15-20% under normal conditions
- can be lowered to a few % (standards, same exp conditions...)

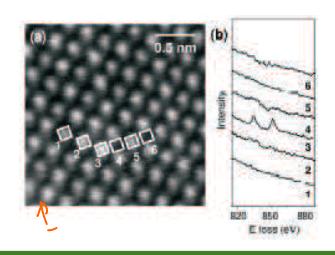
What? (nearly) everything. Good for light elements

Det. Limit Normally a few % (1 to 10). Record: single atom detection

same thickness,

(H, He difficult).

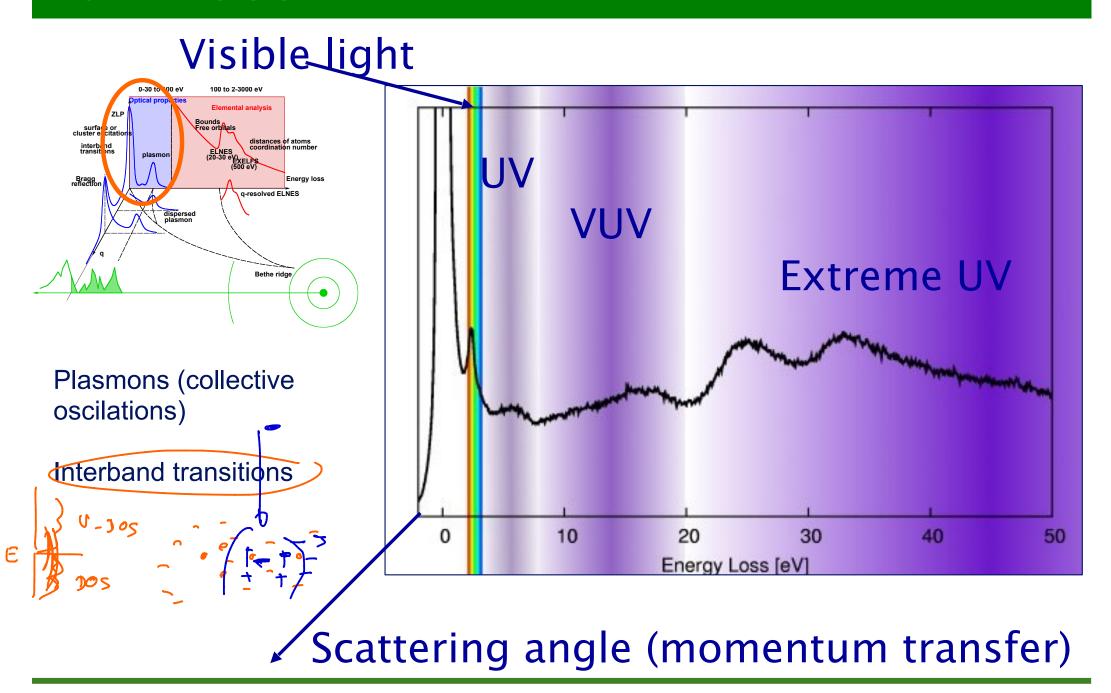
Varela et al PRL 92 (2004) 095502-1



Outline

- Introduction: EELS in the TEM
- Instrumentation
- Core Loss EELS
 - Theory
 - Applications
- Low losses
- Imaging (EFTEM)
- ELNES

Low Loss

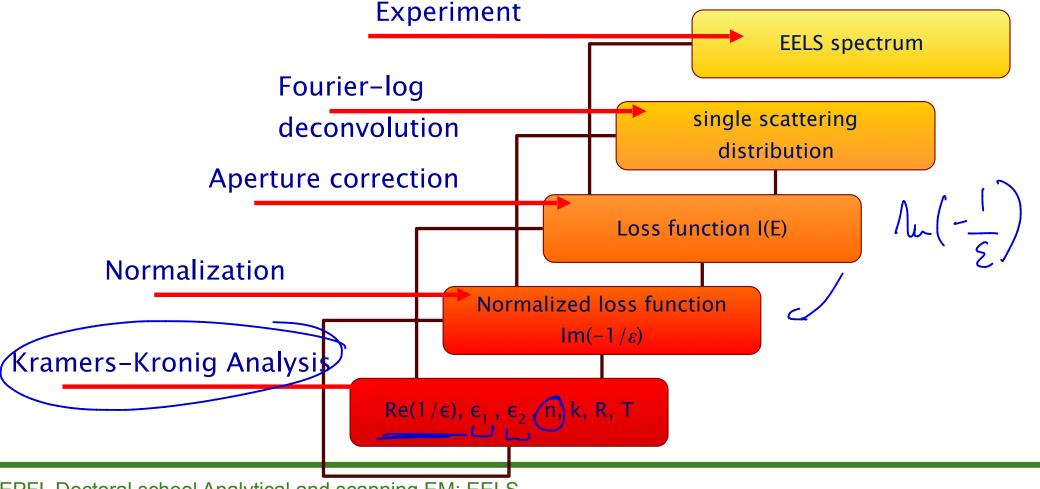


Low Loss

As function
$$lm(-\frac{1}{2})$$
 $\mathcal{E} = couplex dielectric function SSD and loss function$

$$S(E) = \left[\frac{e^2}{\pi\hbar v}\right]^2 \cdot D \cdot \Im\left[\frac{-1}{\varepsilon(E)}\right] \cdot \ln\left[1 + \left(\frac{\beta}{\theta_E}\right)^2\right]$$
 single scattering distribution Sample thicknesses function distribution

Low Loss: KKA From the experiment to the loss function: theory



Low Loss: the Kröger equation

The relation between the double differential cross section and the loss function is a "little bit" more complicated

$$\begin{split} \frac{\partial P(\omega,\mathbf{k}_{\perp})}{\partial\omega\partial^{2}k_{\perp}} = & \frac{e^{2}}{\pi^{2}\hbar v^{2}} \cdot \Im\left[\frac{\mu^{2}}{\epsilon\phi^{2}} \cdot D\right) \underbrace{\text{Volume term}}_{\text{Von classical KoV}} + \underbrace{von classical KoV}_{\text{conv}} \\ & - \frac{2k_{\perp}^{2}(\epsilon - \epsilon_{0})^{2}}{\phi_{0}^{4}\phi^{4}} \cdot \left\{\frac{\phi_{01}^{4}}{\epsilon\epsilon_{0}} \left(\frac{\sin^{2}(\frac{\omega D}{2v})}{L^{+}} + \frac{\cos^{2}(\frac{\omega D}{2v})}{L^{-}}\right)\right\} \\ & + \beta^{2} \cdot \frac{\lambda_{0}\omega\phi_{01}^{2}}{\epsilon_{0}v} \cdot \left(\frac{1}{L^{+}} - \frac{1}{L^{-}}\right) \cdot \sin\left(\frac{\omega D}{v}\right) \\ & - \beta^{4} \cdot \frac{\omega^{2}}{v^{2}} \cdot \lambda_{0}\lambda \left(\frac{\cos^{2}(\frac{\omega D}{2v}) \tanh(\lambda D/2)}{L^{+}} + \frac{\sin^{2}(\frac{\omega D}{2v}) \coth(\lambda D/2)}{L^{-}}\right)\right\} \right] \end{split}$$

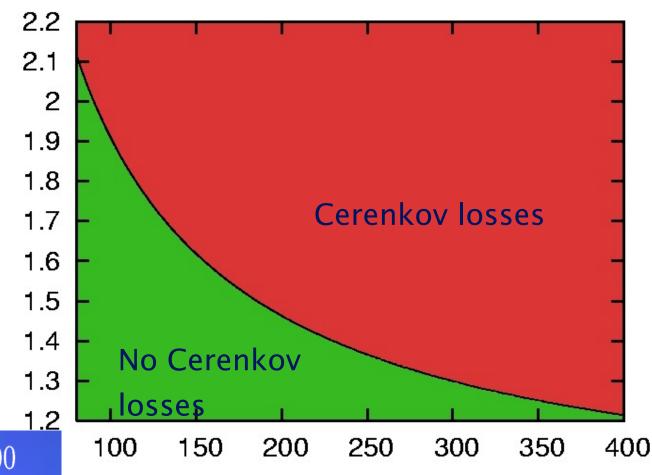
Following abbreviations were used:

$$\begin{split} \lambda &= \sqrt{k_\perp^2 - \frac{\epsilon \omega^2}{c^2}}, \quad \lambda_0 = \sqrt{k_\perp^2 - \frac{\epsilon_0 \omega^2}{c^2}} \\ L^+ &= \lambda_0 \epsilon + \lambda \epsilon_0 tanh(\lambda D/2), \quad L^- = \lambda_0 \epsilon + \lambda \epsilon_0 coth(\lambda D/2) \\ \beta^2 &= \frac{v^2}{c^2}, \quad \phi_{01}^2 = k_\perp^2 + \frac{\omega^2}{v^2} - (\epsilon + \epsilon_0) \frac{\omega^2}{c^2} \\ \phi^2 &= \lambda^2 + \frac{\omega^2}{v^2}, \quad \phi_0^2 = \lambda_0^2 + \frac{\omega^2}{v^2} \\ \text{Z. Phys. 216 (1968), 115-135} \quad \mu^2 = 1 - \epsilon \beta^2, \quad \mu_0^2 = 1 - \epsilon_0 \beta^2 \end{split}$$

Low Loss

Relativistic effects in semiconductors - Bulk

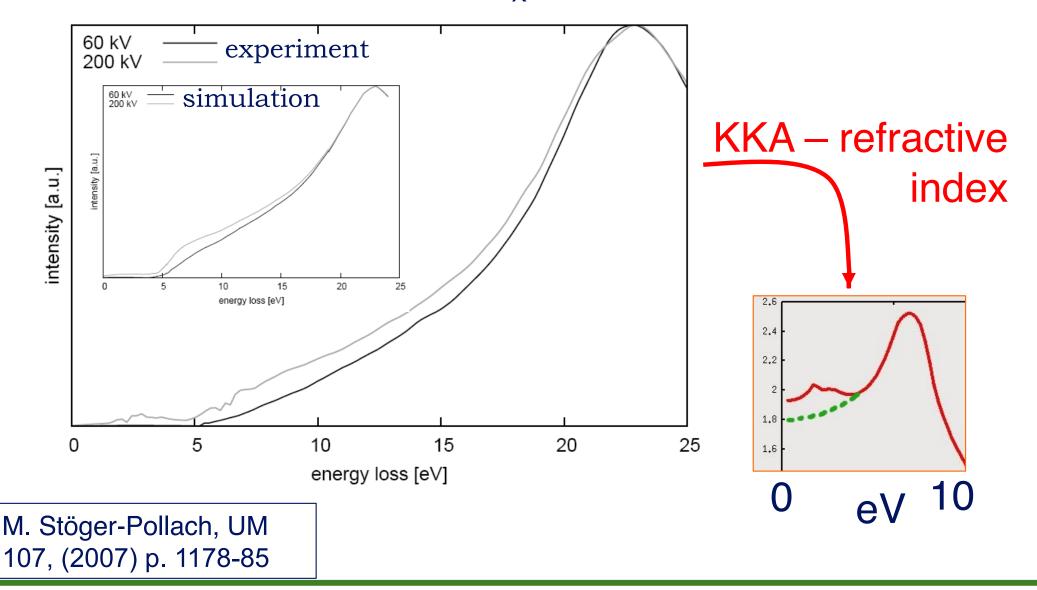
A lower TEMacceleration voltage allows higher nmaterials!



kV	100	200	300
n	1.8242	1.4381	1.2878
ϵ_1	3.3278	2.0683	1.6584

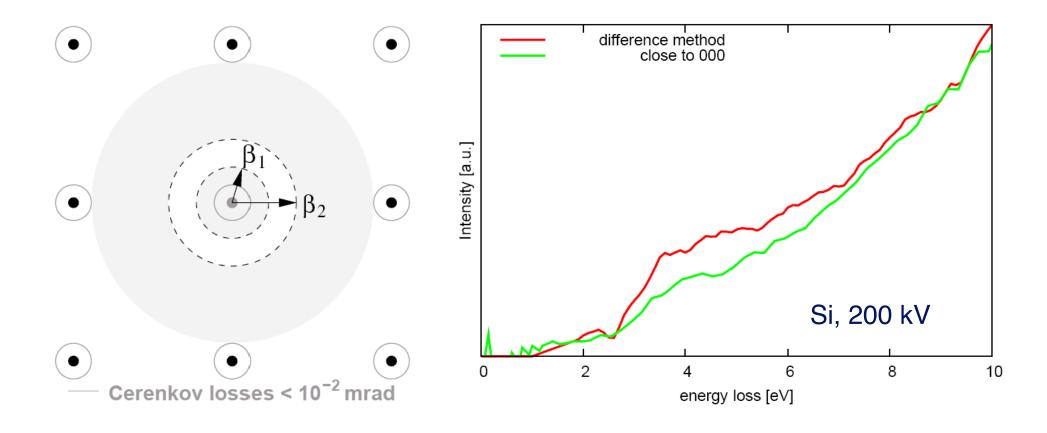
Low Loss: some solutions

Decrease TEM voltage (SiN_x:H)



Low Loss: some solutions

difference method (Si)

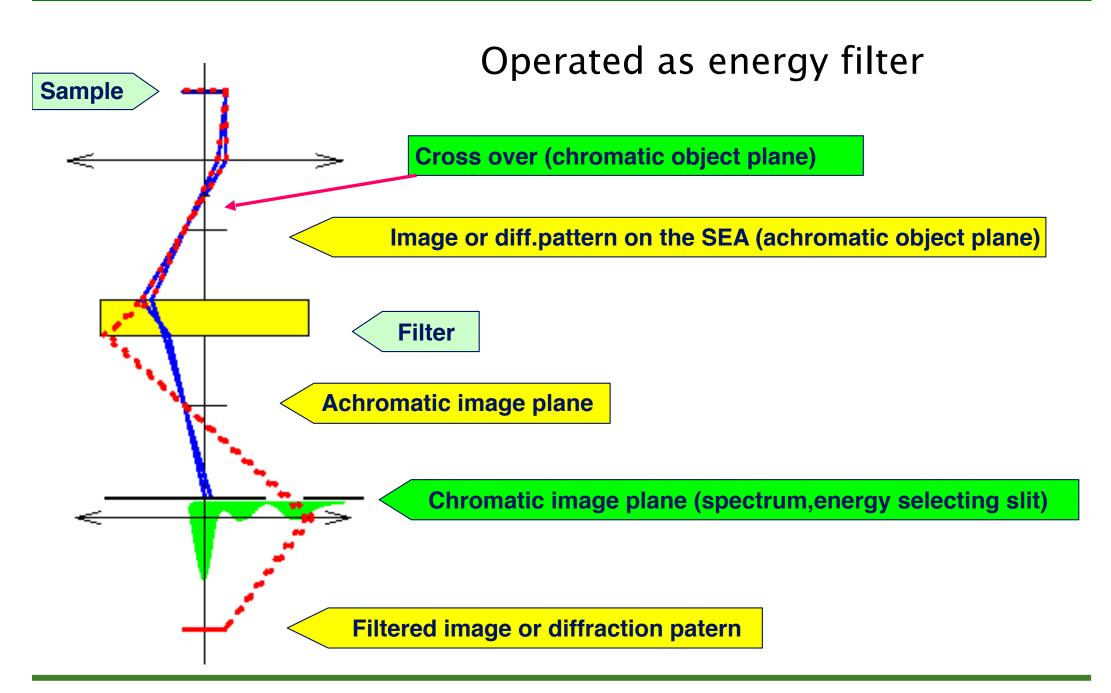


M. Stöger-Pollach, UM 107, (2007) p. 1178-85

Outline

- Introduction: EELS in the TEM
- Instrumentation
- Core Loss EELS
 - Theory
 - Applications
- Low losses
- Imaging (EFTEM)
- ELNES

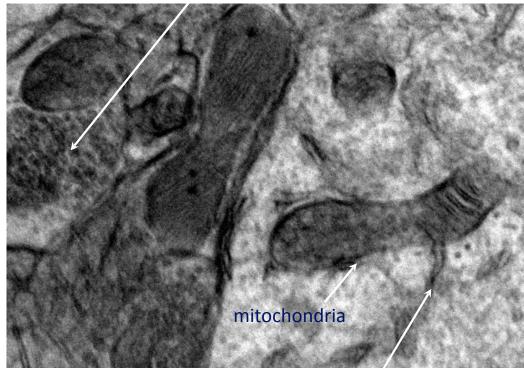
Imaging (EFTEM)



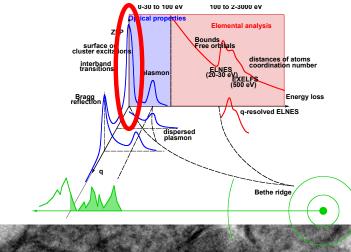
EFTEM: Zero-loss image

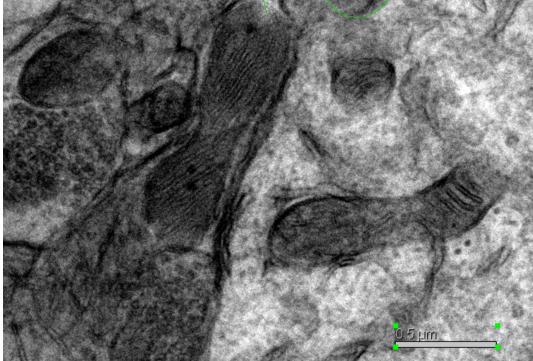
300nm thick section of resin embedded brain samples*. 200kV Microscope, 20mrad contrast aperture

axonal bouton containing vesicles



Unfiltered endoplasmic reticulum



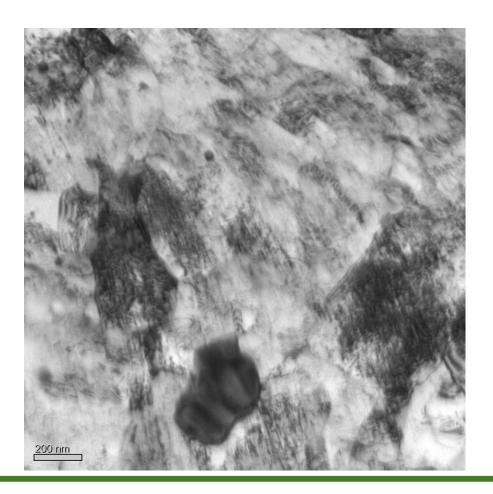


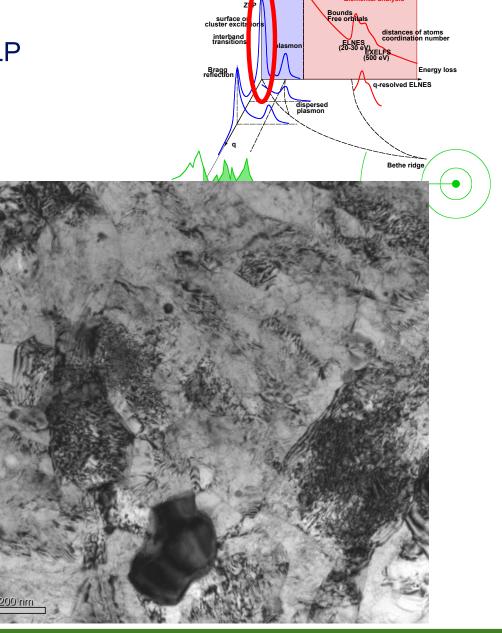
ZLP filtered with 15 eV slit

^{*} adult rat somatosensory cortex, aldehyde fixed, osmium and uranyl acetate stained

EFTEM: Zero-loss image

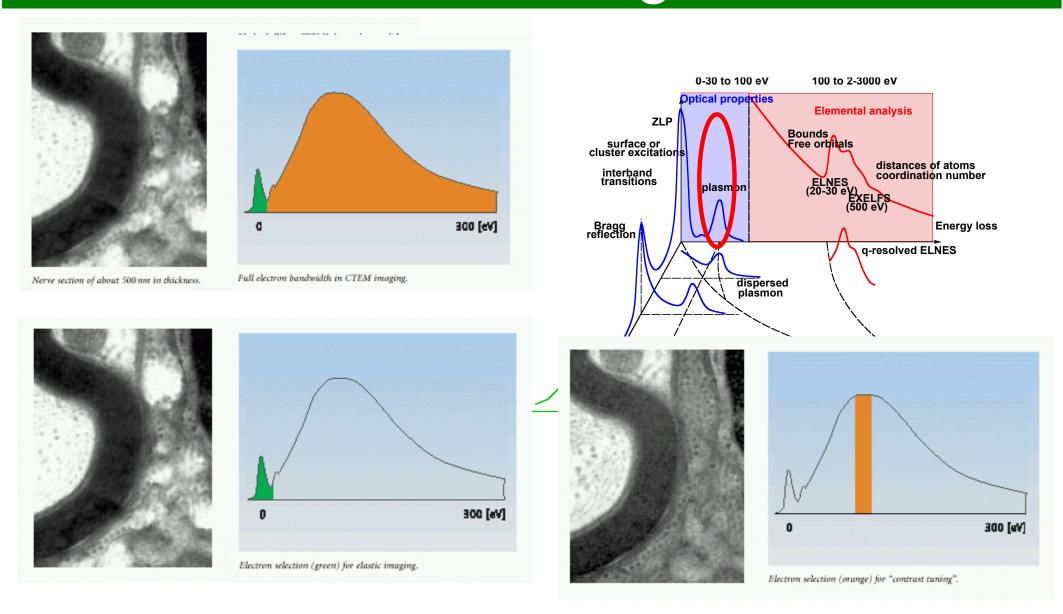
ODS reinforced steel. Left not filtered, right ZLP filtered (7eV slit). 200 kV. Specimen thicness c.a. 250nm





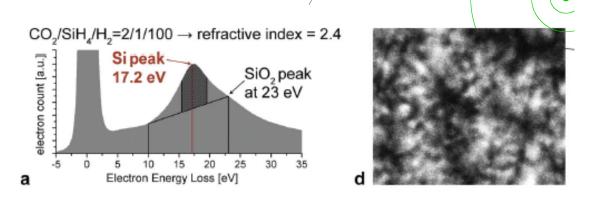
EPFL Doctoral school Analytical and scanning EM: EELS

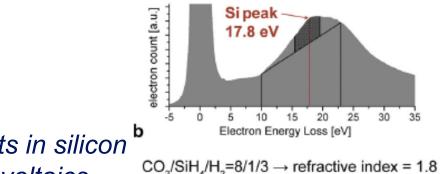
EFTEM: Plasmon images



Nerve section of about 500 nm in thickness.

Plasmon EFTEM analysis of SiO_x layers for high-efficiency thin-film solar cells



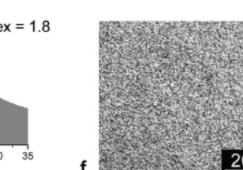


no clear

Si peak

Electron Energy Loss [eV]

CO₂/SiH₄/H₂=4/1/100 → refractive index = 1.8

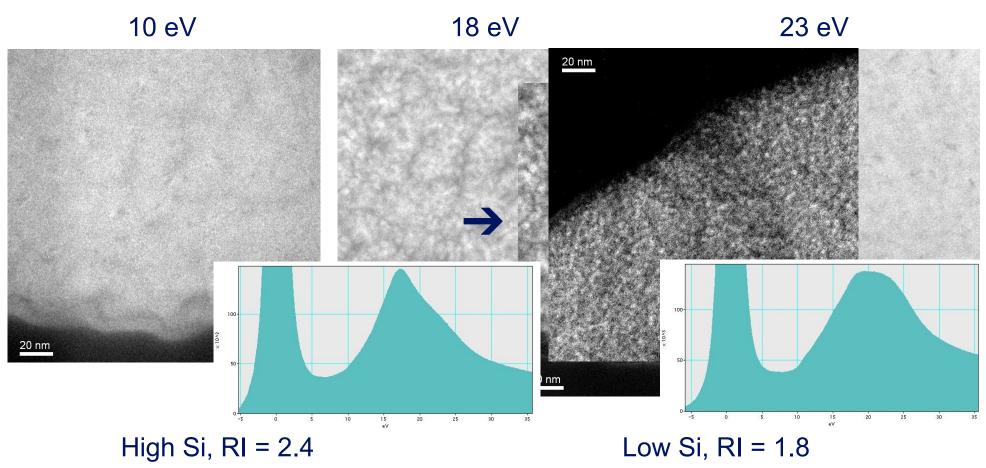


Bethe ridge

Cuony, P., & al. Silicon filaments in silicon oxide for next-generation photovoltaics (2012) Advanced Materials, 24 (9), pp. 1182-1186.

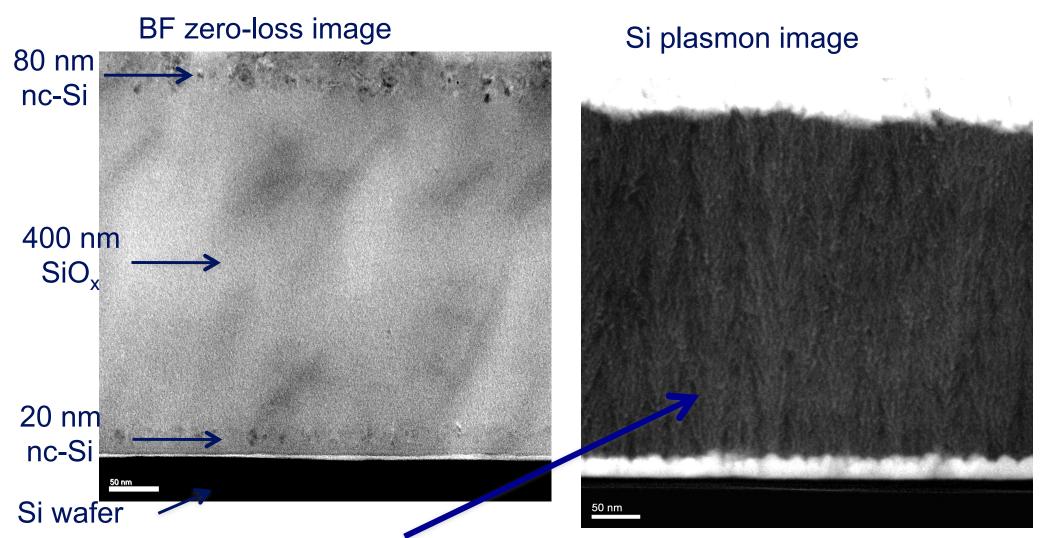
Comparison of films grown under different CVD conditions:

Plan-view images taken with 4 eV windows



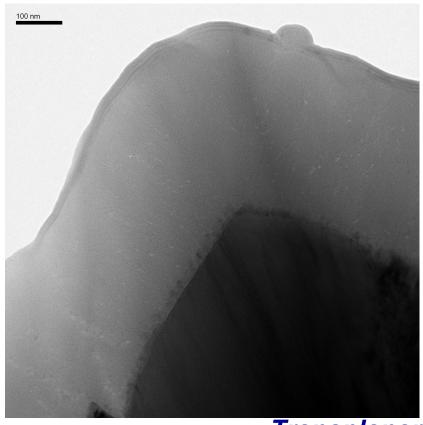
Drift correction: Schaffer et al. Ultramicroscopy 102 (2004) 27

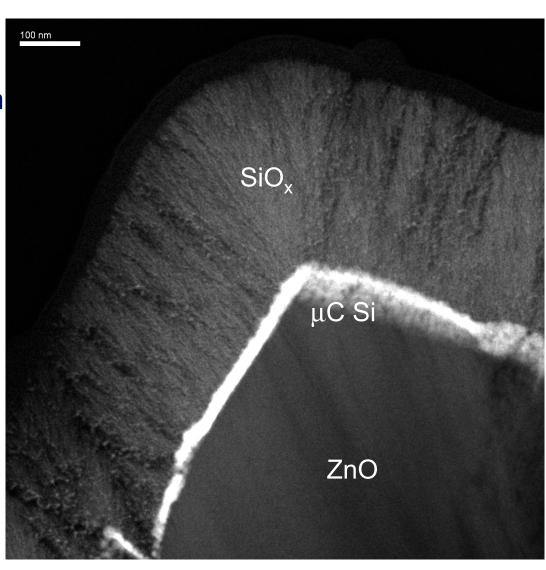
Why do the SiO_x films have poor in-plane but good cross-plane conductivity? TEM cross-section of test structure:



Branched/dendritic Si structures provide conductive paths across the film

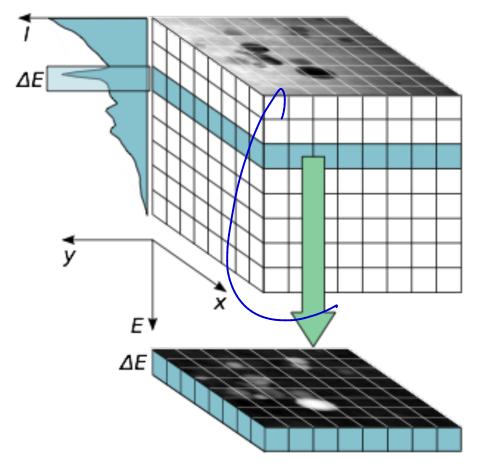
Cross section of a "good" specimen





Transplanar conductivity paths retained

model ODS ferritic alloy Fe-14Cr-2W-0.3Y₂O₃-0.4Ti CRPP EPFL



Advantages:

- Large field of view, good lateral statistics
- faster for large images
- Samples drift easier to deal with

But:

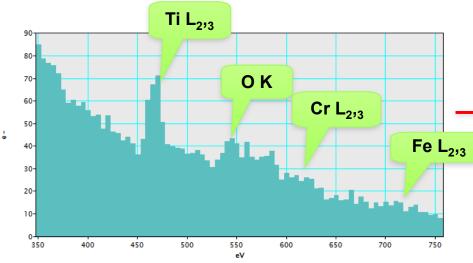
Not good energy resolution

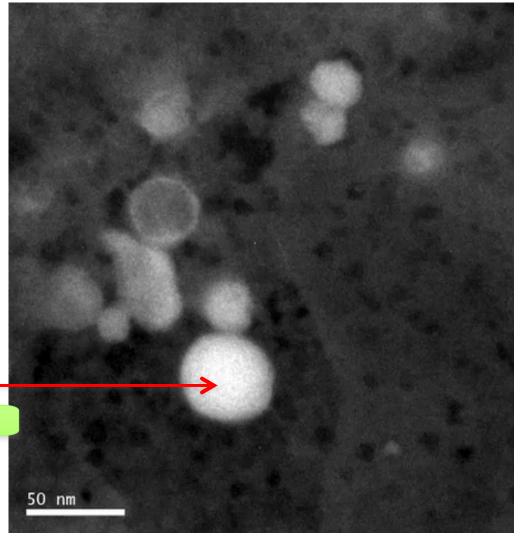
1024 x 1024 pixel; 2.8 Å pixel size c.a. 300 nm field of view. 2 stacks (low loss & core loss, each 300 Mb, total 600Mb data / region) Covers the most important edges for the expected elements

Sample preparation: C- extraction Raw EFTEM datacube.

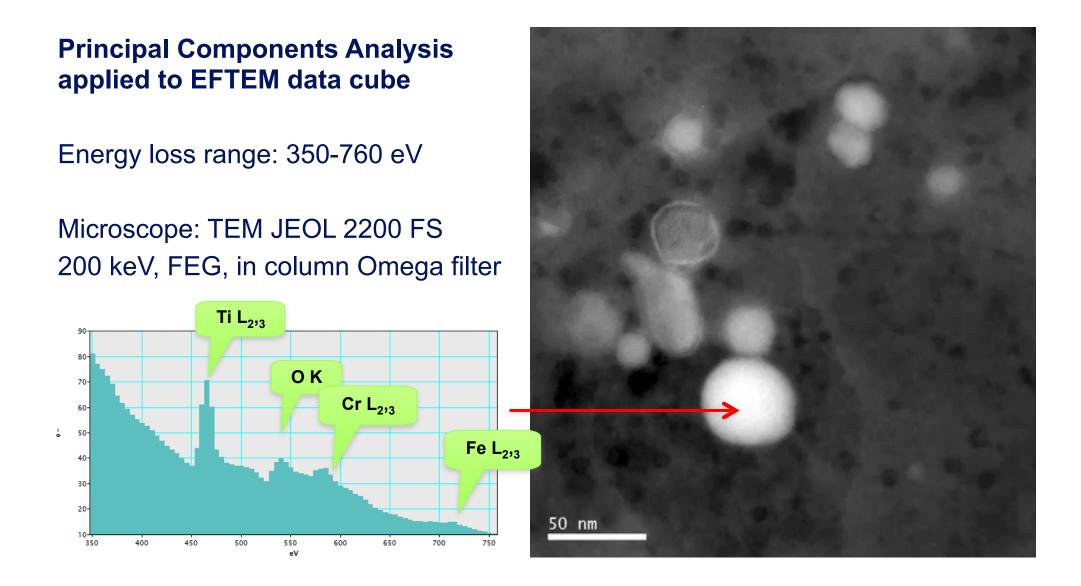
Energy loss range: 350-760 eV 10 eV slit width, 5 eV step

Microscope: TEM JEOL 2200 FS 200 keV, FEG, in column Omega filter

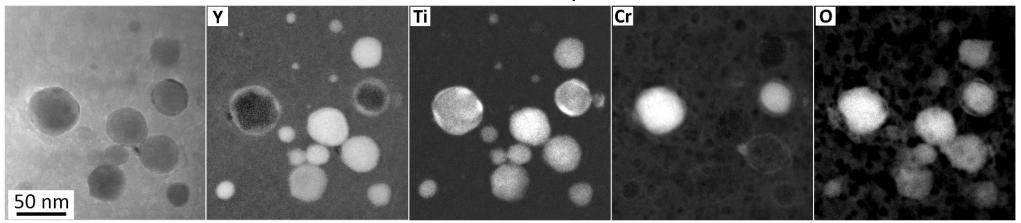




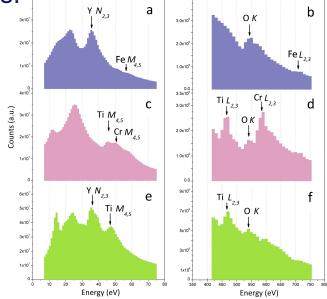
Data cleaning: 1- removal of "X-rays", 2- drift correction, 3- PCA



EFTEM chemical maps



EELS fingerprints:



← Y-O particles: 6 %, 16 nm

← Ti-Cr-O particles: 4 %, 33 nm

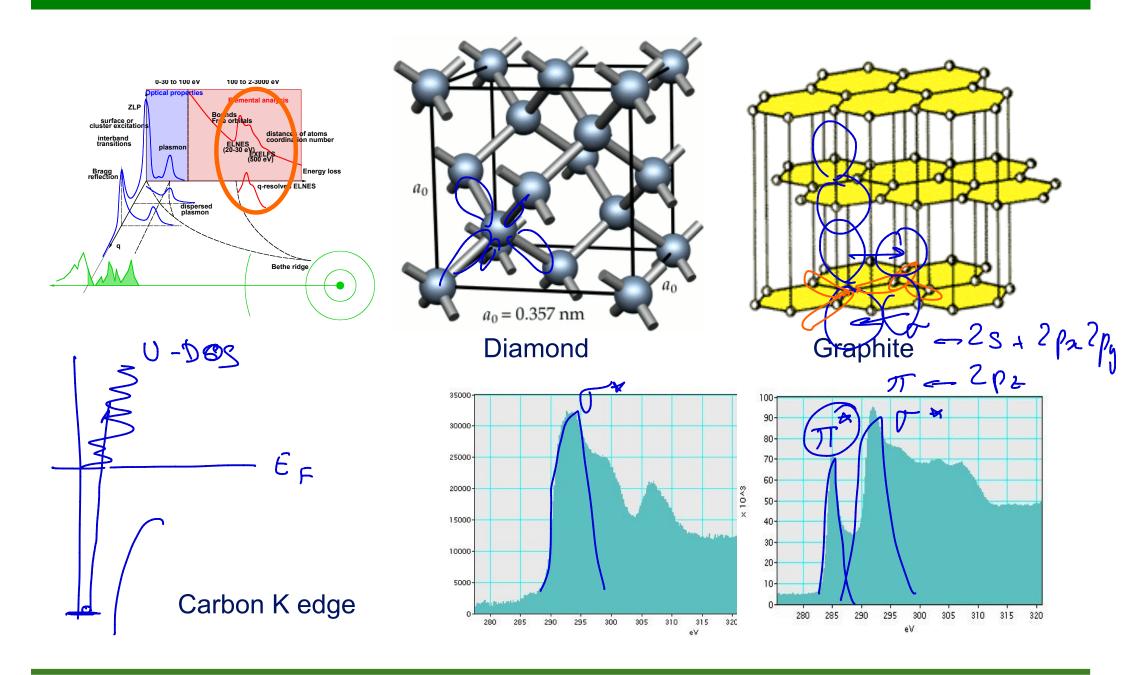
← Y-Ti-O particles: 90 %, 6 nm

P. Unifantowicz, R. Schäublin, C. Hébert, T. Płociński, G. Lucas, N. Baluc, Journal of Nuclear Materials Volume 422, Issue 1-3, March 2012, Pages 131-136

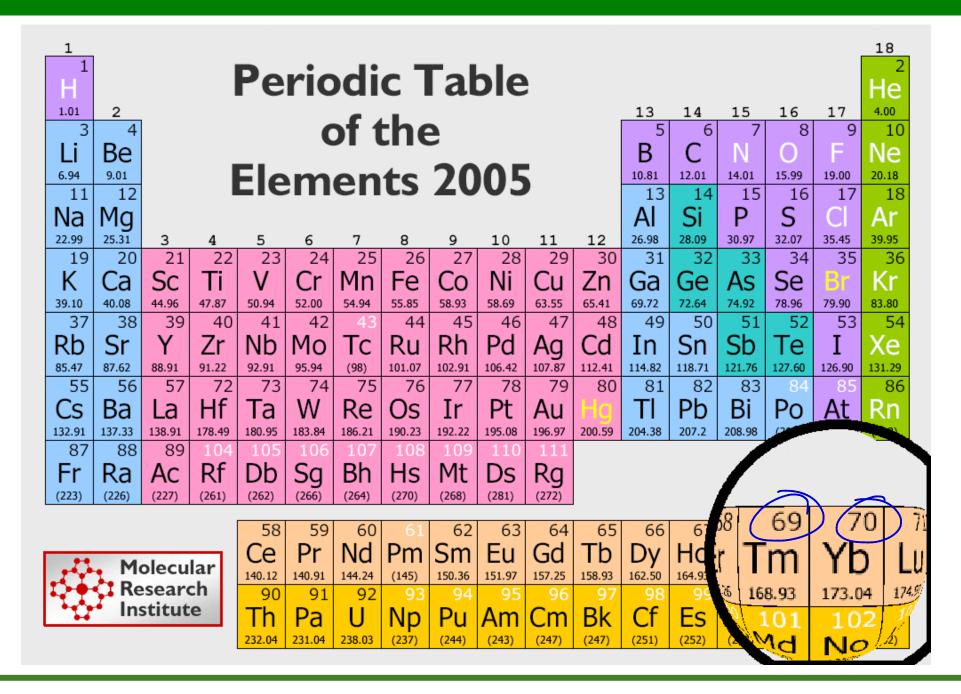
Outline

- Introduction: EELS in the TEM
- Instrumentation
- Core Loss EELS
 - Theory
 - Applications
 - Imaging (EFTEM)
- Low losses
- ELNES (Energy Loss Near Edge Structures)

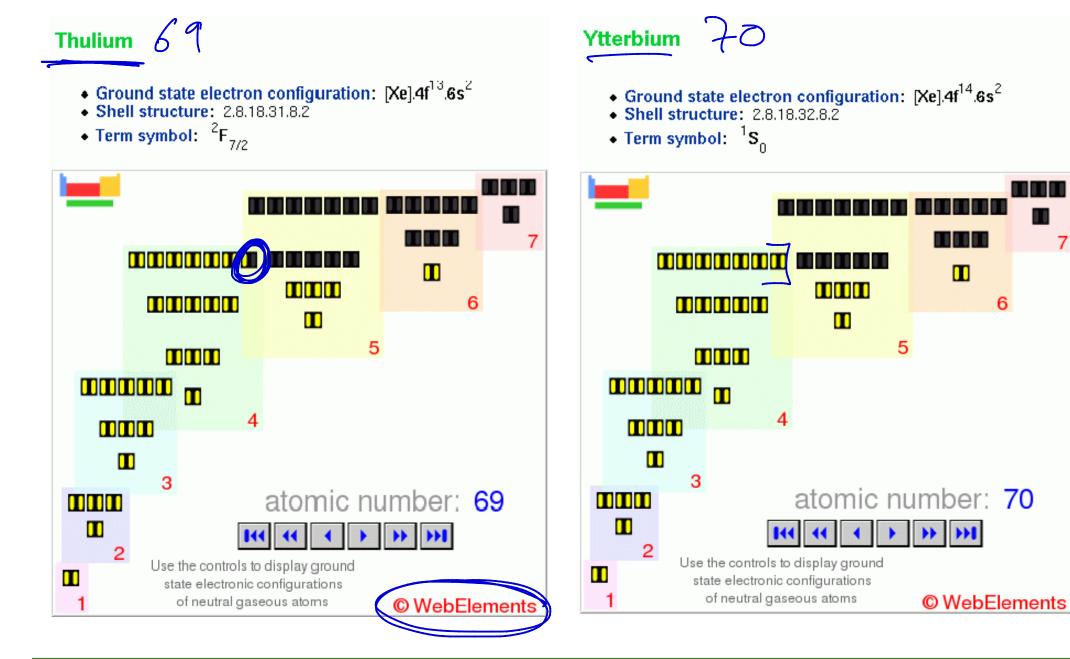
Core Loss: fine structure



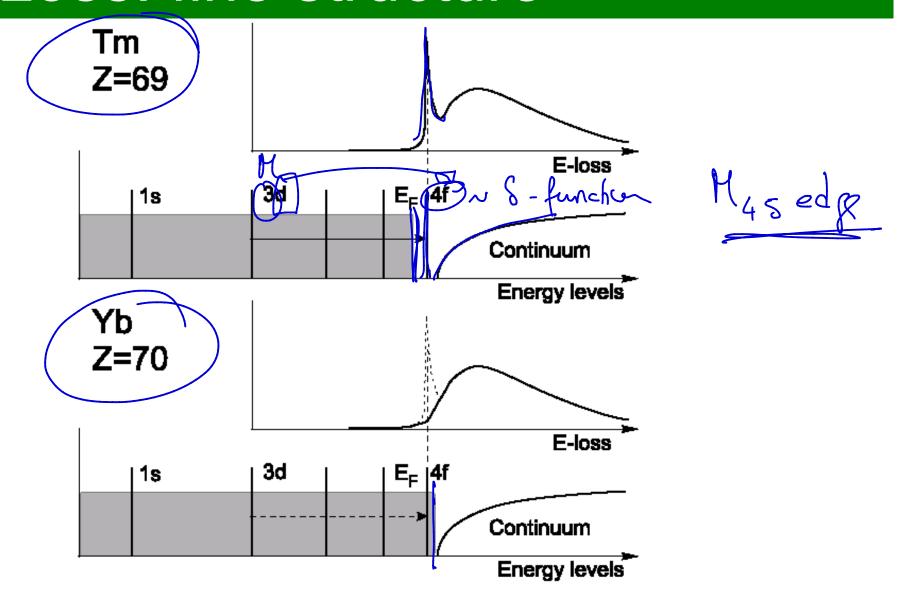
Core Loss: fine structure



Core Loss: fine structure

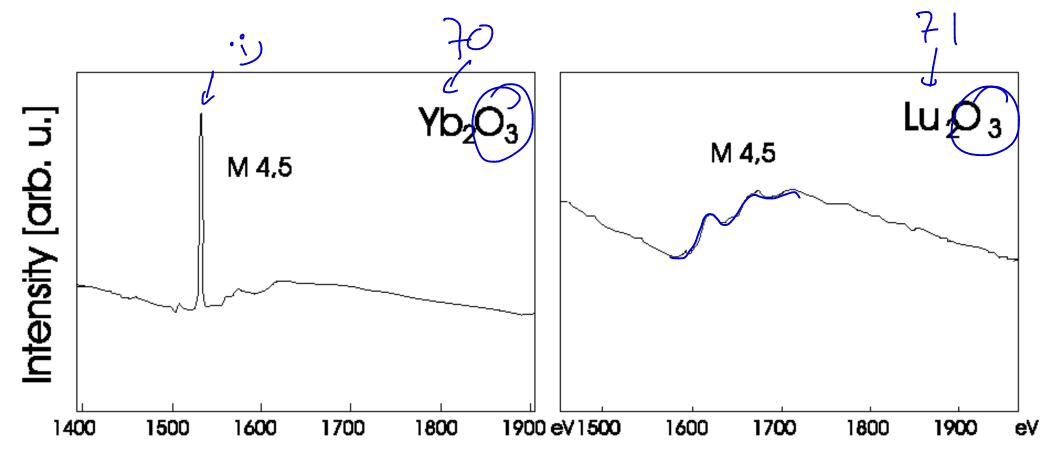


Core Loss: fine structure



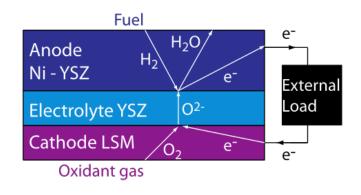
For Yb (Z=70) and higher atomic number, the f-shell is completely filled, and white lines cannot occur.

Core Loss: fine structure



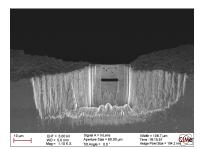
M₄₅ edges of Yb and Lu in their oxides, showing the disappearance of white line when the f-subshell is filled.

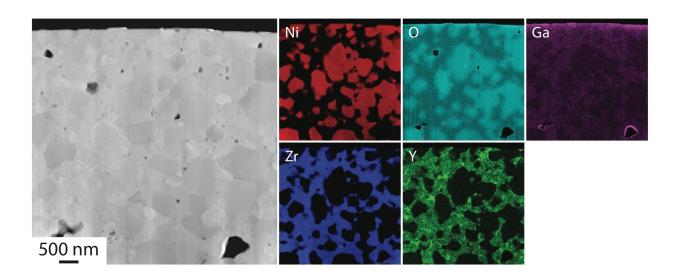
Q. Jeangros, A Hessler-Wyser, Jan van Herle, Cécile Hébert



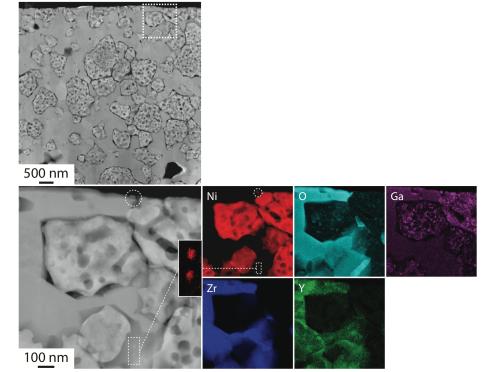
Ni - current conductor & catalyst for H₂ oxidation YSZ – ionic conductor

Ni structure//chemistry after reduction at 700 °C inside ETEM





As-sintered NiO-YSZ anode



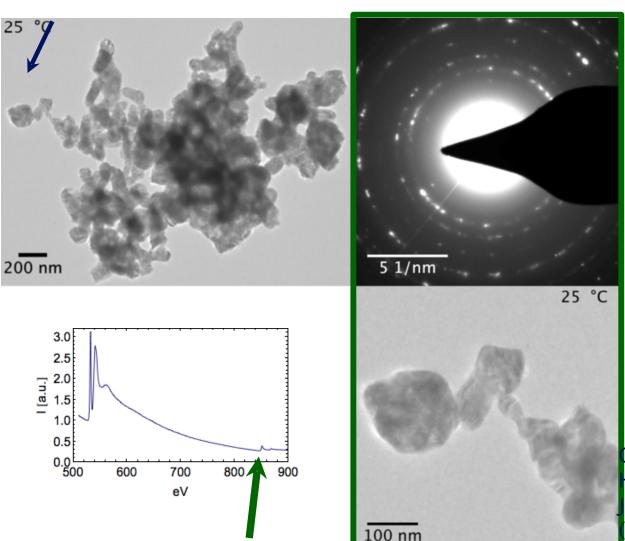
Activated Ni-YSZ anode

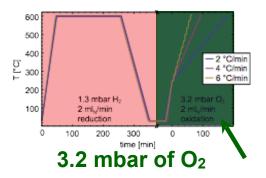
Reduction at 700 °C inside ETEM
Porous & inhomogenous Ni structure
Ni nanoparticles

- → Reaction mechanisms
- \rightarrow Ni(OH)₂

Artifact - gallium oxide

4 °C/min from 250 to 600 °C





- Some NiO reflections initially
- Small NiO crystallites with random orientations
- Ni to NiO
- Volume expansion
- Internal interface recession

Q. Jeangros, A Hessler-Wyser, Jan van Herle, Cécile Hébert akob Wagner, Rafal Dunin-Borkowski DTU)

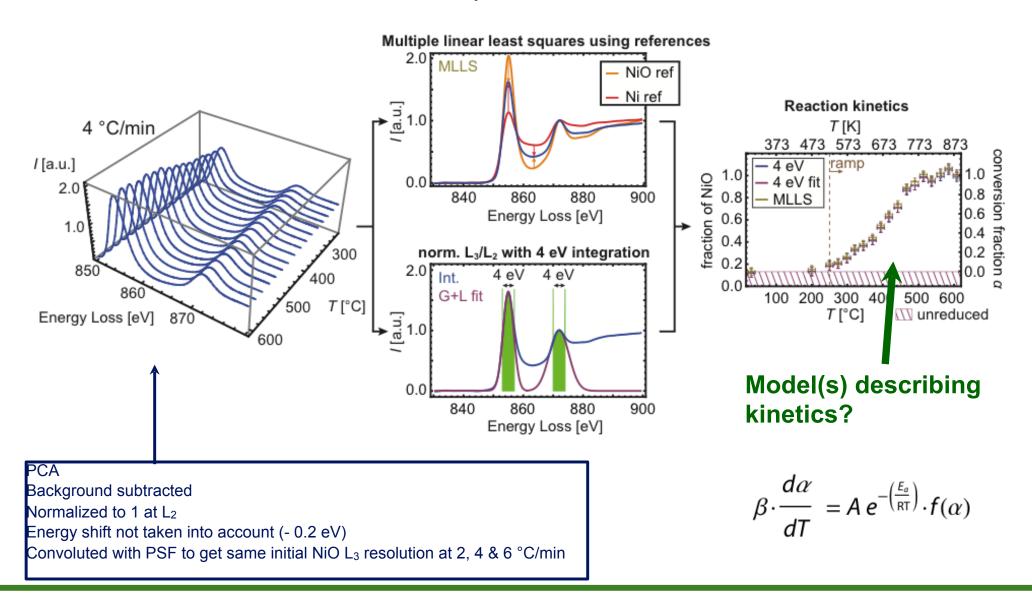
* 1 image, SADP, EELS every 6 minutes

Ni L_{2,3}

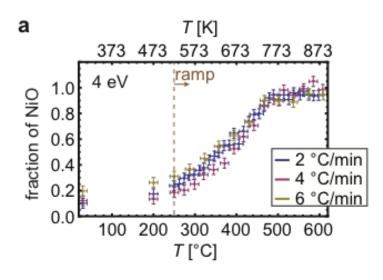
Kinetics by EELS

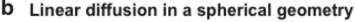
Changes of shape of Ni L_{2,3}

→ experimental Ni & NiO references

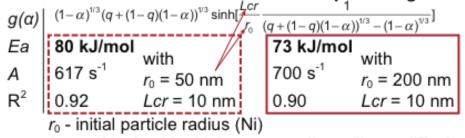


(Linear) diffusion controls the reaction

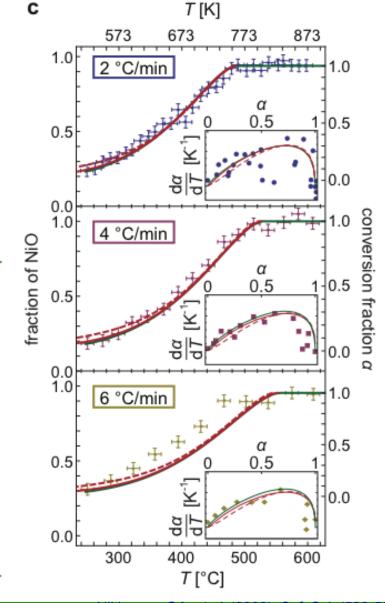


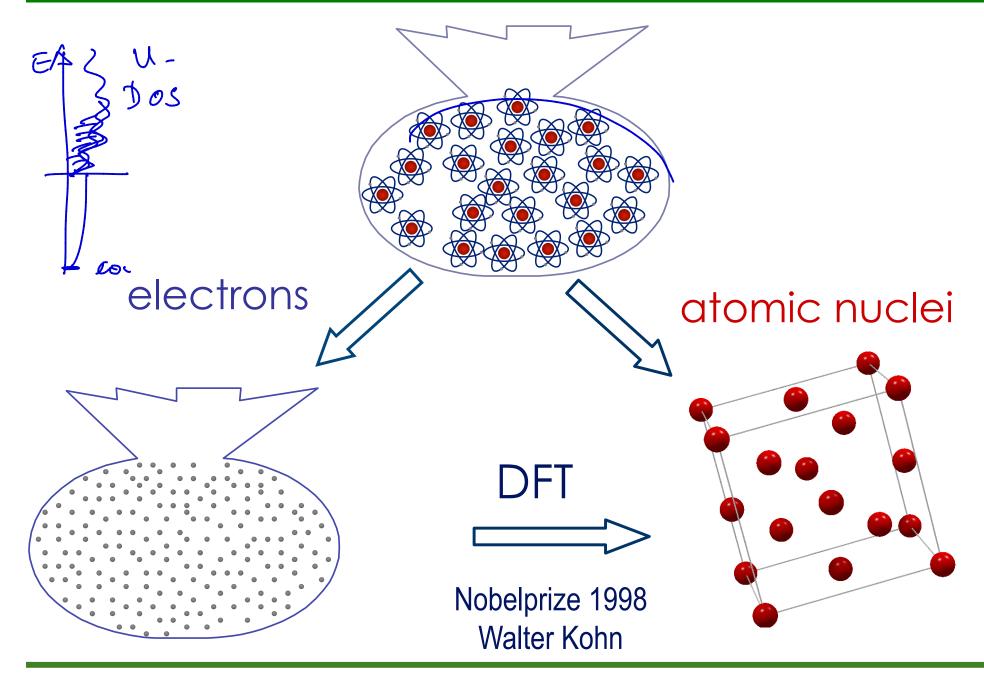


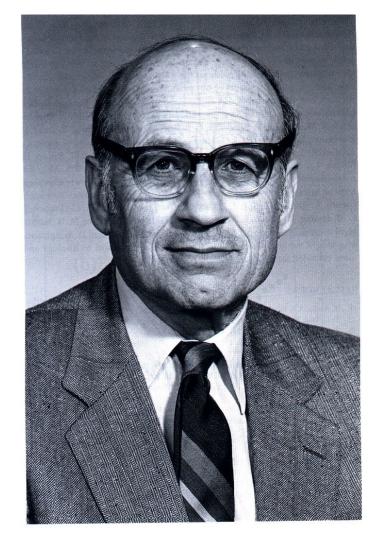
Non-linear & then linear diffusion in a spherical geometry



Lcr - critical oxide thickness, non-linear/linear diffusion crossover



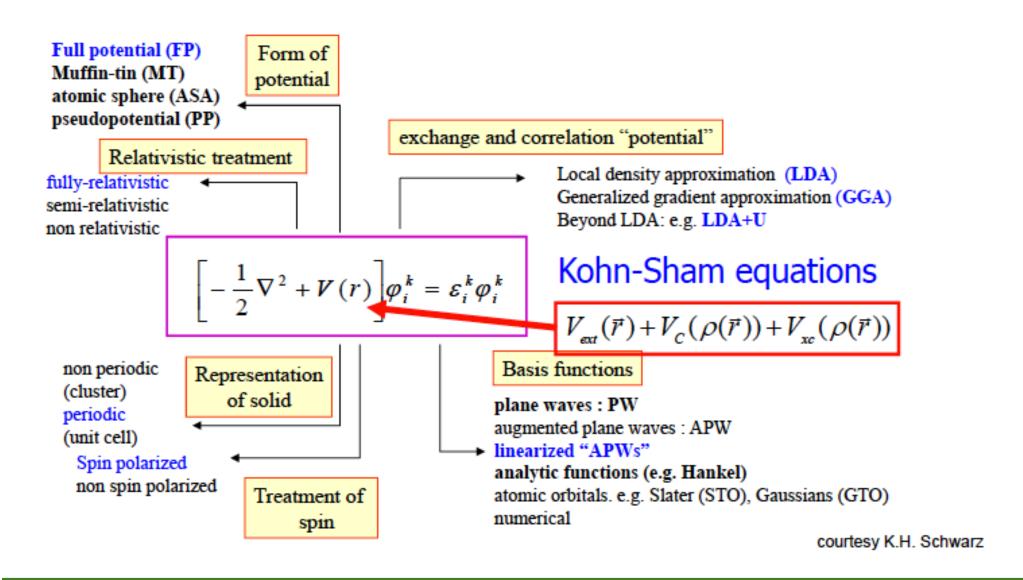




Walter Kohn Nobel prize laureate 1998 chemistry

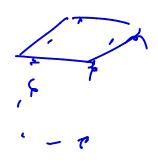
Walter Kehn

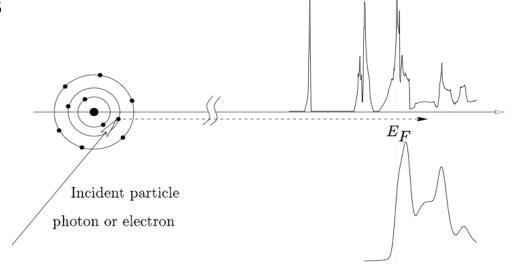
WIEN2k



Electron density

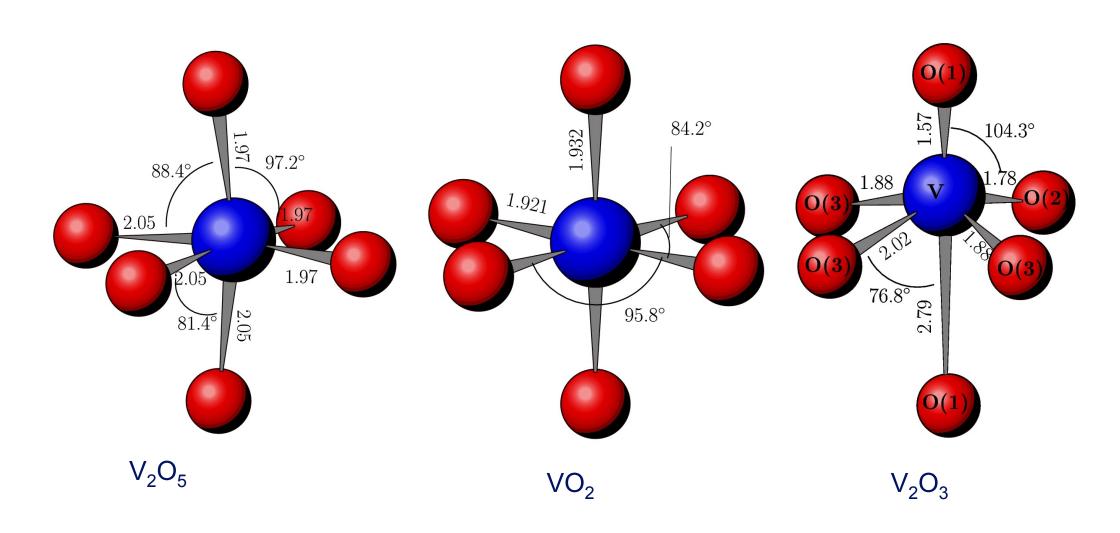
- -> Wave functions
- -> Density of states
- -> unoccupied density of states



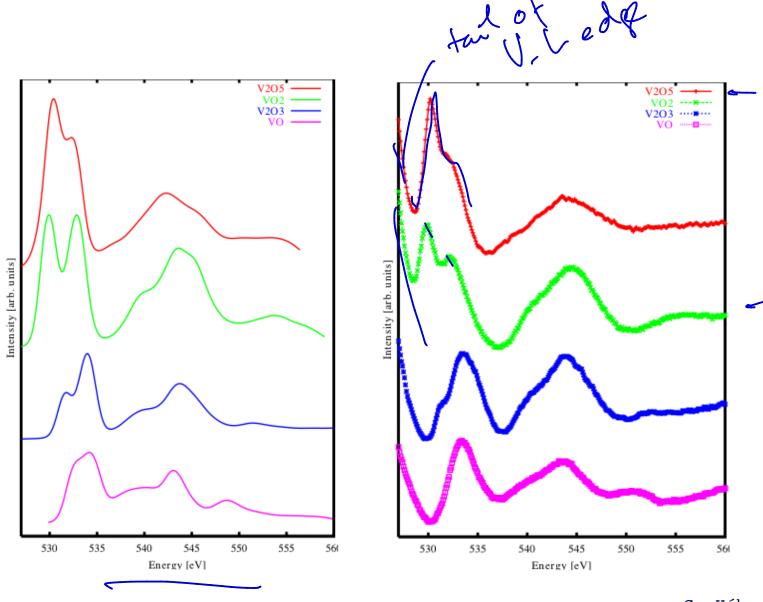


EELS spectrum with fine structures!

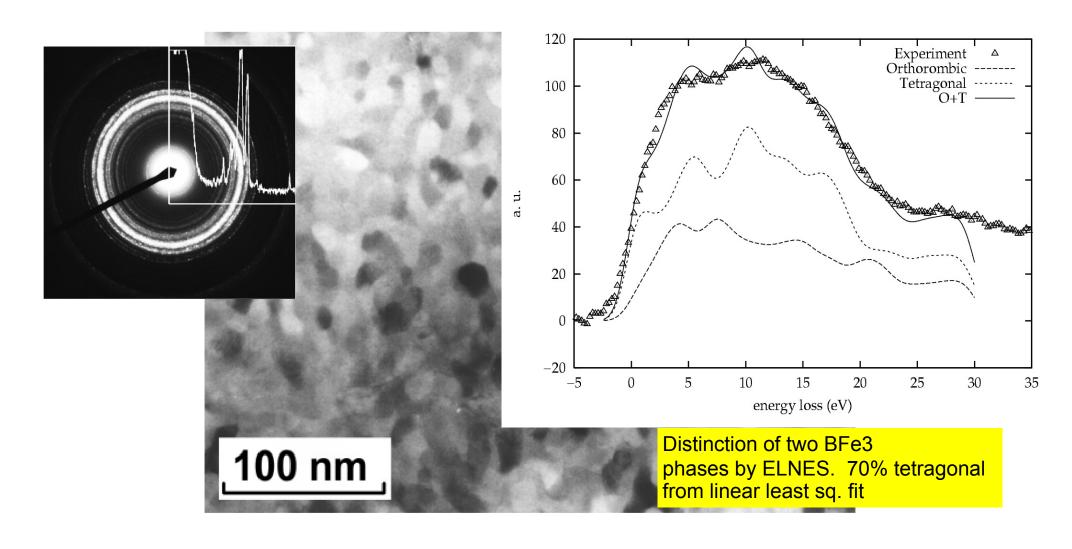
Compare with experiment



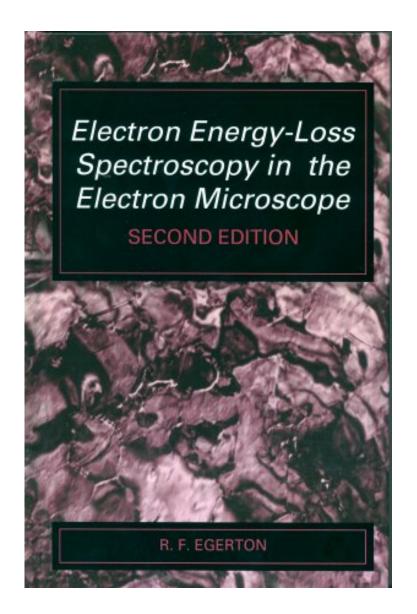
C. Hébert, et al.
Eur.Phys.J B 28, 407 (2002)



C. Hébert, et al.
Eur.Phys.J B 28, 407 (2002)



C. Hébert & al. EPJ- Applied Physics, 9:147 (2000)



Electron Energy-Loss Spectroscopy In The Electron Microscope By: R. F. Egerton Plenum Press © 1989, 1986; 438 pgs., Illustrated Second Edition