

Swiss Confederation

Innosuisse – Swiss Innovation Agency

# HOW TO BOOST PV DEVELOPMENT WHILE MITIGATING GRID IMPACT USING ADVANCED ELECTRICITY TARIFFS

Nicolas Wyrsch, Photovoltaics Laboratory (EPFL PV-LAB)

2020 SCCER-FURIES Annual Conference 28 October 2020, Virtual





## Self-consumption and system profitability



self-consumption : 
$$SC = \frac{A}{A + B}$$

$$SC_{min} = SC \Big|_{profit>0} = \frac{LCOE - t^{exp}}{t^{imp} - t^{exp}}$$

LCOE: Levelized cost of PV electricity

timp: import tariff (retail electricity price)

texp: export tariff (feed-in tariff)

- System profitability is given by SC and strongly depends on electricity tariffs (import and export)
- Batteries can increase self-consumption





#### Questions

- How tariffs influence investments in decentralized PV and storage?
- How tariffs impact grid operation?
- Can advanced tariffs help mitigate impact of large PV penetration on the grid?
- How to allow long term and profitable PV penetration?





#### Case study



RE Rolle demo site : low-voltage grid TR3716

- Data: 1 year @ 15 minutes, LCOE calculated on 25 years
- Operation : PV and battery operation (1 year)





# Optimal building design and operation



# 200

- Electrical demand
- Irradiance
- PV, battery cost functions
- Tariffs
- Interest rate, lifetime



#### **Objectives**

TOTEX = OPEX + R \* CAPEX

# **Outputs**

- PV and battery capacity
- Charging and discharging power
- PV generation, curtailment







# Effect of tariffs on the design and operation



L. Bloch et al., Energy Informatics 2,2019, doi:s42162-019-0085-z.







#### Reference tariff



Import: 21.02 cts/kWh

Export: 8.16 cts/kWh







#### Solar tariff



Cheaper at midday







# Spotmarket tariff



- Mirror of the EPEX
- Scaled to ensure same
   DSO revenues









# Capacity tariff



 Mix of a flat volumetric tariff and a capacity component

• Import: 15.91 cts/kWh

Export : 12.09 cts/kWh

Power: 5.02 CHF/kW/month







#### Block rate tariff





 Import tariff increasing with power consumption while export tariff decreasing with power injection







#### Effects of advanced tariffs



- PV hosting always maximum except with block rate
- Dynamic and capacity tariffs promote larger battery size
- Playing on the spot market can actually increases the Grid Usage, capacity and block rate globally decreases it
- Variance in payback time between systems is important

Median of 41 buildings









# Tariffs changes prosumer profiles







#### Impact on grid: Load duration curve



Dynamic tariffs tend to increase the stress on the grid

Block rate and capacity tariffs are able to reduce the stress on the grid







#### Impact on grid: Voltage deviation



Dynamic tariffs tend to increase the stress on the grid

Block rate and capacity tariffs are able to **reduce the stress** on the grid

J. Holweger et al., EPSR, 189, 2020, doi: 10.1016/j.epsr.2020.106763.







# Long term evolution

- Long-term PV and battery installations
- Grid usage constrains to keep grid safe operation









#### 2020-2050 evolution



Based on RE single tariff

- Import tariff increases up to 0.28 CHF/kWh (+32%)
- Grid usage constraint starts in 2026
- PV hosting reaches
   80% (30% higher than
   50 TWh objective)







## Profitability for prosumers



- Import tariff ↑⇒ IRR ↑
- GU constrain ↓ ⇒ IRR ↓
- 2% maximum variance around an 8% profitability threshold

L. Bloch, EPFL PhD thesis, 2020.







#### Conclusions

- Dynamic volumetric tariffs promote investment in larger storage but increase the stress on the grid
- Capacity based tariffs change battery usage, from trading energy to reducing consumption peaks
- Block rate tariffs promote smaller installation, hence helping reducing the stress on the grid
- Long term installation of distributed PV systems can be promoted by tariffs adaptation and (possibly) operational regulations
- Adaptation of tariffs in addition to investment cost reductions ensure profitability for most prosumers







#### Outlook

- Analysis of
  - Effect of self-consumption communities
  - Effect of other flexible loads such as heat-pumps and EVs
  - Effect of advanced tariffs on long-term evolution
- Market opportunities for DSO
   (use of distributed ressources by both prosumers and DSOs)
- Strategies to minimize (long-term) overall investment costs







#### Thank you for your attention



