Innosuisse – Swiss Innovation Agency ## ACCURATE HYBRID MACHINE LEARNING MODEL FOR LOCAL PV ENERGY YIELD PREDICTION Prof. Dr. H. Heck, PD Dr. E. Schüpbach, Prof. U. Muntwyler Bern University of Applied Sciences BFH Burgdorf, Switzerland 2020 SCCER-FURIES Annual Conference 28 October 2020, Virtual Innosuisse – Swiss Innovation Agency ## **PV Energy Yield Predictions – Why?** Aim: Enhance own production / consumption (esp. in winter) → higher and more stable profit for owners of PV installations **Gain: Contributes to grid stability** Innosuisse – Swiss Innovation Agency ## Data Driven Approach for Machine Learning #### 1. Data #### **AC-power** - 6 Swiss PV plants (3 urban, 3 alpine) - 4 years (6/2016-6/2020) #### Weather forecasts - 6 months (1/2020-6/2020) (MeteoSuisse and Meteoblue) - Global Horizontal Irradiation (GHI) - Temperature, wind, humidity, pressure #### 2. Method Step 1: Gauss Process model basic behaviour of the PV plant Step 2: Neural Network — adapts Gauss process according to weather condition Input: Gauss Process model output and weather forecasts Innosuisse – Swiss Innovation Agency ## **Schematics of Method (2-Step Approach)** Step 1: Gauss Process per hour AC power prediction for 6:00 AC power prediction for 12:00 Innosuisse - Swiss Innovation Agency #### Results - Yield Predictions for 6 Swiss PV Plants More than one GHI value per prediction #### Additional weather parameters Prediction precision increases > 30% with additional weather parameters | Plant | First Try | Optim. | Diff. | Increase % | |---------------------|-----------|--------|--------|------------| | Burgdorf Tiergarten | 0.0662 | 0.0486 | 0.0176 | 36 % | | Mont Soleil | 0.0700 | 0.0513 | 0.0187 | 36 % | | Worblenpark | 0.0666 | 0.0456 | 0.0210 | 46 % | | Jungfraujoch | 0.0717 | 0.0535 | 0.0182 | 34 % | | Birg | 0.0807 | 0.0573 | 0.0234 | 41 % | | Burgdorf, Schlossm. | 0.0617 | 0.0472 | 0.0145 | 31 % | H. Heck, E. Schüpbach, U. Muntwyler, 2020, Proceed. EU PVSEC, 7-11 September 2020, pp. 1796-1801 Innosuisse – Swiss Innovation Agency # THANK YOU VERY MUCH FOR YOUR ATTENTION! Contact: horst.heck@bfh.ch #### Acknowledgements This research is part of the activities of the Swiss Centre for Competence in Energy Research on the Future Swiss Electrical Infrastructure (SCCER-FURIES), which is financially supported by the Swiss Innovation Agency (Innosuisse - SCCER program). Co-financing from Bern University of Applied Sciences (BFH) is gratefully acknowledged Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences # WHAT IS THE ADDED VALUE OF SIMULATING ENERGY SYSTEMS? Angela Krainer, Managing Director Vela Solaris AG, Winterthur angela.krainer@velasolaris.com ### **VELA SOLARIS - PORTRAIT** #### **Competence Center for energy system simulation** - Spin-off of the Institut für Solartechnik (SPF), HSR Rapperswil (CH) in 2006 - Development and sales of the energy system simulation software Polysun and associated services for commercial use as well as education and R&D - Dynamic and coupled simulation of all technologies (power, heating/cooling, mobility) ## THE SIMULATION OF ENERGY SYSTEMS BENEFITS THE WHOLE LIFECYCLE Feasibility Planning Construction Operation Simulation ist used to quickly compare different energy systems with regards to energy-efficiency and profitability and choose the best option optimise defined energy systems (e.g. number/type/layout of PV-modules) and adapt to changes in planning at the lowest cost Simulation results are used to perform construction according to plan, and quickly identify performance gaps optimise the operation of the energy system, e.g. with regards to self consumption or real-time power prices simulation reduces the performance gap in BIM projects ## EXPECTED RESULTS OF COLLABORATION WITH BFH / SCCER-FURIES - ✓ Gain insight into the accuracy of machine learning models to predict PV energy yield and compare with physical simulation. - ✓ Improve physical simulation of Polysun software with regards to PV system losses (e.g. soiling, snow, degradation). - ✓ Evaluate the business potential to combine long-term simulation of PV yield currently used in Polysun (e.g. next 30 years) with short-term prediction (next day), to identify performance gaps.