

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation Innosuisse – Swiss Innovation Agency

DEVELOPMENT OF A SOFT-OPEN POINT FOR CHAPELLE-SUR-MOUDON LV DISTRIBUTION SYSTEM

Mauro Carpita, Patrick Favre-Perrod University of applied sciences and arts western Switzerland

2020 SCCER-FURIES Annual Conference 28 October 2020, Virtual

The SOP principle

- The SOP is a way to decouple load flows and fault currents:
 - It is (or can be) closed in normal conditions
 meshed/loop network topology
 - It opens in fault condition
 - radial network topology
- Advantages:
 - The SOP increases the operational flexibility with minimal influence on existing protection and automation systems
 - The RES hosting capacity can increase
- Application area: MV and LV networks

Performance criteria:

- Component loading
- Voltage variation over time
- Network losses
- (Increase in RES hosting capacity)

SCCER - FURIES Shaping the FUtuRe SwIss Electrical InfraStructure

Placement of the SOP

- LV modelling approach established
- 7 candidate locations identified
- Simulations based on load snapshots
 → comparison with status quo
- Space / planning permission checked in a second step → OK for best variant

Sizing of the SOP

- Evaluation of PV hosting capacity with no SOP
- Determination of the incremental possible addition of PV for SOP of different sizes (no other network reinforcement)
- 50 kVA selected

Shaping the FUtuRe SwIss Electrical InfraStructure

Control of the SOP

- Requirements:
 - Independent system with optional interlink to other systems
 - Simple system
- Candidate "basic" control schemes:
 - TRABA (Transformer Balancing):balance the loading of the two distribution transformers
 - VSTB (Voltage profile adjustment & transformer balancing): reduce a combination of the loading difference between the two distribution transformers and to reduce the voltage difference between the two connection points of the SOP.
 - VOLTSAME: reduce the voltage drop between the transformers and the SOP connection points.
 - PLOSS: OPF for minimal network losses
- Comparison + measurement requirements → VSTB was chosen

NB: low score is better

The 50 kVA prototype for Chapelle-sur-Moudon: Protection, control and communication

- Communication between sites
 - IEC 61850 GOOSE
 - Radio link
- Protection
 - U< / I> based short-circuit detection
 - Transfer tripping
- Control
 - Remote U/I measurements at MV/LV stations
 - Integration with Depsys GridEye system

Radio

Fthernet

The 50 kVA prototype for Chapelle-sur-Moudon: Power circuit principle

- Power part:
 - Inverters in back to back
 - LCL filter on each phase
 - Protections for each grid
 - Neutral controllers

- Control part:
 - Control card with 2 DSP
 - Measures (current, voltage and temperature)
 - Inverters control
 - Communication with P-Q calculator

The 50 kVA prototype for Chapelle-sur-Moudon: Power circuit control

FUtuRe SwIss Electrical InfraStructure

FURI

 Control strategy for inverter 1 (principle, adapted to LCL filter):

haping

External regulation loop with PI corrector on U_{DC} and Q₁
 => current setpoints in d-q frame

SCCER

the

• Regulation loop with PI corrector on $I_{d,1}$ and $I_{q,1}$

- Control strategy for inverter 2 (principle):
 - External regulation loop with PI corrector on P₁ and Q₂
 => current setpoints in d-q frame
 - Regulation loop with PI corrector on $I_{d,2}$ and $I_{q,2}$

The 50 kVA prototype for Chapelle-sur-Moudon: Power circuit control

Neutral control:

Principle schematic

 State space model: linearized for small variations around steady state conditions

The 50 kVA prototype for Chapelle-sur-Moudon: Power circuit design

 Power modules (ref: 2MSI200VAB-120-53) 2 IGBTs arm:

 ${U_{nom} = 1200 V \ I_{nom} = 200 A}$

- LCL filter optimised values: $\begin{cases} L_{inverter} = 330 \ \mu\text{H} \\ C_{filter} = 47 \ \mu\text{F} \\ L_{grid} = 150 \ \mu\text{H} \end{cases}$

• DC link:

 $\begin{cases} C_{DCbus} = 23,1 \text{ mF} \\ U_{DCbusnom} = 800 \text{ V} \end{cases}$

SOP REEL inverter

The 50 kVA prototype for Chapelle-sur-Moudon: Control circuit design

The 50 kVA prototype for Chapelle-sur-Moudon: Cupboard layout

SOP power section and protections

P-Q setpoints calculator

SOP power section

The 50 kVA prototype for Chapelle-sur-Moudon: Laboratory preliminary tests (state at 26.10.2020)

- One inverter was tested alone on a grid emulator in ReIne laboratory. (Emulator: Regatron TC.ACS.50.528.4WR.S.L.C)
- Prototype on site installation : end of 2020

Tbase		0.0 ms	Déclenchement	
10.0 m		ms/div	Auto	306 V
2.5 N	/15 25	M5/S	Front	Positive
X1=	8.2 µs	ΔX=	-8.00 µs	
X2=	240 ns	1/∆X=	-125 kHz	

Inverter phase voltage and current. 49 kVar capacitive reactive power

Conclusions

- The design and the realisation phase of a 50 kVA SOP prototype are finishing by the end of 2020.
- The on site tests will start at the beginning of 2021.
- The 50 kVA prototype benefits from the system studies performed at HEIA-FR, the detailed simulation activities performed at HEIG-VD and the experience made with the first 15 kVA laboratory prototype developed by HEIG-VD in 2018 in the frame of SCCER-Furies.
- Aim of the on site tests is to validate the usefulness of the SOP at system level.

Schweizerische Eidgenossenschaft 15 Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation Innosuisse – Swiss Innovation Agency

Thank you for your attention

This research is part of the activities of the Swiss Competence Centre for Energy Research on the Future Swiss Electrical Infrastructure (SCCER-FURIES), which is financially supported by the Swiss Innovation Agency (Innosuisse - SCCER program).