Innosuisse – Swiss Innovation Agency

DAY-AHEAD DISPATCH OF AN ACTIVE DISTRIBUTION NETWORK HOSTING STOCHASTIC DISTRIBUTED GENERATION VIA GRID-AWARE CONTROL OF A BESS

Antonio Zecchino, Ph.D.

Distributed Electrical Systems Laboratory, EPFL

2020 SCCER-FURIES Annual Conference 28 October 2020, Virtual

Innosuisse – Swiss Innovation Agency

The control time scales for ADNs

Problem	Required methods	Required technologies	
Renewables short-term volatility	Real-time knowledge of the system state	 Distributed sensing (e.g. PMU) Real-time state estimators 	
Grid congestionsVoltage control	 Exact optimal power flow Explicit control methods Stability assessment of complex systems (low inertia) 	Distributed storage(Demand response)	
 Heterogeneous resources aggregation Ancillary services (system stability) 	 Real-time estimation of system flexibility Robust optimization Short-term forecast 	Agent-based software frameworksDemand response	

Innosuisse – Swiss Innovation Agency

Objective

Experimental validation of day-ahead dispatchability of a distribution network hosting stochastic RES-based generation via grid-aware real-time control of a BESS

Control in two stages: a day-ahead optimization and a real-time control

Optimal profile of the feeder power for the **next day** and determination of BESS offset profile:

- data-driven forecasting
- scenario-based optimization

In **real-time**, the BESS is controlled to track the optimal profile:

- grid-aware OPF-based control
- battery equivalent circuit model

Innosuisse – Swiss Innovation Agency

Overall framework

Innosuisse – Swiss Innovation Agency

Dispatch plan definition

Day-ahead

Every 24 hours, we solve a robust optimization problem:

find:

• a dispatch plan for the next 24 hours using a scenario-based iterative AC OPF (Codistflow), which accounts for forecasts of RESs and load profiles with 95% confidence interval with 1h time resolution

such that:

- the **dispatch error** (|sum(dispatch plan PCC power)|) is **minimized** within 1h
- the BESS offset profile for **SoC compensation** is included and such that:
- the BESS energy limits are respected
- the BESS power limits are respected
- the grid ampacity and voltage constraints are respected
- end-of-day SoC is within 10% around initial SoC

Innosuisse – Swiss Innovation Agency

RT OPF-based BESS control

Real-time control

For each 1 hour slot, we solve **robust OPF** problems every 1 min, that considers the dispatch plan and BESS offset profile:

 $i=1,2,...,i^{max}(=61)$

while i<imax do:

• solve $(i^{max}-i)$ OPF for each time step of the 1h interval in receding time horizon

such that:

- the **dispatch error** (|sum(dispatch plan PCC power)|) is minimized within 1h
- the BESS offset profile for SoC compensation is included
- the accumulated error during the previous (i-1) timesteps is considered and compensated

and such that:

- the BESS energy limits are respected
- the BESS power limits are respected
- the grid ampacity and voltage constraints are respected

end

Innosuisse – Swiss Innovation Agency

Different OPF methods

Accuracy VS Computation Complexity

Linearized OPF [1]

- The system states are modeled by the sensitivity coefficients which can be uniquely determined as a function of grid states and topology, and are assumed to be constant within the control time interval.

Second-order cone ACOPF (SOC-ACOPF) [2]

- Relying on the branch flow formulation based on the transmission line Π-model.
- The original AC-OPF is convexified by employing SOC programming relaxation on the ampacity constraint associated to power losses
- The loop constraint of V phase angle is derived so that the branch flow model is valid also for meshed power networks.
- The feasible solution of the original AC-OPF can be recovered from the optimal solution of the SOC-ACOPF and the relaxation of the SOC-ACOPF model is tight under high power load conditions.

Augmented Relaxed OPF (AR-OPF) [3]

- Relying on the branch flow formulation based on the transmission line Π-model.
- While employing the SOCP relaxation on the ampacity constr. associated to P losses, aux. variables related to the state variables (line P-flow, V and I) are introduced to build a set of augmented operating constraints to guarantee the exactness of the SOCP relaxation.
- The exactness is valid under mild conditions which holds for realistic radial distribution networks.

^{[1].} Gupta, Rahul, Fabrizio Sossan, and Mario Paolone. "Performance Assessment of Linearized OPF-based Distributed Real-time Predictive Control." 2019 IEEE Milan PowerTech. IEEE, 2019.

^{[2].} Yuan, Zhao, and Mario Paolone. "Properties of convex optimal power flow model based on power loss relaxation." Electric Power Systems Research 186 (2020): 106414.

^{[3].} Nick, Mostafa, et al. "An exact convex formulation of the optimal power flow in radial distribution networks including transverse components." IEEE Trans. on Autom Control 63.3 2017: 682-697.

Innosuisse – Swiss Innovation Agency

Employed state estimation method

Zaphiro develops the first grid automation system based on high-speed & time-synchronized PMUs

17 Zaphiro's PMU (Phasor Measurement Unit) devices:

- Time-synchronized
- High-speed measurements (50 meas/sec)

Modular and scalable big-data processing software platform

Real-time monitoring

→ Estimation of entire grid state up to 50/60 times per second

Outage management

→ Automated fault location to reduce the duration or even prevent blackouts

Battery control

- → Control of a 1.5 MW battery to:
 - Maximize PV generation
 - Guarantee grid stability
 - Provide ancillary services

Innosuisse – Swiss Innovation Agency

1.5 MVA/2.5 MWh BESS

PQ capability curves as function of the real-time BESS status & grid status

Innosuisse - Swiss Innovation Agency

BESS modelling

Equivalent battery TTC model

attery TTC model
$$R_2 \qquad R_3 \qquad C_2 \qquad C_3 \qquad C_2 \qquad C_3 \qquad C_2 \qquad C_3 \qquad C_4 \qquad C_5 \qquad$$

SOC	0-20%	20-40%	40-60%	60-80%	80-100%
а	100.0098597	100.016163	100.014469	100.0134207	100.0146099
b	549.2836773	245.2360282	284.9052456	344.9751672	324.8422745
R_s	0.009312694	0.008569196	0.008364214	0.007948302	0.007679508
R_1	0.003305801	0.003323378	0.002586195	0.002919781	0.003248674
C_1	7576.472133	8813.047231	5631.309052	7282.444433	7792.395409
R_2	0.000217164	0.000334839	4.53043E-05	4.17458E-05	0.003885566
C_2	1.00E+06	1.00E+06	1.00E+06	1.00E+06	1.00E+06
R_3	2.00E-06	3.51E-05	4.13E-06	4.17E-06	5.80E-04
C_3	1.00E+07	1.00E+07	1.00E+07	1.00E+07	1.00E+07

Reference BESS scheme for the AC voltage prediction

$$\begin{aligned} \mathbf{v}_{t}^{AC} &= \mathbf{v}_{t}^{AC,m} + \mathbf{Z}_{eq} conj(\frac{\mathbf{S}_{0,t}^{AC}}{\sqrt{3}\mathbf{v}_{t}^{AC,m}}) \\ \mathbf{v}_{t}^{AC} &\approx \sqrt{(v_{t}^{AC,m})^{2} + X_{T}^{2} \frac{(P_{0,t}^{AC})^{2} + (Q_{0,t}^{AC})^{2}}{3(v_{t}^{AC,m})^{2}}} \end{aligned}$$

- Prediction of DC voltage $(v_t^{\mathit{DC}}, \mathit{SOC}_t)$ Prediction of AC grid voltage (v_t^{AC})

$$h(P_t^{AC}, Q_t^{AC}, v_t^{DC}, v_t^{AC}, SOC_t) \le 0$$

Converter feasibility region

Zecchino, A., Yuan, Z., Sossan, F., Cherkaoui, R. and Paolone, M., "Optimal Provision of Concurrent Primary Frequency and Local Voltage Control from a BESS Considering Variable Capability Curves: Modelling and Experimental Assessment." Electric Power Systems Research, Vol. 190, Jan. 2021.

Innosuisse – Swiss Innovation Agency

Prosumption data analysis and PV disaggregation

Innosuisse – Swiss Innovation Agency

Day-ahead scenarios generation and Realization

Innosuisse – Swiss Innovation Agency

Where we are now

Innosuisse – Swiss Innovation Agency

Conclusions

- We are deploying a framework for the day-ahead dispatchability of a distribution network hosting stochastic RES-based generation via grid-aware RT control of a BESS
- We have put in place a field experimental setup with advanced top-edge technology for the real-time monitoring and control of an ADN
- We have established field data collection and performed first analysis to assess the stochastic behavior of loads and distributed RESs after disaggregation
- We have performed BESS equivalent model identification tests for its optimal control
- An online disaggregation and forecasting tool for PV production and load consumption is operational.
- The RT dispatcher will be fully operational by mid-November

Innosuisse – Swiss Innovation Agency

Thank you

Antonio Zecchino, Ph.D.

Postdoctoral Researcher Distributed Electrical Systems Laboratory Swiss Federal Institute of Technology of Lausanne (EPFL)

E-mail: antonio.zecchino@epfl.ch Web: http://desl-pwrs.epfl.ch